Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Reynolds Number Effects Investigation of Supercritical Airfoil Based on EFD and CFD

1, 2Da-Wei Liu, 1, 2Xin Xu, 2Zhi Wei and 1, 2Yuan-Jing Wang
1State Key Laboratory of Aerodynamics
2High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, China
Research Journal of Applied Sciences, Engineering and Technology  2013  23:4387-4392
http://dx.doi.org/10.19026/rjaset.6.3441  |  © The Author(s) 2013
Received: January 31, 2013  |  Accepted: February 25, 2013  |  Published: December 15, 2013

Abstract

This study aimed to investigate the transonic Reynolds number effects of supercritical airfoil by EFD and CFD method. An experiment was conducted in NF-6 wind tunnel, to obtain the pressure distribution and aerodynamic coefficients of a typical supercritical airfoil through pressure measuring, with Reynolds numbers varied from 3.5×106 to 1.0×107 per airfoil chord, Mach numbers from 0.6 to 0.8, angles of attack from 0° to 8°. Also, flows over the supercritical airfoil were numerically studied; the two-dimensional Navier-Stokes equations were solved with structure grids by utilizing the Spalart-Allmaras (S-A) turbulence model, with Reynolds numbers varied from 2.0×106 to 50×106 per airfoil chord and Mach numbers from 0.6 to 0.8. Computational results compared well with experimental results. It is shown that the upper surface pressure distribution of supercritical airfoil including the location and intensity of shock wave and trailing-edge pressure coefficient, changed apparently with variable Reynolds numbers, when shock-induced trailing-edge separation existed. It is also noticed that the lift coefficient increased, drag and pitching moment coefficient decreased as Reynolds number increasing. Results implied that Reynolds number effects should be considered during the early designing stage and optimization of large aircrafts applied supercritical airfoil.

Keywords:

CFD, EFD, reynolds number effects, supercritical airfoil,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved