Research Article | OPEN ACCESS
Near-Surface Investigation of Groundwater Contamination in the Regolith Aquifer of Palladan, Zaria using Borehole log and Tomography Techniques
1S.I. Jegede, 2R.E. Iserhien-Emekeme, 1A. Iyoha and 1C.V.O. Amadasun
1Department of Physics, Ambrose Alli University, Ekpoma, Edo State, Nigeria
2Delta State University, Abraka, Nigeria
Research Journal of Applied Sciences, Engineering and Technology 2013 4:537-544
Received: November 17, 2011 | Accepted: December 27, 2011 | Published: June 20, 2013
Abstract
Two geophysical Tomography techniques- Electrical resistivity and Seismic refraction were used to investigate the subsurface of a potentially polluted dumpsite in Palladan a densely populated area of Zaria, with a view to examining the possible subsurface distribution of groundwater contamination plume. The presence of domestic wells in the residences of the people which are distances 10.0 to 30.0 m from the dumpfacilitated analysis of water chemistry to enhance the geophysical interpretation. The groundwater level in the dumpsite site was found to be higher than the surrounding area, thereby creating a local deviation from the regional groundwater flow. Due to this the contaminants from the waste site spread out in the nearby soil and groundwater. The resistivity models clearly show a top layer of about 10.0 m thickness with low resistivity, whereas the resistivity has an inverse correlation with distance from the waste disposal site. Bore hole log shows that the top upper 10.0 m of soil consists of loose permeable laterite with high water content followed by a layer of degraded sand before the weathered basement which suggests the possibility of the contamination penetrating deeper into the regolith aquifer. This agrees with the result of the water chemistry analysis which shows elevation in concentration of contaminants above the WHO guidelines. The borehole log also indicated the presence of fracture basement at a depth of 23.0 m this correlated well with the Seismic refraction result. The study therefore suggests that these fractures also facilitate the migration of the contaminants. Based on the combined results, the contamination plume seems to have migrated not less than 500.0 m in the southern direction which is also the direction of hydraulic gradient.
Keywords:
Contamination, electrical resistivity, groundwater, seismic refraction, tomography,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|