Research Article | OPEN ACCESS
Performance Test and Evaluation for Pixel CdZnTe Detector of Different Thickness
1, 3Shen Min, 1Xiao Shali, 1Zhang Liuqiang, 2Cao Yulin and 2Chen Yuxiao
1Key Lab of Optoelectronic Technology and Systems, Ministry of Education,
Chongqing University, China
2Institute of Electronic Engineering, China Academy of Engineering Physics, Si Chuan, China
3ChongQing Technology and Business Institute, ChongQing, China
Research Journal of Applied Sciences, Engineering and Technology 2014 14:2868-2873
Received: February 06, 2013 | Accepted: March 02, 2013 | Published: April 12, 2014
Abstract
The aim of this study is to get the photon energy suitable for different thickness detector, different photon energy acts on pixel CdZnTe detector of different thickness. We can obtain the energy spectrum estimation, energy resolution and peak efficiency by the experiment and simulation with the radiation source of 241Am and 137Cs acting on pixel CdZnTe detector. From experiment results, it can be found that at the high energy of 662 keV the thicker the CdZnTe detector is, the higher the energy resolution and peak efficiency is while at the low energy of 59.5 keV tailing increases and charge is loss. It also can be found the characteristic of detector is better at the low energy when the detector thickness is thinner.
Keywords:
CdZnTe detector, energy resolution, light spectrum, peak efficiency,
References
-
Aillon, E.G., J. Tabary, A. Gliere and L. Verger, 2006. Charge sharing on monolithic CdZnTe gamma-ray detectors: A simulation study. Nucl. Instrum. Meth. A, 563: 124-127.
CrossRef -
Benoit, M. and L.A. Hamel, 2009. Simulation of charge collection processes in semiconductor CdZnTe ?-ray detectors. Nucl. Instrum. Meth. A, 606(3): 508-516.
CrossRef -
Bolotnikov, A.E., G.C. Camarda, G.A. Carini, M. Fiederle, L. Li, D.S. McGregor, W. McNeil, G.W. Wright and R.B. James, 2006a. Performance characteristics of Frisch-ring CdZnTe detectors. IEEE T. Nucl. Sci., 53(2): 607-614.
CrossRef -
Bolotnikov, A.E., G.S. Camarda, G.A. Carini, Y. Cui, K.T. Kohman, L. Li, M.B. Salomon and R.B. James, 2006b. Performance-limiting defects in CdZnTe detectors. IEEE T. Nucl. Sci., 54(4): 821-827.
CrossRef -
Bolotnikova, A.E., C.M. Hubert Chena, W.R. Cooka, F.A. Harrisona, I. Kuvvetlib, S.M. Schindlera, C.M. Stahlec and B.H. Parker, 2003. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors. Nucl. Instrum. Meth. A, 510(3): 300-308.
CrossRef -
Guerra, P., A. Santos and D.G. Darambara, 2009. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging. J. Phys. D Appl. Phys., 42(17): 11.
CrossRef -
He, Z., 2001. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Meth. A, 436(1): 250-267.
CrossRef -
Hossain, A., A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang and R.B. James, 2008. Defects in cadmium zinc telluride crystals revealed by etch-pit distributions. J. Cryst. Growth., 310(21): 4493-4498.
CrossRef -
Kim, J.C., S.E. Anderson, W. Kaye, F. Zhang, Y. Zhu, S.J. Kaye, Z. He, 2011. Charge sharing in common-grid pixelated CdZnTe detectors. Nucl. Instrum. Meth. A, 654(1): 233-243.
CrossRef -
Kozorezov, A.G. and J.K. Wigmorea, 2005. Analytic model for the spatial and spectral resolution of pixellated semiconducting detectors of high-energy photons. J. Appl. Phys., 97(7): 4502-074502.
CrossRef -
Li, G., X. Zhang, H. Hua and W. Jie, 2005. A modified vertical Bridgman method for growth of high-quality Cd1-xZnxTe crystals. J. Electron. Mater., 34(9): 1215-1224.
CrossRef -
Montémont, G., M.C. Gentet, O. Monnet, J. Rustique and L. Verger, 2006. Simulation and design of orthogonal capacitive strip CdZnTe detectors. IEEE T. Nucl. Sci., 54(4): 3762-3766.
CrossRef -
Prettymana, T.H., K.D. Ianakieva, S.A. Soldnerb and C. Szelesb, 2002. Effect of differential bias on the transport of electrons in coplanar grid CdZnTe detectors. Nucl. Instrum. Meth. A, 476: 658-664.
CrossRef -
Sordo, S.D., L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini and P. Ubertini, 2009. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 9(5): 3491-3526.
CrossRef PMid:22412323 PMCid:PMC3297127 -
Szeles, C., 2004. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi. B, 241(3): 783-790.
CrossRef -
Tao, W., J. Wan-qi, X. Ya-Dong, Z. Gang-Qiang and F. Li, 2009. Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques. T. Nonferr. Metal. Soc., 19: s622-s625.
CrossRef -
Wangerin, K., Y. Du and F. Jansen, 2011. CZT performance for different anode pixel geometries and data corrections. Nucl. Instrum. Meth. A, 648(1): S37-S41.
CrossRef -
Washington II, A.L., L.C. Teague, M.C. Duff, A. Burger, M. Groza and V. Buliga, 2010. Atmospheric effects on the performance of CdZnTe single-crystal detectors. J. Electron. Mater., 39(7): 1104-1109.
CrossRef -
Zha, M., A. Zappettini, D. Calestani, L. Marchini, L. Zanotti and C. Paorici, 2008. Full encapsulated CdZnTe crystals by the vertical Bridgman method. J. Cryst. Growth., 310(7-9): 2072-2075.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|