Research Article | OPEN ACCESS
An Extensive Review of Significant Researches in Data Mining
1Paul P. Mathai and 2R.V. Siva Balan
1Department of Computer Science and Engineering
2Department of Computer Applications, Noorul Islam University, Kanya Kumari, India
Research Journal of Applied Sciences, Engineering and Technology 2014 22:4779-4794
Received: January 23, 2014 | Accepted: February 25, 2014 | Published: June 10, 2014
Abstract
An action that removes a few novel nontrivial data enclosed in large databases is defined as Data Mining. On noticing the statistical connections between the items that are more regular in the operation databases traditional data mining methods have spotlighted mostly. Numerous functions are using data mining in dissimilar fields like medical, marketing and so on commonly. Several methods and techniques have been extended for mine the in order from the databases. In this study, we provide a comprehensive survey and study of various methods in existence for item set mining based on the utility and frequency and association rule mining based research works and also presented a brief introduction about data mining and its advantages. Moreover we present a concise description about the Data Mining techniques, performance review and the instructions for future research.
Keywords:
Data mining, frequency, item sets, Knowledge Discovery Database (KDD), utility,
References
-
Abul, O. and H. Gokce, 2012. Knowledge hiding from tree and graph databases. Data Knowl. Eng., 72: 148-171.
CrossRef
-
Ahmed, C.F., S.K. Tanbeer, B. Jeong and H. Choi, 2012. Interactive mining of high utility patterns over data streams. Expert Syst. Appl., 39(15): 11979-11991.
CrossRef
-
Alzghoul, A. and M. Lofstrand, 2011. Increasing availability of industrial systems through data stream mining. Comput. Ind. Eng., 60(2): 195-205.
CrossRef
-
Bhattacharya, S. and D. Dubey, 2012. High utility item-set mining. Int. J. Emerg. Technol. Adv. Eng., 2(8): 476-481.
-
Chang, J.H., 2011. Mining weighted sequential patterns in a sequence database with a time-interval weight. Knowl-Based Syst., 24(1): 1-9.
CrossRef
-
Chen, C., F.S.C. Tseng and T. Liang, 2010. Mining fuzzy frequent item-sets for hierarchical document clustering. Inform. Process. Manag., 46(2): 193-211.
CrossRef
-
Chu, C., V.S. Tseng and T. Liang, 2008. An efficient algorithm for mining temporal high utility item sets from data streams. J. Syst. Software, 81(7): 1105-1117.
CrossRef
-
Chu, C., V.S. Tseng and T. Liang, 2009. An efficient algorithm for mining high utility item-sets with negative item values in large databases. Appl. Math. Comput., 215(2): 767-778.
CrossRef
-
Dai, C. and L. Chen, 2012. An algorithm for mining frequent closed item-sets in data stream. Phys. Procedia, 24(3): 1722-1728.
CrossRef
-
Deng, Z. and X. Xu, 2012. Fast mining erasable item-sets using NC_sets. Expert Syst. Appl., 39(4): 4453-4463.
CrossRef
-
Deypir, M. and M.H. Sadreddini, 2011. An efficient algorithm for mining frequent item-sets within large windows over data streams. Int. J. Data Eng., 2(3): 119-125.
-
Erwin, A., R.P. Gopalan and N.R. Achuthan, 2007. CTU-mine: An efficient high utility item-set mining algorithm using the pattern growth approach. Preceding of the 7th IEEE International Conference on Computer and Information Technology. Aizu-Wakamatsu, Fukushima, pp: 71-76.
-
Erwin, A., R.P. Gopalan and N.R. Achuthan, 2008. Efficient mining of high utility item-sets from large datasets. Lect. Notes Artif. Int., 5012: 554-561.
-
Fung, B.C.M., K. Wang, L. Wang and P.C.K. Hung, 2009. Privacy-preserving data publishing for cluster analysis. Data Knowl. Eng., 68(6): 552-575.
CrossRef
-
Geurts, K., I. Thomas and G. Wets, 2005. Understanding spatial concentrations of road accidents using frequent item sets. Accident Anal. Prev., 37(4): 787-799.
CrossRef PMid:15899471
-
Gopalan, R.P. and Y.G. Sucahyo, 2002. TreeITL-mine: Mining frequent item-sets using pattern growth, tid intersection and prefix tree. Lect. Notes Comput. Sc., 2557: 535-546.
