Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Numerical Simulation of the Thermoelectric Model on Vehicle Turbocharged Diesel Engine Intercooler

Zhou Minfeng, He Yongling and Chen Yanmin
School of Transportation Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
Research Journal of Applied Sciences, Engineering and Technology  2013  16:3054-3059
http://dx.doi.org/10.19026/rjaset.6.3694  |  © The Author(s) 2013
Received: January 12, 2013  |  Accepted: January 31, 2013  |  Published: September 10, 2013

Abstract

A thermoelectric gas-solid heat transfer numerical model was established between an air-cooling tube-fin intercooler’s intake and cooling air passage channel on vehicle turbocharged diesel engine. The outlet temperature of intake air, the output power of the thermoelectric components and the thermal conversion efficiency are considered as the research objectives. When load value is constant, the outlet temperature of intake air decreases with the number of thermocouples increases and there exist maximum values for output power and thermal conversion efficiency; when the number of thermocouples is constant, there is little effect on the outlet temperature of intake air with the load value increases. When the load was been optimal designed, set the load value throughout equals to the value of thermoelectric component total internal resistance, the values of the maximum output power was increased by 20.3% and the thermal conversion efficiency was increased from 1.78 to 3.48%.

Keywords:

Air cooling tube-fin intercooler, gas-solid heat transfer, optimal design, thermoelectric,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2025. MAXWELL Scientific Publication Corp., All rights reserved