Research Article | OPEN ACCESS
The Research on Data Mining of Slim Life Mode Based on Cycle Behavior
1Liu Xianglin and 2Yao Binbin
1Physical Education Department, Dalian Jiaotong University, Dalian 116028, China
2Physical Education Department, Anqing Teachers College, Anqing 246000, China
Research Journal of Applied Sciences, Engineering and Technology 2013 24:4563-4568
Received: December 15, 2012 | Accepted: January 17, 2013 | Published: December 25, 2013
Abstract
In this study, data mining of slim life mode based on cycle behavior is propsed. The mining of the periodic behavior is divided into four stages. The first two stages is data pre-processing stage: Firstly, parsing stay point sequence from data sequence of the original location history. Here stay point represent the geographic area to a person’s stay for some time; Secondly, cluster mining the sequence of stay point, find out the significant places, such as company, supermarket, home location, etc. Thirdly, mining periodic on the significant places. Take a place as a reference point; abstract the original location history data into binary sequence by the location point in or out the place. Then, combination two popular signal processing method fast Fourier and autocorrelation find the periods of every place. Fourthly, mining the periodic behavior of the places with the same periods, in this article, first construct the periodic behavior probabilistic model, then use the method based on the hierarchical clustering to mining the periodic behavior between different places. At last, an example is introduced.
Keywords:
Cycle behavior, data mining, slim life mode,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|