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Abstract: In this study, the methods are applied to the control of the relief food helicopter and achieve good control 
performance and effect. The design of the fuzzy controller does not depend on the model of the controlled object. 
But it depends very closely on the experiences and knowledge of control experts or operators. But it is difficult to 
design a high-level fuzzy controller. Moreover the fuzzy controller is not easy to control learning and adjustment of 
the parameters, which makes the structure of the self-adaptive fuzzy controller difficult. Self-adaptive learning 
technology can effectively compensate for the decline of control performance caused by the imperfection of the rule 
base. The self-adaptive fuzzy control has two kinds of forms. 
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INTRODUCTION 

 
At present, many scholars have studied the design 

of the course channel controller for relief food 
helicopters under the condition of the model having 
been established. In fact, the dynamical models of 
course channels of air vehicles with different types and 
different parameters are different. And the 
establishment of the course channel model is 
cumbersome and complex, so it is necessary and urgent 
to research the model free control method independent 
of mathematical models. As one of the most important 
methods in the model free control field, the intelligent 
control method has garnered widespread attention from 
scholars (Raptis and Valavanis, 2011). But on account 
of being in the stage of theoretical research without 
many practical applications, the intelligent control 
method is tried in the design of course channel 
controller for relief food helicopters in this study. 
 
Problem description: In this study, we study the 
system aiming at the following class of nonlinear 
systems (Cai et al., 2008):  
 

x1  = x2 
x1  = xi+1 
L 
xn  = f(x) + bu(t) + d(t)  
y  = x1                                                                   (1) 

where, f(x) and d(t) denote the unknown nonlinear 
function and the complex time-varying interference; 
u(t) is the control input; x = [x1, x2, L, xn]T = [y, y,  L,  
y(n-1)]T. Expand the SISO method to the following multi-
input and multi-output model later: 
 

௜ݕ
௡೔= fi(X, t) + bi ui (t) + di(t), i = 1,L, p                (2) 
 

where, X = [ ଵܺ
், ܺଶ

், L ܺ௣
்]T is the output differential 

vector; Xi = [yi, ݕ௜
ሺଵሻ, L ݕ௜

ሺ௡೔ିଵሻ]T  is the ith output 
differential vector,; yi and ui respectively express the ith 
output and the ith input; di(t) denotes the unknown 
complex time-varying interference. It assumes that fi(.) 
is the unknown time-varying bounded smooth nonlinear 
function and satisfies an increasing condition, namely 
Lipchitz. 
 

MATERIALS AND METHODS 
 

Cascade observer: In the actual system, through 
sensors we can only obtain the position signals, but not 
the high order differential signals, so it is necessary to 
obtain it through mathematic methods. Tracking-
differentiator is a useful tool to obtain high-order 
differential signals. Studies on this field are much more 
and there is mainly high-gain observer method, etc. A 
cascaded observer design method proposed in this 
section is used to estimate high order differential 
signals (Xu et al., 2013). The purpose of the design is to 
ensure the convergence of the observer cascade method, 
i.e.: 
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 = ො2ݔ = ො3ݔ ො2 ՜ݔ = ො3ݔ ො1 ՜ݔ = ො1ݔ = ො2ݔ ො1 ՜ݔ = ො2ݔ ො1՜ݔ = ො1ݔ
ොn ՜ݔ = ොn+1ݔ ,ො1, Lݔ ଵݔ = ොnݔ = ොn+1ݔ

ሺ௡ሻ  
 

Based on this concept, the designed cascade 
observer is shown as follows: 

 
 (ො1ݔ - y) ො1sgnߩ + (ො1ݔ-y)ො2 + l1ݔ = ො1ݔ
 i = 2, L,n ,(ොiݔ- ො1-1ݔ) ොi sgnߩ+ (ොiݔ - ොi-1ݔ) ොi+1 +Iiݔ = ොiݔ
 (ොn+1ݔ -ොnݔ) ොn+1 sgnߩ + (ො1ݔ - ොnݔ) ොn+1 = ln+1ݔ
 ො1                                                                   (3)ݔ = ොݕ

 
Utilizing the following conditions, |ݔොi+1 - ݔොi-1| ≤ ρi, i = 1, 
L, n + 1 
 

and sgn(a) = ቌ
1 , ݂݅ ܽ ൐ 0
0 , ݂݅ ܽ ൌ 0

െ1 , ݂݅ ܽ ൏ 0
ቍ 

 
Note: ρi, i = 1, 2, 3, ρn+1 is the upper limit value and a 
constant. This will be proved in theorem 1. Theorem 1 
shows that ρi has a boundary. ߩොi denotes the estimated 
value of ρi. li is a positive value. When select li s, li is 
even larger than li+1. The reason is that the contribution 
of estimating the previous step exceeds the cascade 
structure of estimating the latter (Kim et al., 2012). 
Such gain selection needs a smaller gain value to 
increase with the state order, which is different from the 
high-gain observer requiring a higher gain value to 
increase with the state order: 

 

ොi = ቊߩ
௜ |௫ො ೔షభି ௫ො ೔|     ௜௙ ఘෝ೔ ஸ ఘഥߛ ೔  

ߛ
௜ ൬ଵ ା 

ഐഥ ೔షഐෝ ೔ 
ഃ೔

൰ |௫ො ೔షభି ௫ො ೔|,   ௢௧௛௘௥
   i = 1, L, n +1      (4) 

 
where, δi  is a positive constant, that plays a big role for 
reducing the self-adaptive gain ߩො௜ > ߩҧ௜ and preventing 
the divergence of ߩො௜. ߩҧ௜ can be set to any positive and 
the choice should be rational, because they affect the 
transient response of the cascade observer. The Eq. (4) 
guarantees ߩොi bounded. 
 
Theorem 1: The designed cascade observers (3) and 
(4) can guarantee the asymptotic stability of the 
estimation error of the differential, i.e., ݈݅݉

ݐ ՜ ∞ 
∑ ሺݔො௜ିଵ ሺtሻ െ ݔො௜ሺݐሻሻ௡ାଵ

௜ୀଵ  = 0. 
 
Prove: In order to test the stability analysis of the 
proposed observer, we have considered the Lyapunov 
function: 

 
V = ଵ

ଶ
 
∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ

௜ୀଵ
2 + ଵ

ଶ
∑ ଵ

ఊ೔

௡ାଵ
௜ୀଵ ௜%ߩ 

ଶ            (5) 
 
where, ߩ%௜

ଶ = ρi - ߩොi Following the trajectory of the 
system, i.e., the differential of V, we can get: 

V = ∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ ሺݔො௜ିଵ െ ݔො௜ሻ ൅ ∑ ଵ

ఊ೔

௡ାଵ
௜ୀଵ  ௜%ߩ௜%ߩ 

                                                                                   (6) 
 
Put Eq. (5) into (6) and we can get: 
 
V = െ ∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ

௜ୀଵ  ො௜ିଵsgnߩ +  (ො௜ିଵݔ-ො௜ିଵݔ) ො௜ାଵ+ liݔ] 
൅ [(ො௜ݔ -ො௜ିଵݔ) ∑ ො௜ିଵݔො௜ିଵሺݔ െ ݔො௜ሻ௡ାଵ

௜ୀଵ  +∑ ଵ
ஓ౟

௡ାଵ
௜ୀଵ  ρ%i ρ%i 

= -∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ  [(ො௜ݔ -ො௜ିଵݔ)ො௜ sgnߩ +ො௜ିଵݔ +ො௜ାଵݔ]×

-i ∑ l୧ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ

2 + -∑ ଵ
ஓ౟

௡ାଵ
௜ୀଵ  ρ%i ρ%i 

≤ -∑ l୧ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ

2 + ∑ ො௜ିଵݔ| െ ݔො௜|௡ାଵ
௜ୀଵ ො௜ାଵݔ| െ

 |ො௜ିଵݔ 
െ ∑ ො௜ିଵݔො௜sgnሺߩ െ ݔො௜ሻ௡ାଵ

௜ୀଵ ∑ + (ො௜ݔ -ො௜ିଵݔ)  ଵ
ஓ౟

௡ାଵ
௜ୀଵ  ρ%i ρ%i 

≤ -∑ l୧ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ

2 + ∑ ρ୧|ݔො௜ିଵ െ ݔො௜|௡ାଵ
௜ୀଵ  - 

∑ ො௜ିଵݔ|ො௜ߩ െ ݔො௜|௡ାଵ
௜ୀଵ  + ∑ ଵ

ஓ౟

௡ାଵ
௜ୀଵ  ρ%i ρ%i 

= -∑ l୧ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ  + ∑ ρ%୧|ݔො௜ିଵ െ ݔො௜|௡ାଵ