CrossRef
-
Grahne, G. and J. Zhu, 2005. Fast algorithms for frequent item-set mining using FP-trees. IEEE T. Knowl. Data En., 17(10): 1347-1362.
CrossRef
-
Guns, T., S. Nijssen and L.D. Raedt, 2011. Item-set mining: A constraint programming perspective. Artif. Intell., 175(12-13): 1951-1983.
CrossRef
-
Guo, L., H. Su and Y. Qu, 2011. Approximate mining of global closed frequent item-sets over data streams. J. Frankl. Inst., 348(6): 1052-1081.
CrossRef
-
Hamrouni, S.T., E.B. Yahia and M. Nguifo, 2009. Sweeping the disjunctive search space towards mining new exact concise representations of frequent item-sets. Data Knowl. Eng., 68(10): 1091-1111.
CrossRef
-
Hamrouni, T., S.B. Yahia and E.M. Nguifo, 2013. Looking for a structural characterization of the sparseness measure of (frequent closed) item-set contexts. Inform. Sciences, 222: 343-361.
CrossRef
-
Han, C., L. Xu and G. He, 2008. Mining recent frequent item-sets in sliding windows over data streams. Comput. Inform., 27: 315-339.
-
Han, J., H. Cheng, D. Xin and X. Yan, 2007. Frequent pattern mining: current status and future directions. Data Min. Knowl. Disc., 15(1): 55-86.
CrossRef
-
Hong, T., C. Lee and S. Wang, 2011. Effective utility mining with the measure of average utility. Expert Syst. Appl., 38(7): 8259-8265.
CrossRef
-
Hong, T., C. Horng, C. Wu and S. Wang, 2009. An improved data mining approach using predictive item-sets. Expert Syst. Appl., 36(1): 72-80.
CrossRef
-
Hu, Y. and Y. Chen, 2006. Mining association rules with multiple minimum supports: A new mining algorithm and a support tuning mechanism. Decis. Support Syst., 42(1): 1-24.
CrossRef
-
Hu, J. and A. Mojsilovic, 2007. High-utility pattern mining: A method for discovery of high-utility item sets. Pattern Recogn., 40(11): 3317-3324.
CrossRef
-
Jea, K. and C. Li, 2009. Discovering frequent item-sets over transactional data streams through an efficient and stable approximate approach. Expert Syst. Appl., 36(10): 12323-12331.
CrossRef
-
Kannimuthu, S., K. Premalatha and S. Shankar, 2011. iFUM: Improved fast utility mining. Int. J. Comput. Appl., 27(11): 32-36.
CrossRef
-
Lan, G., T. Hong and V.S. Tseng, 2011. Discovery of high utility item-sets from on-shelf time periods of products. Expert Syst. Appl., 38(5): 5851-5857.
CrossRef
-
Laxman, S. and P.S. Sastry, 2006. A survey of temporal data mining. Sadhana, 31(2): 173-198.
CrossRef
-
Lee, A.J.T., Y. Chen and W. Weng-Chong Ip, 2009. Mining frequent trajectory patterns in spatial-temporal databases. Inform. Sciences, 179(13): 2218-2231.
CrossRef
-
Lee, A.J.T., C. Wang, W. Weng, Y. Chen and H. Wu, 2008. An efficient algorithm for mining closed inter-transaction item-sets. Data Knowl. Eng., 66(1): 68-91.
CrossRef
-
Li, H., 2009. Interactive mining of top-K frequent closed item-sets from data streams. Expert Syst. Appl., 36(7): 10779-10788.
CrossRef
-
Li, H. and S. Lee, 2009. Mining frequent item-sets over data streams using efficient window sliding techniques. Expert Syst. Appl., 36(2): 1466-1477.
CrossRef
-
Li, H. and S. Lee, 2008. Approximate mining of maximal frequent item-sets in data streams with different window models. Expert Syst. Appl., 35(3): 781-789.
CrossRef
-
Li, H. and H. Chen, 2009. Mining non-derivable frequent item-sets over data stream. Data Knowl. Eng., 68(5): 481-498.
CrossRef
-
Li, Y., J. Yeh and C. Chang, 2008. Isolated items discarding strategy for discovering high utility item-sets. Data Knowl. Eng., 64(1): 198-217.
CrossRef
-
Li, C., K. Jea, R. Lin, S. Yen and C. Hsu, 2012. Mining frequent patterns from dynamic data streams with data load management. J. Syst. Software, 85(6): 1346-1362.
CrossRef
-
Lin, C., T. Hong and W. Lu, 2011. An effective tree structure for mining high utility item-sets. Expert Syst. Appl., 38(6): 7419-7424.
CrossRef
-
Lin, C., G. Lan and T. Hong, 2012a. An incremental mining algorithm for high utility item-sets. Expert Syst. Appl., 39(8): 7173-7180.
CrossRef
-
Lin, M., T. Tu and S. Hsueh, 2012b. High utility pattern mining using the maximal item-set property and lexicographic tree structures. Inform. Sciences, 215: 1-14.
CrossRef
-
Liu, G., J. Li and L. Wong, 2008. A new concise representation of frequent item-sets using generators and a positive border. Knowl. Inf. Syst., 17(1): 35-56.
CrossRef
-
Liu, X., J. Guan and P. Hu, 2009. Mining frequent closed item-sets from a landmark window over online data streams. Comput. Math. Appl., 57(6): 927-936.
CrossRef
-
Mao, G., X. Wu, X. Zhu and G. Chen, 2007. Mining maximal frequent item-sets from data streams. J. Inf. Sci., 33(3): 251-262.
CrossRef
-
Masseglia, F., P. Poncelet, M. Teisseire and A. Marascu, 2008. Web usage mining: Extracting unexpected periods from web logs. Data Min. Knowl. Disc., 16(1): 39-65.
CrossRef
-
Meisel, S. and D. Mattfeld, 2010. Synergies of operations research and data mining. Eur. J. Oper. Res., 206(1): 1-10.
CrossRef
-
Mukherjee, S., M. Banerjee, Z. Chen and A. Gangopadhyay, 2008. A privacy preserving technique for distance-based classification with worst case privacy guarantee. Data Knowl. Eng., 66(2): 264-288.
CrossRef
-
Nadimi-Shahrakia, M.H., N. Mustapha, M.N. Sulaiman and A. Mamat, 2011. Efficient prime-based method for interactive mining of frequent patterns. Expert Syst. Appl., 38(10): 12654-12670.
CrossRef
-
Nori, F., M. Deypir and M.H. Sadreddini, 2013. A sliding window based algorithm for frequent closed item-set mining over data streams. J. Syst. Software, 86(3): 615-623.
CrossRef
-
Okada, Y., T. Tada, K. Fukuta and T. Nagashima, 2011. Audio classification based on closed item-set mining algorithm. Proceeding of International Conference on Computer Information Systems and Industrial Management Applications. Aizu-Wakamatsu, Fukushima, 3: 159-164.
-
Otey, M.E., S. Parthasarathy, C. Wang, A. Veloso and W.J. Meira, 2004. Parallel and distributed methods for incremental frequent item-set mining. IEEE T. Syst. Man Cyb., 34(6): 2439-2450.
CrossRef
-
Palshikar, G.K., M.S. Kale and M.M. Apte, 2007. Association rules mining using heavy item-set. Data Knowl. Eng., 61(1): 93-113.
CrossRef
-
Patil, S.P., U.M. Patil and S. Borse, 2012. The novel approach for improving apriori algorithm for mining association rule. World J. Sci. Technol., 2(3): 75-78.
-
Pillai, J. and O.P. Vyas, 2010. Overview of item-set utility mining and its applications. Int. J. Comput. Appl., 5(11): 9-13.
-
Raissi, C., P. Poncelet and M. Teisseire, 2007. Towards a new approach for mining frequent item-sets on data stream. J. Intell. Inf. Syst., 28(1): 23-36.
CrossRef
-
Schermer, B.W., 2011. The limits of privacy in automated profiling and data mining. Comput. Law Secur. Rev., 27(1): 45-52.
CrossRef
-
Sekhavat, Y.A. and M. Fathian, 2010. Mining frequent item-sets in the presence of malicious participants. Inst. Eng. Technol., 4(2): 80-92.
-
Shahnawaz, M., A. Ranjan and M. Danish, 2011. Temporal data mining: An overview. Int. J. Eng. Adv. Technol., 1(1): 20-24.
