Research Article | OPEN ACCESS
Privacy Preserving Data Mining
1A.T. Ravi and 2S. Chitra
1Department of Computer Science and Engineering, SSM College of Engineering, Komarapalayam, India
2Department of Computer Science and Engineering, Er. Perumal Manimekalai College of
Engineering, India
Research Journal of Applied Sciences, Engineering and Technology 2015 8:616-621
Received: October 10, 2014 | Accepted: November 3, 2014 | Published: March 15, 2015
Abstract
Recent interest in data collection and monitoring using data mining for security and business-related applications has raised privacy. Privacy Preserving Data Mining (PPDM) techniques require data modification to disinfect them from sensitive information or to anonymize them at an uncertainty level. This study uses PPDM with adult dataset to investigate effects of K-anonymization for evaluation metrics. This study uses Artificial Bee Colony (ABC) algorithm for feature generalization and suppression where features are removed without affecting classification accuracy. Also k-anonymity is accomplished by original dataset generalization.
Keywords:
Adult dataset, Artificial Bee Colony (ABC) algorithm, data mining, K-anonymization, Privacy Preserving Data Mining (PPDM),
References
-
Aggarwal, C.C. and P.S. Yu, 2008. On static and dynamic methods for condensation-based privacy-preserving data mining. ACM T. Database Syst., 33(1): 2.
CrossRef
-
Aggarwal, C.C. and S.Y. Philip, 2008. A General Survey of Privacy-Preserving Data Mining Models and Algorithms. Springer, US, pp: 11-52.
CrossRef
-
Agrawal, R. and R. Srikant, 2000. Privacy-preserving data mining. Proceeding of the ACM SIGMOD International Conference on Management of Data, pp: 439-450.
CrossRef
-
Agrawal, D. and C.C. Aggarwal, 2002. On the design and quantification of privacy preserving data mining algorithms. Proceeding of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'01), pp: 247-255.
-
Asuncion, A. and D. Newman, 2007. UCI Machine Learning Repository.Retrieved from: http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
Bertino, E., D. Lin and W. Jiang, 2008. A survey of quantification of privacy preserving data mining algorithms. Lect. Notes Comput. Sc., 34: 183-205.
CrossRef
-
Blanton, M., 2011. Achieving full security in privacy-preserving data mining. Proceeding of the IEEE 3rd International Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE 3rd International Conference on Social Computing (SOCIALCOM), pp: 925-934.
CrossRef
-
Chen, K. and L. Liu, 2008. A Survey of Multiplicative Perturbation for Privacy-preserving Data Mining. Privacy-preserving Data Mining. Springer, US, pp: 157-181.
-
Ciriani, V., S.D.C. di Vimercati, S. Foresti and P. Samarati, 2008. k-anonymous data mining: A survey. Lect. Notes Comput. Sc., 34: 105-136.
CrossRef
-
Evfimievski, A. and T. Grandison, 2009. Privacy-preserving Data Mining. Handbook of Research on Innovations in Database Technologies and Applications: Current and Future Trends. IGI Global, pp: 1-8.
-
Farooqui, M.F., M. Muqeem and M.R. Beg, 2010. A comparative study of multi agent based and high-performance privacy preserving data mining. Int. J. Comput. Appl., 4(12): 23-26.
CrossRef
-
Ho, S.S., 2012. Preserving privacy for moving objects data mining. Proceeding of the IEEE International Conference on Intelligence and Security Informatics (ISI), pp: 135-137.
CrossRef
-
Hussein, M., A. El-Sisi and N. Ismail, 2008. Fast cryptographic privacy preserving association rules mining on distributed homogenous data base. Lect. Notes Comput. Sc., 5178: 607-616.
CrossRef
-
Jha, M.K.M. and M. Barot, 2014. Privacy preserving data mining. Int. J. Futurist. Trends Eng. Tech., 4(1).
-
Kadampur, M.A., 2010. A noise addition scheme in decision tree for privacy preserving data mining. J. Comput., 2(1): 137-144.
-
Karakos, D., M. Dredze, K. Church, A. Jansen and S. Khudanpur, 2011. Estimating document frequencies in a speech corpus. Proceeding of the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU, 2011), pp: 407-412.
CrossRef
-
Li, Y., M. Chen, Q. Li and W. Zhang, 2012. Enabling multilevel trust in privacy preserving data mining. IEEE T. Knowl. Data En., 24(9): 1598-1612.
CrossRef
-
Liu, L., M. Kantarcioglu and B. Thuraisingham, 2008. The applicability of the perturbation based privacy preserving data mining for real-world data. Data Knowl. Eng., 65(1): 5-21.
CrossRef
-
Liu, L., M. Kantarcioglu and B. Thuraisingham, 2009. Privacy preserving decision tree mining from perturbed data. Proceeding of the 42nd Hawaii International Conference on System Sciences (HICSS'09), pp: 1-10.
-
Machanavajjhala, A., D. Kifer, J. Gehrke and M. Venkitasubramaniam, 2007. l-diversity: Privacy beyond k-anonymity. ACM T. Knowl. Discov. Data, 1(1): 3.
CrossRef
-
Magkos, E., M. Maragoudakis, V. Chrissikopoulos and S. Gritzalis, 2009. Accurate and large-scale privacy-preserving data mining using the election paradigm. Data Knowl. Eng., 68(11): 1224-1236.
CrossRef
-
Mandapati, S., R.B. Bhogapathi, M.C.S. Rao and V. Vjiet, 2013. Swarm optimization algorithm for privacy preserving in data mining. Int. J. Comput. Sci. Issues, 10(2).
-
Matatov, N., L. Rokach and O. Maimon, 2010. Privacy-preserving data mining: A feature set partitioning approach. Inform. Sciences, 180(14): 2696-2720.
CrossRef
-
Navarro-Arribas, G., V. Torra, A. Erola and J. Castellà-Roca, 2012. User< i> k-anonymity for privacy preserving data mining of query logs. Inform. Process. Manag., 48(3): 476-487.
CrossRef
-
Nayak, G. and D. Swagatika, 2011. A survey on privacy preserving data mining: Approaches and techniques. Int. J. Eng. Sci. Technol., 3.3(2011): 2117-2133.
-
Pandey, U.K. and S. Pal, 2011. Data mining: A prediction of performer or underperformer using classification. Int. J. Comput. Sci. Inform. Technol., 2(2): 686-690.
-
Patel, M., P. Richariya and A. Shrivastava, 2013. A review paper on privacy preserving data mining. J. Eng. Technol., 2: 359-361.
-
Samarati, P., 2001. Protecting respondents identities in microdata release. IEEE T. Knowl. Data En., 13(6): 1010-1027.
CrossRef -
Schiezaro, M. and H. Pedrini, 2013. Data feature selection based on artificial bee colony algorithm. EURASIP J. Image Video Process., 2013(1): 1-8.
CrossRef
-
Singh, U.K., K.P. Bhupendra and D. Keerti, 2011. An overview on privacy preserving data mining methodologies. Int. J. Eng. Trends Technol., 2(2).
-
Sweeney, L., 2002. Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzz., 10(5): 571-588.
CrossRef
-
Tsai, P.W., J.S. Pan, B.Y. Liao and S.C. Chu, 2009. Enhanced artificial bee colony optimization. Int. J. Innov. Comput. I., 5(12): 5081-5092.
-
Yang, B., H. Nakagawa, I. Sato and J. Sakuma, 2010. Collusion-resistant privacy-preserving data mining. Proceeding of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp: 483-492.
CrossRef
-
Zhan, J., 2008. Privacy-preserving collaborative data mining. IEEE Comput. Intell. M., 3(2): 31-41.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|