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Abstract: It is well acknowledged that flue-tobacco aroma types were divided into light, medium and heavy in 
China. For the sake of singling out an optimal scheme to discriminate the spatial distribution of flue-cured tobacco 
aroma type, in the current study, different amounts of chemical indices data with various methods including Back-
Propagation Neural Networks (BP NN), Support Vector Machine (SVM) and Discriminant Analysis (DA) were 
presented and compared. All the experimental results indicated that, by and large, the number of chemical indices 
have nothing to do with the accuracy. Additionally, the classification effects of BP NN are superior to the others. On 
a whole, the best scheme with accuracy reaching to 81.18% and kappa value up to 0.72 was drawn only when the 
BP model combined with 9 kinds of chemical indices. In the end, the optimal spatial distribution was established in 
ArcGIS9.3. 
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INTRODUCTION 

 
According to Food and Agricultural Organization 

(FAO), flue-cured tobacco is planted and sold in more 
than 150 countries and regions around the world. 
Among them, China is the major tobacco production 
and consumption country. Generally, there are three 
aroma types (light, medium and heavy) of flue-cured 
tobacco in China. The types are usually determined by 
experts. However, flue-cured tobacco aroma types are 
inevitably associated with leaf chemical compositions. 
Only few studies focused on identifying flue-cured 
tobacco aroma types using routinely measured chemical 
compositions  at  national  scale  (Bi et al., 2006; Yang 
et al., 2014; Zhang et al., 2013). For example, Bi et al. 
(2006) combined eight chemical variables with 
discriminate analysis method for classifying the FCT 
aroma types of Yunnan, Henan and Liaoning provinces 
and a relative good result was achieved. Yang et al. 
(2014) received a very good classification effects 
adopting the methods of SVM with various kinds of 
chemical compositions. By building the Fisher 
discriminant formula with 67 kinds of chemical 
compositions of FCT, Yan et al. has discriminated the 
aroma types of FCT, in 11 main tobacco production 
provinces of China. 

It is well acknowledged that Artificial Neural 
Network (ANN), Support Vector Machine (SVM) and 
Discrimination Analysis (DA) are the most popular 
methods for supervised classification. With the great 
capability of nonlinear approximation and pattern 
recognition, ANN has been widely used in many fields, 
such   as   engineering,   medical   science,   agriculture,  

finance and national defense (Widrow, 1988). 
Currently, Back Propagation (BP) neural network has 
been one of the most widely used ANNs. For example, 
Kavdır (2004) differentiated between 2 and 3 weeks old 
sunflower plants and common cocklebur weeds of 
similar size, shape and color by a back propagation 
neural network classifier. Being a powerful classifier, 
SVM has been also widely used in the fields where 
ANNs have dominated. For instance, Kolios and Stylios 
(2013) used a series of traditional and modern 
algorithms to investigate the Land Use and Land Cover 
(LULC) changes in a coastal area. They reported that 
the SVM classifier gave the best overall accuracy for 
the study area (Kolios and Stylios, 2013). Zheng et al. 
(2015) applied Support Vector Machines (SVMs) to 
discriminate various crop types in a complex cropping 
system in the Phoenix Active Management Area and 
the models achieved very high overall classification 
accuracy. DA is also a widely used supervised 
classifier. For example, Marey-Pérez and Rodríguez-
Vicente (2011) revisited the factors determining forest 
management by farmers in northwest Spain using the 
discriminant analysis. Riveiro-Valino used discriminant 
analysis to validate the types of dairy farms obtained 
from the combinatorial method for Galicia (Riveiro-
Valiño et al., 2009). Nieuwenhuizen et al. (2010) 
compared discriminant analysis and neural network to 
determine the reflectance properties of sugar beet and 
volunteer potato. They found that the neural network 
gave the best classification results (Nieuwenhuizen et 
al., 2010). 
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In the current study, ANN, SVM and DA are 
compared to identify the flue-cured tobacco aroma 
types at national scale in China based on routinely 
measured chemical compositions of flue-cured tobacco 
leaves. The results are expected to provide valuable 
information on regional planning and decision making 
for producing high-quality flue-cured tobacco with 
different aroma types. 
 

METHODOLOGY 
 
BP neural network: Back Propagation (BP) neural 
network algorithm has been a fashion way for 
classification because of its strong nonlinear mapping 
ability and high learning accuracy. On the basis of the 
error function gradient of network, error against 
propagation algorithm is used to train the BP neural 
network. In this study, a multilayer feed-forward 
network including input layer, hidden layer and output 
layer was applied to classify the aroma types of flue-
cured tobacco (Fig. 1). 

Figure 1,  numbers  of  neurons  are  included  in 
each layer. X௞ ൌ ሾݔ௞ଵ, ,௞ଶݔ ,௞ଷݔ … , ௞ெሿ and Y୩ݔ
ൌ ሾy୩ଵ, y୩ଶ, y୩ଷ, … , y୩୔ሿT  are the k-th input and output 
samples of the BP network. The number of input, 
hidden and output layer neurons is M, I and P, 
respectively. 

The sigmoid function was the continuous 
differentiable non-linear activation function used for 
hidden and output layers. The function is defined as 
follows: 
 

fሺxሻ ൌ 1/ሺ1 ൅ eି୶ሻ                                            (1) 
 

The input and output formulas of the i-th neuron in 
hidden layer are defined as: 
 

μ୧		 ൌ ∑ w୫୧
୑
୫ୀ଴ x୩୫ ൅ θ௜                             (2) 

 
v୧ ൌ fሺ∑ w୫୧

୑
୫ୀ଴ x୩୫ሻ                (3) 

 

The input and output formulas of the p-th neuron in 
output layer are defined as: 
 

	μ୮		 ൌ ∑ w୧୮
୍
୧ୀଵ v୧	 ൅ θ୮                (4) 

 
y୮ ൌ f൫∑ w୧୮

୍
୧ୀଵ v୧൯                 (5)  

 
The output error of the p-th neuron in output layer 

is defined as: 
 

e୩୮ሺnሻ ൌ t୩୮ሺnሻ െ y୩୮ሺnሻ                (6) 
 
The formula of weight modifying is defined as: 
 

w୧୮ሺn ൅ 1ሻ ൌ w୧୮ሺnሻ ൅ η∑ δ୧୮
୩୮

୩ୀଵ x୧୮               (7) 
 
where, w is the weight between neurons. v୧ and 	y୮ are 
the input and output values of output layer, separately. 
T୩ ൌ ሾt୩ଵ, t୩ଶ, t୩ଷ, … , t୩୔ሿ is the expected output. Here, 
M, I and P were 18, 10 and 3, respectively. While n is 
the number of iterations, Η represents the learning step 
size. And δ୨୮

୩ stands for the local gradient, k is on the 
behalf of the k-th sample. More information on back 
propagation neural network could be found in Hecht-
Nielsen (1989) and Johnson and Wichern (1992). 
 
SVM: Support Vector Machine (SVM) developed by 
Vapnik (Li et al., 2009) is a statistical learning 
technique based on the VC (Vapnik-Chervonenkis) 
dimension theory which minimizes prediction error and 
model complexity (Li et al., 2009). SVMs overcome 
efficiency problems of ANNs, such as over-fitting and 
local minimum. Figure 2a the input vectors are mapped 
to a high feature space from the input space by a 
nonlinear transformation function. An optimal 
separating hyperplane can be structured successfully in 
this feature space. Figure 2b, circles and triangle 
represent different classification samples, respectively 
and  the  samples  in  solid line are support vectors. The  

 
 

Fig. 1: Structure of three-layer BP neural network 
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Fig. 2: Nonlinear mapping from input space to high dimensional space 

 
classification interval between two parallel lines is 
2 ∥ ݓ ∥⁄ . The intention of SVM is to maximize the 
interval. The formulas ωχ ൅ b ൌ േ1 and ωχ ൅ b ൌ 0 
stand for the classified lines and the separating 
hyperplane, respectively. 

Given training samples ݔ௜ ∈ ܴ௡, ݅ ൌ 1,2,3, … , ݈, 
where ݈ stands for the size of training set. In two 
classes, a vector y௜ ∈ ሼ1, െ1ሽ, (y ∈ R௟) delegates the 
label of category. Thus the initial problem can be 
described as follows: 
 

min୵,ୠ,ஞ
ଵ

ଶ
w୘w ൅ c∑ ξ௜

௟
௜ୀଵ                                    (8) 

 
Subject to y௜ሺwሻ୘ϕሺχ୧ሻ ൅ b ൒ 1 െ ξ௜ and		ξ୧ ≧

0, ݅ ൌ 1, 2, 3, … , ݈.  
where, C is punish coefficient. The bigger the c value 
is, the more severe the penalty would be. 

SVMs are binary classifiers. Several methods have 
been designed to deal with multi-class classification 
problems (Hu et al., 2010; Hsu and Lin, 2002). One-
against-one method is adopted in the current study. For 
a k-class classification problem, a total of k (k-1)/2 
(k>2) classifiers are constructed and each of them trains 
the data derived from two different classes: 
 

min୵౟ౠ,ୠ౟ౠ,ஞ౟ౠ
ଵ

ଶ
ሺw୧୨ሻ୘w୧୨ ൅ c∑ ௧ߦ

௜௝௟
௧ୀଵ               (9)  

 

Subject to 
ଵ

ଶ
ሺw୧୨ሻ୘ϕሺχ୲ሻ ൅ b୧୨ ൒ 1 െ ξ୲

୧୨, if ݕ௧ ൌ ݅ 

and 
ଵ

ଶ
ሺw୧୨ሻ୘ϕሺχ୲ሻ ൅ b୧୨ ൑ െ1 ൅ ξ୲

୧୨	 if ݕ௧ ൌ ݆ and 

ξ୲
୧୨ ൒ 0, t ൌ 1,2,… , l, i, j ൌ 1,2, …K.  

In this case, three classifiers were constructed to 
identify light, medium and heavy aroma types: 
 

௜݂௝ ൌ ∑൫݊݃ݏ ௣௟ݕ
௣ୀଵ ܽ௣

௜௝ܭ൫ݔ௣, ൯ݔ െ ܾ௜௝൯,	  
݅, ݆ ൌ 1,2, … , ݈               (10)  

Discriminant analysis: Discriminant analysis is a 
multivariate statistical analysis procedure where a data 
set containing p variables is separated into a number of 
previously defined groups using a linear combination of 
features. Given a set of p independent variables with 
known class k, discriminant analysis attempts to find 
linear combinations of the predictors (discriminant 
function, D). The function D Eq. (11) is expected to 
differentiate the k groups of samples as well as estimate 
groups membership and possibility according to the 
Fisher’s discriminant procedure. For each group i (i = 1, 
…, k), the discriminant function D is defined as 
follows: 
 

Di = b1ix1i+b2ix2i+…+bpixpi+ci, i = 1,..., k           (11) 
 
where, b1, b2, …, bp are discriminant coefficients or 
scores, x1, x2, …, xp are independent variables and c is 
a constant. The centroids summarizing the group 
information are calculated as follows: 
 





















iXk

iX

iX

Xi

,

...

,2

,1
                                                        (12) 

 
where, X1, X2, …, Xp denote the mean values of the 
independent variables in the corresponding discriminant 
function for group i. The discriminant function D is 
designed with the aim of maximum distance between 
the centroids. The group membership for a new case is 
calculated based on the centroids. When the average 
discriminant score is lower than zero, the new case will 
be assigned to the group with lower centroids and vice 
versa.  
 
Accuracy evaluation: Overall accuracy and kappa 
coefficient    (Fleiss, 1971)    are   used  to  evaluate  the  
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Table 1: Descriptive statistics of chemical compositions of tobacco leaves 
Chemical compositions of tobacco leaf Min. Max. Mean S.D. C.V (%) 
Water-soluble total sugar (%) 16.11 39.50 28.67 4.36 15.22 
Total plant alkaloid (%) 1.33 4.28 2.63 0.54 20.49 
Protein (%) 3.38 6.77 4.94 0.74 15.14 
Total nitrogen (%) 1.35 3.33 1.96 0.335 17.15 
Reducing sugar (%) 13.03 35.04 25.08 3.68 14.68 
Total volatile acid (%) 0.05 0.575 0.152 0.08 54.27 
Total volatile alkali (%) 0.16 0.52 0.29 0.06 21.83 
Ratio of nitrogen to nicotine 0.52 13.65 0.89 1.01 113.46 
Ratio of sugar to nicotine 3.60 22.22 10.31 2.84 27.60 
Ratio of potassium to chlorine 0.86 49.00 9.63 7.035 73.07 
Petroleum ether extracts (%) 3.59 16.90 5.70 1.24 21.80 
pH 3.38 5.67 5.37 0.418 7.83 
Potassium (%) 0.90 3.35 1.93 0.47 24.16 
Chlorine (%) 0.06 1.49 0.32 0.196 60.33 
Nitrate (%) 0.002 0.63 0.067 0.074 112.64 
Sulfate (%)  0.18 7.06  1.53 0.56 37.52 
Ash content (%)  5.94 19.66 11.38 1.7 14.94 
Alkalinity of water-soluble ash content (%)  0.11 1.48  0.54 0.26 48.64 
Min.: Minimum; Max.: Maximum; S.D.: Standard deviation 

 
models’ accuracy. The results of classification were 
compared with their well acknowledged aroma types. 
Kappa coefficient is as follows: 
 

kappa ൌ
୔ሺ୅ሻି୔ሺେሻ

ଵି୔ሺେሻ
                                         (13) 

 
where, P(A) is the proportion of times that the methods 
agree and P(C) is the proportion of times that one 
expects them to agree by chance. Almost perfect 
agreement was yielded when 0.81 < kappa < 1; 
substantial agreement if 0.61 < kappa < 0.8; moderate 
agreement if 0.41 < kappa < 0.6; fair agreement if 0.21 
< kappa < 0.4; slight agreement if 0.01 < kappa < 0.2 
and poor agreement if kappa<0 (Landis and Koch, 
1977). The relative improvement of overall accuracy 
and kappa coefficient were used to measure the 
improvement on the classification accuracy of the better 
performed models over the reference methods: 
 

R

RE

CA

CA-CA
RI 

                                          (14) 

 
where, CAE and CAR are the overall accuracy or kappa 
coefficient of the better performed models and the 
reference method, respectively.  
All analyses were done in Matlab 7.0. 
 
Data: During the period of 2003 to 2007, 186 tobacco 
leaf samples with grade of C3F were collected from the 
representative counties planting flue-cured tobacco 
across China. Among them, 27 records with light, 
medium and heavy aroma types were used to train the 
classifiers and the remaining were unclassified samples. 
Eighteen routinely measured chemical compositions of 
flue-cured tobacco leaves including water-soluble total 
sugar, total plant alkaloid, total nitrogen, protein, 
reducing sugar, total volatile acids, total volatile alkali, 

ratio of nitrogen to nicotine, ratio of sugar to nicotine, 
ratio of potassium to chlorine, petroleum ether extracts, 
pH, potassium, chloride, nitrate, sulfate, ash content and 
alkalinity of water-soluble ash content were used to 
classify the aroma types in the current study. The 
descriptive statistics of these chemical parameters was 
given in Table 1. 

The first five chemical compositions (water-soluble 
total sugar, total plant alkaloid, protein, total nitrogen 
and reducing sugar) were the most widely used 
indicators in evaluating flue-cured tobacco leave quality 
(Hu et al., 2010; Wang et al., 1998; Du et al., 2000) 
Therefore, these five chemical compositions were used 
as basic indicators. The others were added to the 
classifiers one after another. Finally, 42 classifiers 
developed by BP, SVM and DA were evaluated in the 
current study (Table 2). 
 

RESULTS 
 

The overall accuracy and kappa coefficients of the 
classifiers were shown in Table 2. The mean values of 
overall accuracy and kappa coefficient were 78% and 
0.66 for BPs, 67% and 0.50 for SVMs and 67% and 
0.50 for DAs. The results showed that BP models gave 
better performance than SVM and DA methods. The 
values of relative improvement of BP on SVM and DA 
were 16.5 and 33.6% for overall accuracy and kappa 
coefficient, respectively. 

Compared with the basic BP classifier (BP5), BP 
models with more indicators have higher performance. 
The average relative improvements were 13 and 25% 
for overall accuracy and kappa coefficient, respectively 
(Table 2). Among them, the BP models with 9, 12 and 
18 indicators had higher classification performances 
with relative improvement higher than 15 and 30% for 
overall accuracy and kappa coefficient, respectively. 
Hence, the  BP  model with fewer indicators and higher  
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Table 2: Overall accuracy (OA) and kappa coefficients of the classifiers 
Model OA (%) Kappa Model OA (%) Kappa Model OA (%) Kappa
BP5 69.35 0.54  SVM5 61.83 0.43 DA5 66.67 0.50 
BP6 73.12 0.59  SVM6 61.83 0.43 DA6 68.82 0.53 
BP7 77.42 0.66  SVM7 69.35 0.54 DA7 69.35 0.54 
BP8 79.57 0.69  SVM8 63.98 0.45 DA8 63.98 0.45 
BP9 81.18 0.72  SVM9 65.05 0.47 DA9 65.05 0.47 
BP10 77.42 0.66  SVM10 65.05 0.47 DA10 65.05 0.47 
BP11 77.96 0.67  SVM11 68.82 0.53 DA11 68.82 0.53 
BP12 80.11 0.70  SVM12 66.13 0.49 DA12 66.13 0.49 
BP13 77.42 0.66  SVM13 67.20 0.50 DA13 67.20 0.50 
BP14 77.42 0.66  SVM14 66.67 0.49 DA14 66.67 0.49 
BP15 76.88 0.65  SVM15 62.37 0.43 DA15 62.37 0.43 
BP16 79.03 0.68  SVM16 67.74 0.51 DA16 67.74 0.51 
BP17 79.57 0.69  SVM17 70.97 0.56 DA17 70.97 0.56 
BP18 80.65 0.71  SVM18 75.27 0.63 DA18 69.35 0.53 
Mean 77.65 0.66  66.59 0.49 67.01 0.50

 
Table 3: Relative improvement of OA and kappa coefficients for BP 

classifiers 
Model OA (%) Kappa (%) 
BP5 - -
BP6 5.44 9.26
BP7 11.64 22.22
BP8 14.74 27.78
BP9 17.06 33.33
BP10 11.64 22.22 
BP11 12.42 24.07
BP12 15.52 29.63
BP13 11.64 22.22
BP14 11.64 22.22
BP15 10.86 20.37
BP16 13.96 25.93
BP17 14.74 27.78
BP18 16.29 31.48 
Mean 12.89 24.50

 
performance (BP9) was the optimal classifier for 
identifying flue-cured tobacco aroma types. The 
confusion  matrix  was shown in Table 3. A total of 151 
 

Table 4: Confusion matrix of BP9 
Aroma type Heavy Medium Light Total
Heavy 46 5 0 51
Medium 4 53 6 63
Light 6 14 52 72
Total 56 72 58 186

 
samples were classified into their well-known aroma 
types. The overall accuracy and kappa coefficient of 
BP9 were 81.18% and 0.72, respectively. These results 
suggested that the classification produced substantial 
agreement. 

The spatial distribution map of the flue-cured 
tobacco aroma types was built by ArcGIS 9.3 based on 
the optimal result produced by BP9 (Table 4). Most of 
the samples were classified into their well accepted 
types. The dominating areas producing flue-cured 
tobacco with heavy aroma type are Henan, Anhui, 
Jiangxi,  Hunan,  eastern  regions  of  Shandong 
provinces. Areas producing flue-cured tobacco with

 
 

Fig. 3: Spatial distribution of flue-cured tobacco aroma types 
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medium aroma type are mostly concentrated in 
Guizhou, Chongqing, Hubei, central Shandong, 
northwestern Hunan and northeastern Yunnan 
provinces. Areas producing flue-cured tobacco with 
light aroma type are mainly distributed in Yunnan and 
Fujian provinces. However, not all results of the current 
study were similar to their well-known types. For 
instance, Yunnan province located in southwestern 
China is well-known for yielding flue-cured tobacco 
with light aroma type. In the current study, above half 
of samples in Yunnan were classified into light aroma 
type and others were medium and heavy aroma groups 
(Fig. 3). These results were agreement with the 
previous study (Yang et al., 2014) and further 
confirmed that care should be taken in regional 
planning and decision making for flue-cured tobacco 
production in these areas. 
 

CONCLUSION 
 

In this study, three kinds of supervised classifiers 
were evaluated for identifying flue-cured tobacco 
aroma types using routinely measured chemical 
compositions. The results showed that the BP model 
with 9 indicators outperformed others. The overall 
accuracy and kappa coefficient of BP9 was 81.18% and 
0.72. The spatial distribution map showed that most 
samples were classified into their well-accepted aroma 
types. In the future, we will futherly explore the special 
chemical indice that can make the optimal model 
achieve the best effect.  
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