௜ୀଵ  - 
∑ ଵ

ஓ౟
 ρ%୧

௡ାଵ
௜ୀଵ  ρ%୧                                                         (7) 

 
Substituting the Eq. (4) into the (7), we can get: 
 

V≤ - ∑ l୧
௡ାଵ
௜ୀଵ ො௜ିଵݔ) െ ݔො௜)2                                      (8) 

 
From Eq. (8), we can confirm that (ݔො௜ିଵ െ ݔො௜) and 

ρ%i are bounded. Similarly,  ߩො௜ is bounded from Eq. 
(4). Integrate the Eq. (8) and we can get: 

 
׬ ∑ l୧

௡ାଵ
௜ୀଵ ሺݔො௜ିଵሺτሻ െ ݔො௜ሺτሻሻ௧

଴
2 dτ ≤ - V(t) + V(0) ≤ V (0) 

= ଵ
ଶ

∑ ሺݔො௜ିଵሺ0ሻ െ ݔො௜ሺ0ሻሻ௡ାଵ
௜ୀଵ

2 + ∑ ଵ
ଶஓ౟

௡ାଵ
௜ୀଵ ௜%ߩ 

ଶ(0)        (9) 
 
Then, as V(0) and li  are constants, ∑ ሺݔො௜ିଵ െ௡ାଵ

௜ୀଵ
 െ1| have݅ݔ ൅1െ݅ݔ| ሻ,  and݅ݔ െ1െ݅ݔሺ ,݅ߩ L2. As א ሻ݅ݔ 
been proved bounded, we can get ∑ ୢ

ୢ୲
ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ

௜ୀଵ  א

,ஶ. Through using Barbalat’s lemmaܮ ݈݅݉
ݐ ՜ ∞ 

∑ ሺݔො௜ିଵሺtሻ െ ݔො௜ሺtሻሻ௡ାଵ
௜ୀଵ  = 0. 

 
Theorem 2: (non-adaptive stability) for the system (1), 
the cascade differential tracker of γi = 0 is given to 
guarantee that the differential estimation error is 
globally uniformly bounded. 
 
Prove: as γi = 0 and the parameter estimated value ߩොi is 
a constant. For the non-adaptive Lyapunov function, we 
hold that:  
 

Vcl = - ଵ
ଶ

∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ
௜ୀଵ

2                                 (10) 
 
From the Eq. (7), we can obtain: 
 
Vcl = - ∑ l୧ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ

௜ୀଵ
2 + ∑ ρ%୧|ݔො௜ିଵ െ ݔො௜|௡ାଵ

௜ୀଵ  (11) 
 
where, set χ = 2Vcl = ∑ ሺݔො௜ିଵ െ ො௜ሻ௡ାଵݔ 

௜ୀଵ
2, ; l0 = 

(n+1)min1≤i≤n+1 li  and ρ%0 = (n + 1)max1≤i≤n+1 ρ%i. 
Then use  
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∑ ො௜ିଵݔ| െ ݔො௜|௡ାଵ
௜ୀଵ  ≤ √݊ ൅ 1 ቄ∑ ሺݔො௜ିଵ െ ݔො௜ሻ௡ାଵ

௜ୀଵ
ଶቅ

భ
మ = 

√݊ ൅ 1 ߯
భ
మ. 

 
By Schwarz inequality, we can get: 
 

 ௗఞ
ௗ௧

 ≤ 2 √݊ ൅ 1 ρ%0 ߯
భ
మ -2l0χ                              (12) 

 
By replacing, solve this type of equation. In fact, 

set η = ߯
భ
మ and we can get: 

 
ௗఎ
ௗ௧

 = ଵ
ଶ
 ߯ିభ

మ ௗఞ
ௗ௧

                                                     (13) 
 

Rewrite (12) and we can get: 
 
 ߯ିభ

మ ௗఞ
ௗ௧

 = 2 √݊ ൅ 1 ρ%଴ – 2l଴χ|ିభ
మ = 2√݊ ൅ 1 ρ%0 2l0 

η                                                                                 (14) 
 
Plugging the Eq. (14) into the (13), we can get: 
 

η + 10 η = √݊ ൅ 1 ρ%0                                                           (15) 
 

Solve the linear Eq. (16) to get the solution of η  
and it is available that: 

 
 η(t) = √݊ ൅ 1 ఘ%బ

௟బ
(1 -݁ି௟బ௧) + η(0) -݁ି௟బ௧ = 

√݊ ൅ 1 ఘ%బ
௟బ

ቀߟሺ0ሻ െ √݊ ൅ 1 ఘ%బ
௟బ

ቁ                             (16) 
 
Return χ by the replacement χ = η2, then we can get: 
 
χ(t) = ቄ√݊ ൅ 1 ఘ%బ

௟బ
൅ ݁ିூబ௧  ቀ߯ሺ0ሻ

భ
మ െ √݊ ൅ 1 ఘ%బ

௟బ
ቁቅ ଶ 

≤ ቄ2√݊ ൅ 1 ఘ%బ
௟బ

 ቀ߯ሺ0ሻ
భ
మ െ √݊ ൅ 1 ఘ%బ

௟బ
ቁ ൅

߯ሺ0ሻ12െ݊൅1%0݈0݁ߩെݐ0ܫ + (n + 1) (17)        %0݈02ߩ 

 
This proves that the solution of χ is globally 

uniformly non-adaptive bounded, i.e., when t ՜ ∞ χ(t) 

՜ (n + 1)ቀఘ%బ
௟బ

ቁ
ଶ
. 

 
RESULTS AND DISCUSSION 

 
The design of model free controller: Set yri (i = 1,L,p) 
as the ith given input. Xri = ሾݕ௥௜, ௥௜ݕ

ሺଵሻ, ,ܮ ௥௜ݕ
ሺ௡೔ିଵሻሿ் is the 

ith given input differential vector. Xഥri = ሾܺ௥௜
் , ௥௜ݕ

ሺ௡೔ሻሿ்  
and Xഥi = ሾ ௜ܺ

், ௜ݕ
ሺ௡೔ሻሿ்  denote respectively the ith given 

input expanding differential vector and output 
expanding differential vector: 
 

Ei = [Ei1, Ei2, L, ܧ௜௡೔]
T = Xri - Xi 

= [εi, ߝ௜
ሺଵሻ, L, ߝ௜

ሺ௡೔ିଵሻ]T 

തܧ i = തܺri - തܺi = [ܧ௜
௜ߝ ,்

ሺ௡೔ሻ]T                                                    (18) 

Ei and ܧത i in Eq. (18) denote respectively the ith 
error differential vector, the ith error expanding 
differential vector. Therein, εi = yri - yi. It assumes that 
yri can achieve the ni-order bounded differential (Wang 
et al., 2009). 
 
Theorem 3: For system (2), the model free controller 
can be expressed as follows: 
 

ui = ଵ
௕೔

തܧ ഥiܭ  i + ݑො i i = 1, L,                                   (19) 
 
where, ܭഥi [݇௜௡೔, L, ki1, 1]  makes  
 ௡೔ିଵ + L + ݇௜௡೔ become a Hurwitzݏ ௡೔ + ki1ݏ
polynomial, ݑො i  is the estimated value of ui. Then the 
received model free control algorithm has the following 
properties: 
 
• It can realize the linear decoupling control. 
• It makes the closed-loop system asymptotically 

stable and meets the following convergence: 
 

݈݅݉ 
ݐ ՜ ∞

݈݅݉ 
ߣ   ՜ ∞ Xi =  Xri                           (20) 

 
• All system variables are bounded. 
 
Prove: putting Eq. (19) into (2), it is available that: 
 
௜ݕ

ሺ௡೔ሻ = fi (X, t) + bi(ܭഥi ܧത i + ݑො i) + di(t), i = 1, L, p      (21) 
 
Then, we can get: 
 
௜ݕ) 

ሺ௡೔ሻ + ki1ݕ௜
ሺ௡೔ିଵሻ + L + ݇௜௡೔yi) =  (ݕ௥௜

ሺ௡೔ሻ + ki1ݕ௥௜
ሺ௡೔ିଵሻ + 

L + ݇௜௡೔yri) i = 1, L, p                                                (22) 
 
where δi = ݑො i - ui. Based on Eq. (22), p linear 
decoupling differential equations are obtained. From 
the definition of scalar εi in formula (22) and the 
definition of scalar Eik, we can get: 
 

௜ߝ
ሺ௡೔ሻ = -  ki1ߝ௜

ሺ௡೔ିଵሻ - L - ݇௜௡೔εi + bi δi                          (23) 
 
i.e., 
 

 ௜ଵ+ cibiδi                              (24)ܧ ௜௡೔- L - ݇௜௡೔ܧ ௜௡೔ = - ki1ܧ
 
It is easy to get the following important equation 

from Eq. (24) and the definition of vector Ei in Eq. (25): 
 

E = Ami Ei + ci bi δi                                                                      (25) 
 
where, Ami א ܴ௡೔ൈ௡೔  is a controllable matrix and the 
matrix parameters are ݇௡೔, L, ki1 and ci = [0, L, 0,1]T א 
ܴ௡೔ൈଵ. Similar to the proof of the Theorem 1, δi ՜ 0. 
Moreover, from Eq. (25), it can be seen that ݏ௡೔ + 
ki1ݏ௡೔ିଵ + L + ݇௜௡೔ is a Hurwitz polynomial and we can 
get: 
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Fig. 1: First-order differential signal estimations of course 

angles 
 

݈݅݉
ݐ ՜ ∞ Ei = 0                                                    (26) 

 
Hence, based on the higher-order differentiator in 

the above section, we can obtain the model free 
controller of the MIMO system below. 

In this section, use the dynamical model of a 
miniature relief food helicopter in vertical flight to 
verify MIMO model free control. The relief food 
helicopter flight height changes with the change of the 
pitch angle. Shown in Fig. 1. Neglecting the influence 
of ground factors, the relief food helicopter dynamic 
equations are described as follows: 

 
ሶݔ  = f(x) + g1(x)u1 + g2(x)u2 + ∆  
y = [y1, y2]T = [x1, x4]T                                                            (27) 

 
where, x = [x1, x2, x3, x4, x5]T = [h, h, ω, θ, θ]T. h is 
height. ω is the rotate speed of rotor blade, θ  is the 
collective pitch pitching angle of rotor blade. u1 is the 
throttle control input. u2 is the collective pitch control 
input. g1(x) = [0, 0, 1, 0, 0]T and g2(x) = [0, 0, 1, 0, 0]T. 
∆ is the modeling uncertainty: 

 

f(x) = [f1, f2, f3, f4,f5]T = 

ۏ
ێ
ێ
ێ
ۍ

ଶݔ

ܽ଴  ൅ ܽଵݔଶ ൅ ܽ଴ݔଶ
ଶ ൅ ሺܽଷ ൅ ܽସݔସ െ ඥܽହ ൅ ܽସݔସሻݔଷ

ଶ

ܽ଻  ൅ ଷݔ଼ܽ ൅ ሾܽଽ ݔ ݊݅ݏସ ൅ ܽଵ଴ሿݔଷ
ଶ

ହݔ
ܽଵଵ  ൅ ܽଵଶݔସ ൅ ܽଵହݔଷ

ଶ ൅ ସݔ ݊݅ݏ ൅ ܽଵସݔହ ے
ۑ
ۑ
ۑ
ې

                                             (28) 

 
Formula (28) is written as the following form: 
 

ە
ۖ
۔

ۖ
ۓ

ଵ ൌݔ ଶݔ  

ଶ ൌݔ   ଶ݂ ൌ   ܽ଴  ൅ ܽଵ ܽଶ ൅ ܽଶݔଶ
ଶ  ൅ ൫ܽଷ ൅ ܽସ ݔସ െ ඥܽହ ൅ ܽସ ݔସ ൯ݔଷ

ଶ 
ଷݔ  ൌ  ଷ݂  ൅ ଵ ൌݑ   ܽ଻ ൅ ଼ܽ ݔଷ ൅ ሾܽଽݔ ݊݅ݏସ ൅ ܽଵ଴ ሿݔଷ

ଶ  ൅ ݑଵ 
ସ  ൌݔ  ହݔ 

ହ  ൌݔ  ହ݂ ൅ ଶ  ൌݑ  ܽଵଵ ൅ ܽଵଶ ݔସ ൅ ܽଵହ ݔଷ
ଶ ݊݅ݏ ܽସ  ൅  ܽଵସ ݔହ  ൅  ଶݑ 

                                                       (29) 

 
It can be seen from the relief food helicopter vertical dynamical model (29) that throttle control u1 acts on ω 

directly and collective pitch control input u2 acts on ߠሷ  directly. Shown in Fig. 2. The outputs of the controlled 
objects of relief food helicopters are height h and collective pitch pitching angle θ. u1 has control relations with the 
rotary speed of propeller blade and collective pitch pitching angles. u2 also has control relations with collective pitch 
pitching angles and rotary speed of propeller blade. Height h is associated with the rotary speed of propeller blade 
and collective pitch pitching angles as well. Therefore, there are strong coupling characteristics in relief food 
helicopter vertical dynamics. 

One of the two designed tracking differentiators is third-order and another is second-order. The model 
parameters in simulations are as follows: 
 

a0 = - 17.67, a0 = - 17.67, a3 = 5.31 × 10-4,  
a5 = - 2.82 × 10-7, a3 = 5.31 × 10-4, a6 = 1.632 × 10-5,  
a7 = - 13.92, a8 = - 0.7, a9 = a10 = - 0.0028, 
a11 = - 434.88, a12 = - 800, a13 = - 0.1, a14 = - 65. 

 
(coupled analysis: control coupling) In the case (M = 2), take the throttle input value of 0 and take the collective 
pitch control input value of 15. The relief food helicopter height and the time domain response curve of pitch angles 
are shown in Fig. 3. It can be seen from the open-loop characteristics in Fig. 4a and 4b that whatever the simple 
collective pitch control input or the simple throttle control input, the height and the pitch angle all have definite 
influence. Hence, the control coupling of the relief food helicopter model is equally serious. 
 

CONCLUSION 
 
Aiming at the small UAV course system with disturbances, the study has considered its flight control problem 

and designed the indirect fuzzy self-adaptive supervision course controller. First, take the model transformation for
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Fig. 2: Dynamic coupling analysis (M = 1); (a): Height of the 

relief food helicopter; (b): Pitching angle 
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(b) 
 
Fig. 3: Dynamic coupling analysis (M = 2); (a): Height of the 

relief food helicopter; (b): Pitching angle 
 

the relief food helicopter course system, i.e., the system 
is transformed into a second-order nonlinear time-
varying system. Next, design an indirect fuzzy self-
adaptive course controller for the system. Since the 
designed fuzzy self-adaptive course controller depends 
on the selection of the fuzzy rule base, in order to 
reduce this dependence, continue to design a 
supervision controller in the second layer, so that the 
stability of the closed-loop system is guaranteed. The 
combination    of    the   two   methods   can   make   the 
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(b) 
 
Fig. 4: Control coupling analysis (M = 2); (a): Height of the 

relief food helicopter; (b): Pitching angle 
 

controller design possess great freedom and flexibility, 
which can greatly reduce the dependency  of  control on  
whether  the selection of the rule base is correct or not. 
Finally, all designed methods are applied to the control 
of the relief food helicopter course system to realize the 
tracking control of the relief food helicopter course 
channel and achieve good control performance and 
effect. 
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