Research Article | OPEN ACCESS
Spectroscopic Investigation of Pyruvate Formate Lyase-activating Enzyme: A Look into EPR, ENDOR and Mossabuer Spectroscopy
1Danilo O. Ortillo and 2Joan B. Broderick
1Department of Chemistry, University of the Philippines Visayas, 5023 Miagao, Iloilo, Philippines
2Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, P.O. Box 173400, Bozeman, MT 59717, USA
Research Journal of Applied Sciences, Engineering and Technology 2014 9:1075-1097
Received: April ‎08, ‎2014 | Accepted: April ‎28, ‎2014 | Published: September 05, 2014
Abstract
Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) spectroscopies are extremely powerful and versatile methods for the characterization of paramagnetic systems in biology, chemistry and physics. For iron centers in the radical SAM enzymes however, Mössbauer spectroscopy has proven to be both powerful and useful as a complementary spectroscopic technique in determining not just the oxidation states but also the type of iron species present in the catalytic center. The cluster content of the radical SAM protein, Pyruvate Formate-Lyase-Activating Enzyme (PFL-AE), was characterized using EPR and Mössbauer techniques while additional ENDOR analysis helped determine the novel interaction of the co-substrate, S- Adenosylmethionine (SAM or AdoMet) with the Fe-S cluster of PFL-AE. The anchoring role of the Fe-S cluster to the co-substrate derived from the spectroscopic data supports the mechanism where a SAM-based radical species is involved during catalysis.
Keywords:
AdoMet , pyruvate formate-lyase-activating enzyme , radical SAM , spectroscopic methods,
References
-
Abragam, A. and B. Bleaney, 1986. Electron Paramagnetic Resonance of Transition Ions. Dover Publications, New York.
-
Beinert, H., 2000. Iron-sulfur proteins: Ancient structures, still full of surprises. J. Biol. Inorg. Chem., 5(1): 2-15.
CrossRef PMid:10766431 -
Berg, J.M. and R.H. Holm, 1982. Structures and Reactions of Iron-sulfur Protein Clusters and their Synthetic Analogues. In: Spiro, T.G. (Ed.), Iron-sulfur Proteins. John Wiley and Sons Inc., New York, pp: 1-66.
-
Broderick, J.B., T.F. Henshaw, J. Cheek, K. Wojtuszewski, S.R. Smith, M.R. Trojan, R.M. McGhan, A. Kopf, M. Kibbey and W.E. Broderick, 2000. Pyruvate formate-lyase-activating enzyme: Strictly anaerobic isolation yields active enzyme containing a [3Fe-4S]+ cluster. Biochem. Bioph. Res. Co., 269(2): 451-456.
CrossRef PMid:10708574 -
Cheek, J. and J.B. Broderick, 2001. Adenosylmethionine- dependent iron-sulfur enzymes: Versatile clusters in a radical new role. J. Biol. Chem., 6(3): 209-226.
CrossRef -
Conradt, H., M. Hohmann-Berger, H.P. Hohmann, H.P. Blaschkowski and J. Knappe, 1984. Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: Isolation and structural properties. Arch. Biochem. Biophys., 228(1):133-142.
CrossRef -
Daley, C.J.A. and R.H. Holm, 2001. Reactivity of [Fe4S4(SR)4]2-,3- clusters with Sulfonium Cations:?Analogue reaction systems for the initial step in biotin synthase catalysis. Inorg. Chem., 40(12): 2785-2793.
CrossRef PMid:11375696 -
Daley, C.J.A. and R.H. Holm, 2003. Reactions of site-differentiated [Fe4S4]2+,1+ clusters with sulfonium cations: Reactivity analogues of biotin synthase and other members of the S-adenosylmethionine enzyme family. J. Inorg. Biochem., 97(3): 287-298.
CrossRef -
DeRose, V.J. and B.M. Hoffman, 1995. Protein structure and mechanism studied by electron nuclear double resonance spectroscopy. Method. Enzymol., 246: 554-589.
CrossRef -
Doan, P.E. and B.M. Hoffman, 1997. Making hyperfine selection in Mims ENDOR independent of deadtime. Chem. Phys. Lett., 269(3-4): 208-214.
CrossRef -
Drago, R.S., 1977. Physical Methods in Chemistry. Saunders College Publishing, Orlando.
-
Fann, Y.C., N.C. Gerber, P.A. Osmulski, L.P. Hager, S.G. Sligar and B.M. Hoffman, 1994. ENDOR determination of Heme ligation in chloroperoxidase and comparison with cytochrome P-450Cam. J. Am. Chem. Soc., 116(13): 5989-5990.
CrossRef -
Ferreira, G.C., R. Franco, S.G. Lloyd, A.S. Pereira, I. Moura, J.J. Moura and B.H. Huynh, 1994. Mammalian ferrochelatase: A new addition to the metalloenzyme family. J. Biol. Chem., 269(10): 7062-7065.
PMid:8125912 -
Frey, P.A., 2001. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem., 70: 121-148.
CrossRef PMid:11395404 -
Girerd, J.J., G.C. Papaefthymiou, A.D. Watson, E. Gamp, K.S. Hagen, N. Edelstein, R.B. Frankel and R.H. Holm, 1984. Electronic properties of the linear antiferromagnetically coupled clusters [Fe3S-4(SR)4]3-, structural isomers of the iron-sulfur (1+) ([Fe3S4]1+) unit in iron-sulfur proteins. J. Am. Chem. Soc., 106(20): 5941-5947.
CrossRef -
Gurbiel, R.J., P.E. Doan, G.T. Gassner, T.J. Macke, D.A. Case, T. Ohnishi, J.A. Fee, D.P. Ballou and B.M. Hoffman, 1996. Active site structure of rieske-type proteins: Electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center. Biochemistry, 35(24): 7834-7845.
CrossRef PMid:8672484 -
Hagen, K.S., J.G. Reynolds and R.H. Holm, 1981. Definition of reaction sequences resulting in self-assembly of [Fe4S4(SR)4]2-clusters from simple reactants. J. Am. Chem. Soc., 103: 4054-4063.
CrossRef -
Henshaw, T.F., J. Cheek and J.B. Broderick, 2000. The [4Fe-4S]1+cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. J. Am. Chem. Soc., 122(34): 8331-8332.
CrossRef -
Hoffmann, B.M., 2003. ENDOR of metalloenzymes. Acc. Chem. Res., 36(7): 522-529.
CrossRef PMid:12859213 -
Holm, R.H., 1992. Trinuclear cuboidal and heterometallic cubane-type iron-sulfur clusters: New structural and reactivity themes in chemistry and biology. Adv. Inorg. Chem., 38: 1-71.
CrossRef -
Hutchison, C.A. and D.B. McKay, 1977. The determination of hydrogen coordinates in lanthanum nicotinate dihydrate crystals by Nd+3-proton double resonance. J. Chem. Phys., 66(8): 3311-3330.
CrossRef -
Huynh, B.H. and T.A. Kent, 1984. Mössbauer studies of iron proteins. Adv. Inorg. Biochem., 6: 163-223.
PMid:6100155 -
Kennedy, M.C., T.A. Kent, M. Emptage, H. Merkle, H. Beinert and E. Münck, 1984. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J. Biol. Chem., 259(23): 14463-14471.
PMid:6094558 -
Kennedy, M.C., M. Werst, J. Telser, M.H. Emptage, H. Beinhert and B.M. Hoffman, 1987. Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C Electron-nuclear double resonance spectroscopy. P. Natl. Acad. Sci. USA, 84(24): 8854-8858.
CrossRef PMid:3480514 PMCid:PMC299649 -
Knappe, J., H.P. Blaschkowski, P. Gröbner and T. Schmitt, 1974. Pyruvate formate-lyase of Escherichia coli: The acetyl-enzyme intermediate. Eur. J. Biochem., 50(1): 253-263.
CrossRef PMid:4615902 -
Knappe, J., S. Elbert, M. Frey and A.F. Wagner, 1993. Pyruvate formate-lyase mechanism involving the protein-based glycyl radical. Biochem. Soc. T., 21(3): 731-734.
CrossRef PMid:8135930 -
Krebs, C., T.F. Henshaw, J. Cheek, B.H. Huynh and J.B. Broderick, 2000. Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme: Mössbauer characterization and implications for mechanism. J. Am. Chem. Soc., 122(50): 12497-12506.
CrossRef -
Külzer, R., T. Pils, R. Kappl, J. Hüttermann and J. Knappe, 1998. Reconstitution and characterization of the polynuclear iron-sulfurcluster in pyruvate formate-lyase-activating enzyme. J. Biol. Chem., 273(9): 4897-4903.
CrossRef PMid:9478932 -
Lee, H.I., B.J. Hales and B.M. Hoffman, 1997. Metal-Ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J. Am. Chem. Soc., 119(47): 11395-11400.
CrossRef -
Lowe, D.J., 1995. ENDOR and EPR of Metalloproteins. R.G. Landes Co., Austin.
-
Manikandan, P., E.Y. Choi, R. Hille and B.M. Hoffman, 2001. 35 GHz ENDOR characterization of the "Very Rapid" signal of Xanthine Oxidase reacted with 2-hydroxy-6-methylpurine (13C8): Evidence against direct Mo-C8 interaction. J. Am. Chem. Soc., 123(11): 2658-2663.
CrossRef PMid:11456936 -
Middleton, P., D.P.E. Dickson, C.E. Johnson and J.D. Rush, 1978. Interpretation of the mossbauer spectra of the four-iron ferredoxin from Bacillus stenrothermophilus. Eur. J. Biochem., 88(1): 135-141.
CrossRef PMid:668704 -
Middleton, P., D.P.E. Dickson, C.E. Johnson and J.D. Rush, 1980. Interpretation of the mossbauer spectra of the high-potential iron protein from Chromatium. Eur. J. Biochem., 104(1): 289-296.
CrossRef PMid:6245869 -
Murphy, D.M. and R.D. Farley, 2006. Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices. Chem. Soc. Rev., 35: 249-268.
CrossRef PMid:16505919 -
Palmer, G., 2000. Electron Paramagnetic Resonance of Metalloproteins. In: Que, L. Jr. (Ed.), Physical Methods in Bioinorganic Chemistry, University Science Books, Sausalito, CA (USA), pp: 121-186.
-
Ragle, J.L., M. Mokarram, D. Presz and G. Minott, 1975. Quadrupole coupling of deuterium bonded to carbon. J. Magn. Reson., 20(2): 195-213.
CrossRef -
Rocklin, A.M., D.L. Tierney, V. Kofman, N.M.W. Brunhuber, B.M. Hoffman, R.E. Christofferson, N.O. Reich, J.D. Lipscomb and L. Que, Jr., 1999. Role of the nonheme Fe (II) center in the biosynthesis of the plant hormone ethylene. P. Natl. Acad. Sci. USA, 96(14): 7905-7909.
CrossRef PMid:10393920 PMCid:PMC22160 -
Schünemann, V. and H. Winkler. 2000. Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys., 63: 263-353.
CrossRef -
Schweiger, A., 1991. Pulsed electron spin resonance spectroscopy: Basic principles, techniques and examples of applications. Angew. Chem. Int. Edit., 30: 265-292.
CrossRef -
Sofia, H.J., G. Chen, B.G. Hetzler, J.F. Reyes-Spindola and N.E. Miller, 2001. Radical SAM, a novel protein super family linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res., 29(5): 1097-1106.
CrossRef PMid:11222759 PMCid:PMC29726 -
Trautwein, A.X., E. Bill, E.L. Bominaar and H. Winkler, 1991. Iron-containing proteins and related analogs-complementary Mössbauer, EPR and magnetic susceptibility studies. Struct. Bond. (Berlin), 78: 1-95.
CrossRef -
Wagner, A.F., M. Frey, F.A. Neugebauer, W. Schäfer and J. Knappe, 1992. The free radical in pyruvate formate-lyase is located on glycine-734. P. Natl. Acad. Sci. USA, 89(3): 996-1000.
CrossRef PMid:1310545 PMCid:PMC48372 -
Walsby, C.J., D. Ortillo, W.E. Broderick, J.B. Broderick and B.M. Hoffman, 2002b. An anchoring role for FeS clusters: Chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc., 124(38): 11270-11271.
CrossRef PMid:12236732 -
Walsby, C.J., W. Hong, W.E. Broderick, J. Cheek, D. Ortillo, J.B. Broderick and B.M. Hoffman, 2002a. Electron-nuclear double resonance spectroscopic evidence that s-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvateformate-lyase activating enzyme. J. Am. Chem. Soc., 124(12): 3143-3151.
CrossRef PMid:11902903 -
Werst, M.M., M.C. Kennedy, H. Beinert and B.M. Hoffman, 1990. Oxygen-17, proton and deuterium electron nuclear double resonance characterization of solvent, substrate and inhibitor binding to the iron-sulfur [4Fe-4S]+ cluster of aconitase. Biochemistry, 29(46): 10526-10532.
CrossRef PMid:2176871 -
Wong, K.K., B.W. Murray, S.A. Lewisch, M.K. Baxter, T.W., L. Ulissi-DeMario and J.W. Kozarich, 1993. Molecular properties of pyruvate-formate lyase activating enzyme. Biochemistry, 32(51): 14102-14110.
CrossRef PMid:8260492
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|