Research Article | OPEN ACCESS
Model of Competencies for Decomposition of Human Behavior: Application to Control System of Robots
Jose Vicente Berna-Martinez and Francisco Macia-Perez
Department of Computer Science, University of Alicante, Carretera San Vicente s/n,
San Vicente Del Raspeig, Spain
Research Journal of Applied Sciences, Engineering and Technology 2013 6:2180-2191
Received: August 02, 2012 | Accepted: September 08, 2012 | Published: February 21, 2013
Abstract
Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Keywords:
Bioinspired robots, human behavior, human model of competencies, robot behavior, robot-human interaction,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|