Research Article | OPEN ACCESS
Research on Feature Extraction Method for Handwritten Chinese Character Recognition Based on Kernel Independent Component Analysis
He Zhiguo and Yang Xiaoli
School of Computer Science, Panzhihua University, Panzhihua 617000, China
Research Journal of Applied Sciences, Engineering and Technology 2013 7:1283-1287
Received: November 13, 2012 | Accepted: January 11, 2013 | Published: July 05, 2013
Abstract
Feature extraction is very difficult for handwritten Chinese character because of large Chinese characters set, complex structure and very large shape variations. The recognition rate by currently used feature extraction methods and classifiers is far from the requirements of the people. For this problem, this study proposes a new feature extraction method for handwritten Chinese character recognition based on Kernel Independent Component Analysis (KICA). Firstly, we extract independent basis images of handwritten Chinese character image and the projection vector by using KICA algorithm and then obtain the feature vector. The scheme takes full advantage of good extraction local features capability of ICA and powerful computational capability of KICA. The experiments show that the feature extraction method based on KICA is superior to that of gradient-based about the recognition rate and outperforms that of ICA about the time for feature extraction.
Keywords:
Feature extraction, handwritten Chinese character recognition, independent component analysis, kernel independent component analysis,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
![](http://www.maxwellsci.com/images/RJASET-maxw.jpg) |
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
![Submit Manuscript](../images/sub.jpg) |
Information |
|
|
|
Sales & Services |
|
|
|