Research Article | OPEN ACCESS
Rolling Bearing Failure Feature Extraction Based on Transform and Stochastic Resonance
Zengqing Ma, Yingna Yang and Jianhua Liang
School of Electrical and Electronics Engineering, Shijiazhuang Tiedao University, China
Research Journal of Applied Sciences, Engineering and Technology 2013 15:2812-2817
Received: January 19, 2013 | Accepted: March 02, 2013 | Published: August 20, 2013
Abstract
Based on the generate mechanism of rolling bearing fault signal and its modulation model in the process of spreading, an improved method that combining Hilbert transformation and Stochastic Resonance (SR) is proposed for rolling bearing fault features extraction. Subsequently, the method is used to extract fault signal features from three kinds of typical faults, the surface damage of the inner ring, outer ring stripping injury and roller electrical erosion. First, low frequency envelope components are acquired from rolling bearing vibration signals through Hilbert transformation. Then, depending on the advantage of SR that SR is immune to noise and sensitive to periodic signal, cyclical faults signal of the low frequency envelope is highlighted by using the variable step size solution that can overcome adiabatic condition limitation of SR system. The experimental results show that the algorithm can extract the fault feature and identify the fault type effectively.
Keywords:
Envelope detection, hilbert transform, rolling bearing, stochastic resonance,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|