-
Shankar, S., T. Purusothaman, S. Jayanthi and N. Babu, 2009. A fast algorithm for mining high utility item-sets. Proceeding of the IEEE International Advance Computing Conference. Patiala, pp: 459- 1464.
-
Shankar, S., T. Purusothaman, S. Kannimuthu and K.V. Priya, 2010. A novel utility and frequency based item-set mining approach for improving CRM in retail business. Int. J. Comput. Appl., 1(16): 87-94.
-
Shie, B., P.S. Yu and V.S. Tseng, 2012. Efficient algorithms for mining maximal high utility item-sets from data streams with different models. Expert Syst. Appl., 39(17): 12947-12960.
CrossRef
-
Song, M. and S. Rajasekaran, 2006. A transaction mapping algorithm for frequent item-sets mining. IEEE T. Knowl. Data En., 18(4): 472-481.
CrossRef
-
Songa, W., B. Yang and Z. Xu, 2008. Index-BitTableFI: An improved algorithm for mining frequent item-sets. Knowl-Based Syst., 21(6): 507-513.
CrossRef
-
Sreenivasarao, V. and S. Vidyavathi, 2010. Comparative analysis of fuzzy C-mean and Modified Fuzzy Possibilistic C-mean algorithms in data mining. Int. J. Comput. Sci. Technol., 1(1): 104-106.
-
Tanbeer, S.K., C.F. Ahmed, B. Jeong and Y. Lee, 2009. Sliding window-based frequent pattern mining over data streams. Inform. Sciences, 179(22): 3843-3865.
CrossRef
-
Tsay, Y. and J. Chiang, 2005. CBAR: An efficient method for mining association rules. Knowl-Based Syst., 18(2-3): 99-105.
CrossRef
-
Tsaya, Y., T. Hsua and J. Yub, 2009. FIUT: A new method for mining frequent item-sets. Inform. Sciences, 179(11): 1724-1737.
CrossRef
-
Tseng, F., 2013. Mining frequent item-sets in large databases: The hierarchical partitioning approach. Expert Syst. Appl., 40(5): 1654-1661.
CrossRef
-
Tsytsarau, M. and T. Palpanas, 2012. Survey on mining subjective data on the web. Data Min. Knowl. Disc., 24(3): 478-514.
CrossRef
-
Thilagu, M. and R. Nadarajan, 2013. Investigating Significant Changes in Users' Interest on Web Traversal Patterns, International Journal on Cybernetics and Informatics (IJCI), 2(4): 39-55.
CrossRef
-
Valtchev, P., R. Missaoui and R. Godin, 2008. A framework for incremental generation of closed item-set. Discrete Appl. Math., 156(6): 924-949.
CrossRef
-
Valtchev, P., R. Missaoui, R. Godin and M. Meridji, 2002. Generating frequent item-sets incrementally: Two novel approaches based on Galois lattice theory. J. Exp. Theor. Artif. In., 14(2-3): 115-142.
CrossRef
-
Weiss, G., M. Saar-Tsechansky and B. Zadrozny, 2005. Report on UBDM-05: Workshop on utility-based data mining. ACM SIGKDD Explor. Newslett., 7(2): 145-147.
-
Weng, C., 2011. Mining fuzzy specific rare item-sets for education data. Knowl-Based Syst., 24(5): 697-708.
CrossRef
-
Woo, H.J. and W.S. Lee, 2009. estMax: Tracing maximal frequent item sets instantly over online transactional data streams. IEEE T. Knowl. Data En., 21(10): 1418-1431.
CrossRef
-
Xu, L. and K. Xie, 2006. Incremental mining of generator representation using border sets. Inform. Softw. Technol., 48(8): 756-764.
CrossRef
-
Yao, H. and H.J. Hamilton, 2006. Mining item-set utilities from transaction databases. Data Knowl. Eng., 59(3): 603-626.
CrossRef
-
Yun, U. and K.H. Ryu, 2011. Approximate weighted frequent pattern mining with/without noisy environments. Knowl-Based Syst., 24(1): 73-82.
CrossRef
-
Zaki, M.J. and C. Hsiao, 2005. Efficient algorithms for mining closed item-sets and their lattice structure. IEEE T. Knowl. Data En., 17(4): 462-478.
CrossRef
-
Zhong, S., 2007. Privacy-preserving algorithms for distributed mining of frequent item-sets. Inform. Sciences, 177(2): 490-503.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|