Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Investigating Rheological Properties of High Performance Cement System for Oil Wells

Khalil Rehman Memon, Muhannad Talib Shuker
Saleem Qadir Tunio, Arshad Ahmed Lashari and Ghulam Abbass Universiti Teknologi PETRONAS, Malaysia
Research Journal of Applied Sciences, Engineering and Technology  2013  20:3865-3870
http://dx.doi.org/10.19026/rjaset.6.3603  |  © The Author(s) 2013
Received: January 21, 2013  |  Accepted: March 07, 2013  |  Published: November 10, 2013

Abstract

The main purpose of designing cement slurry for extreme and deep environment (HPHT wells) is to develop high performance cement system in well bore to achieve zonal isolation. The primary objective of cement slurry is to improve rheological properties and displacement efficiency of cement system. Oil well slurries depend on its homogeneity of additive concentrations, quality and quantity to contribute the placement and success of a well drilling cementing operation. This research study is focused on the laboratory study of the High Performance Cement System (HPCS). This investigation of cement slurry was prepared with Silica Fume (SF) and excess amount of water to decrease the slurry density in order to observe the rheological properties above 120C at different concentration of SF. Results indicates that the designed cement rheological properties are directly influenced by the shear rate and shear stress on the pump-ability of the cement with the increase of the SF concentration for the rheological improvement.

Keywords:

Cement additives, high performance cement system, rheology, silicafume,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved