Research Article | OPEN ACCESS
Application of ANOVA and Taguchi-based Mutation Particle Swarm Algorithm for Parameters Design of Multi-hole Extrusion Process
Wen-Jong Chen, Wen-Cheng Su, Fung-Ling Nian, Jia-Ru Lin and Dyi-Cheng Chen
Department of Industrial Education and Technology, National Changhua University of
Education, No. 2, Shi-Da Road, Changhua City 500, Taiwan
Research Journal of Applied Sciences, Engineering and Technology 2013 13:2316-2325
Received: November 13, 2012 | Accepted: January 01, 2013 | Published: August 05, 2013
Abstract
This study presents the Taguchi method and the Particle Swarm Optimization (PSO) technique which uses mutation (MPSO) and dynamic inertia weight to determine the best ranges of process parameters (extrusion velocity, eccentricity ratio, billet temperature and friction coefficient at the die interface) for a multi-hole extrusion process. A L18(21×37) array, signal-to-noise (S/N) ratios and analysis of variance (ANOVA) at 99% confidence level were used to indicate the optimum levels and the effect of the process parameters with consideration of mandrel eccentricity angle and exit tube bending angle. As per the Taguchi-based MPSO algorithm using DEFORM™ 3D Finite Element Analysis (FEA) software, the minimum mandrel eccentricity and exit tube bending angles were respectively calculated to be 0.03°, which are significantly less than those based on Genetic Algorithm (GA) and the Taguchi method, respectively. This indicates that the Taguchi-based MPSO algorithm can effectively and remarkably reduce the warp angles of Ti-6Al-4V extruded products and the billet temperature is the most influencing parameter. The results of this study can be extended to multi-hole extrusion beyond four holes and employed as a predictive tool to forecast the optimal parameters of the multi-hole extrusion process.
Keywords:
F-value, multi-hole extrusion, signal-to-noise, Taguchi-based MPSO,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|