Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technolog


Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM) to Reduce Greenhouse Gas Emissions (GHGs)

1Syed Zaighum Abbass, 1Syed Shahid Ali, 2Jabar Zaman Khan Khattak and 2Zubair Anwar
1Department of Environmental Science
2Department of Biotechnology and Bioinformatics, International Islamic University, Islamabad, Pakistan
Research Journal of Applied Sciences, Engineering and Technolog  2013  6:2270-2277
http://dx.doi.org/10.19026/rjaset.5.4781  |  © The Author(s) 2013
Received: September 17, 2012  |  Accepted: December 20, 2012  |  Published: February 21, 2013

Abstract

Carbon dioxide (CO2) a major Green House Gas (GHG) in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry is one of the major emitter of green house gases, particularly CO2 due to its energy intensive production process. It is estimated that approximately 1 tone of CO2 is released during the manufacturing of each tone of Portland cement. Most of CO2 emissions originate from burning fossil fuels and de-carbonization of limestone in a cement plant. During past several decades, the use of by-product materials in concrete, either as components of blended cements or as admixtures, has increased significantly. In this study, another alternate Supplementary Cementing Material (SCM), Laterite has been used with the objectives: to evaluate the performance of cement containing different percentages of laterite (5, 10, 15, 20, 25, and 30 %); to identify the optimum replacement percentage; and to investigate the effects of different concentrations of laterite on various properties of cement. For that purpose, laterite was tested: before blending (for elemental and mineralogical composition by using XRF, SEM and XRD): after blending (Elemental analysis using XRF, fineness test by using Blaine’s air permeability test and for particle size % on 45, 90 and 200 μ sieve, respectively); and after hydration (for mineralogical analysis using SEM). Furthermore, physical tests of manufactured cement, i.e., water consistency, setting time, Le-Chatlier-expansion and compressive strength were also evaluated and compared with limestone and fly-ash cement blends. The results show that with the replacement level of up to 15%, the quality of cement is not disturbed. In addition, the requirement of intake of energy has also decreased (~30%). Current findings indicate that by using Laterite, as SCM, cement production can be increased without consuming more energy and hence reduce GHG emissions.

Keywords:

Blended cement, compressive strength, fly ash, laterite, limestone, portland cement,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved