Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Hybrid Features and Classifier for Classification of ECG Signal

K. Muthuvel and L. Padma Suresh`
Department of Electrical and Electronics Engineering, Noorul Islam University, Kumarakoil 629180, India
Research Journal of Applied Sciences, Engineering and Technology  2015  12:1034-1050
http://dx.doi.org/10.19026/rjaset.9.2597  |  © The Author(s) 2015
Received: January 24, 2014  |  Accepted: December ‎20, ‎2014  |  Published: April 25, 2015

Abstract

In this research, we have proposed an efficient technique to classify beat from ECG database. The proposed technique is composed into three stages, 1) pre processing 2) Hybrid feature extraction 3) hybrid feature classifier. The beat signals are initially taken from the physiobank ATM and in the pre-processing stage the beat signals are made suitable for feature extraction. For efficient feature extraction we use hybrid feature extractor. The hybrid feature extraction is done in three steps, i) Morphological based feature extraction ii) Haar wavelet based feature extraction iii) Tri-spectrum based feature extraction. Once the feature is extracted the hybrid classifier is used to classify the beat signal as normal or abnormal. Beat classification studies are conducted on the MIT-BIH Arrhythmia Database using three efficient features like as morphological, wavelet and trispectrum. The beat classification system based morphological information gives an accuracy of 68%, wavelet information gives an accuracy of 78%, trispectrum information gives an accuracy of 70%, combined morphological with wavelet information gives an accuracy of 77%, combined morphological with trispectral information gives an accuracy of 70%. By combining the evidence from both the morphological, wavelet and trispectrum features, an accuracy of 91% is obtained, indicating that ECG beat information is present in the hybrid features.

Keywords:

Artificial bee colony , genetic, haar wavelet , hybrid classifier , hybrid feature extraction, tri spectrum,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved