Advance Journal of Food Science and Technology 13(3): 104-109, 2017

DOI:10.19026/ajfst.13.4145
ISSN: 2042-4868; e-ISSN: 2042-4876
© 2017 Maxwell Scientific Publication Corp.

Submitted: July 26, 2015

Research Article

Accepted: August 20, 2015

Published: March 25, 2017

The Model Relief Food Free Control Technology Based on the Cascade Observer

"?Hongcheng Zhou and *Daobo Wang
'Institute of Information, JinLing Institute of Technology, Nanjing 211169,
*College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

Abstract: In this study, the methods are applied to the control of the relief food helicopter and achieve good control
performance and effect. The design of the fuzzy controller does not depend on the model of the controlled object.
But it depends very closely on the experiences and knowledge of control experts or operators. But it is difficult to
design a high-level fuzzy controller. Moreover the fuzzy controller is not easy to control learning and adjustment of
the parameters, which makes the structure of the self-adaptive fuzzy controller difficult. Self-adaptive learning
technology can effectively compensate for the decline of control performance caused by the imperfection of the rule
base. The self-adaptive fuzzy control has two kinds of forms.
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INTRODUCTION

At present, many scholars have studied the design
of the course channel controller for relief food
helicopters under the condition of the model having
been established. In fact, the dynamical models of
course channels of air vehicles with different types and
different parameters are different. And the
establishment of the course channel model is
cumbersome and complex, so it is necessary and urgent
to research the model free control method independent
of mathematical models. As one of the most important
methods in the model free control field, the intelligent
control method has garnered widespread attention from
scholars (Raptis and Valavanis, 2011). But on account
of being in the stage of theoretical research without
many practical applications, the intelligent control
method is tried in the design of course channel
controller for relief food helicopters in this study.

Problem description: In this study, we study the
system aiming at the following class of nonlinear
systems (Cai et al., 2008):

X1 =X

X1 = X

L

X, =fx) + bu(t) + d(¢)

Yy =x (N

where, f{x) and d(f) denote the unknown nonlinear
function and the complex time-varying interference;
u(?) is the control input; x = [xy, xo, L, x,]" = [y, v, L,
" D17, Expand the SISO method to the following multi-
input and multi-output model later:

yini:flj()(’ H+biu () +d(),i=1,L,p (2)

where, X = [X7, XI, L X71" is the output differential
vector; X; = [ yi(l), L yi(ni_l)]T is the ith output
differential vector,; y; and u, respectively express the ith
output and the ith input; di(f) denotes the unknown
complex time-varying interference. It assumes that f{.)
is the unknown time-varying bounded smooth nonlinear
function and satisfies an increasing condition, namely
Lipchitz.

MATERIALS AND METHODS

Cascade observer: In the actual system, through
sensors we can only obtain the position signals, but not
the high order differential signals, so it is necessary to
obtain it through mathematic methods. Tracking-
differentiator is a useful tool to obtain high-order
differential signals. Studies on this field are much more
and there is mainly high-gain observer method, etc. A
cascaded observer design method proposed in this
section is used to estimate high order differential
signals (Xu et al., 2013). The purpose of the design is to
ensure the convergence of the observer cascade method,
ie.
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Based on this concept,
observer is shown as follows:

the designed cascade

Xy =%+ 1i(y-%)) + pisgn (y - X))

Xi=Xin L (Rio - X)) +pisgn (X1, -Xi),i=2,Ln
Xoe1 = lnsr (Xn - X1) + P 5g0 (Xp- Xntr)

y=x 3)

Utilizing the following conditions, X+ - Xi| < p;, i = 1,
Lin+1

1 ,if a>0
andsgn(a)=| 0 ,if a=0
-1 ,if a<o0
Note: p;, 1 =1, 2, 3, pus1 is the upper limit value and a

constant. This will be proved in theorem 1. Theorem 1
shows that p; has a boundary. p; denotes the estimated
value of p;. [; is a positive value. When select /; s, /; is
even larger than l;;;. The reason is that the contribution
of estimating the previous step exceeds the cascade
structure of estimating the latter (Kim et al., 2012).
Such gain selection needs a smaller gain value to
increase with the state order, which is different from the
high-gain observer requiring a higher gain value to
increase with the state order:

where, J; is a positive constant, that plays a big role for
reducing the self-adaptive gain p; > p; and preventing
the divergence of p;. p; can be set to any positive and
the choice should be rational, because they affect the
transient response of the cascade observer. The Eq. (4)
guarantees p; bounded.

Theorem 1: The designed cascade observers (3) and
(4) can guarantee the asymptotic stability of the

estimation error of the lim

differential, t oo
T Rier () — (1) =0.

ie.,

Prove: In order to test the stability analysis of the
proposed observer, we have considered the Lyapunov
function:

V= Zn+1(xl - x) +1 Zn+1 1 %l (5)

where, p%? = p; - p; Following the trajectory of the
system, i.e., the differential of V, we can get:

105

V= Zn+1(xl 1 ) + Zn+1 % p%l

(6)

X)) (Ki-1 =

Put Eq. (5) into (6) and we can get:

V__Zn+1(xl 1 1) 551+1+1 (fl 1~ 551 1) +ﬁi—1sgn
(xz 1~ xl)]+2n xl 1(xl 1 l) +Zn+1_p%i P%i
= Zl (xz 1™ X)X [Xipat X 1+ pi Sgn(xi_l- %]
-1 ZnHl Rio1 — i)2+ ?+11_P%i pY%o;
< BERio - R)T O+ Z”“ X1 — Xil X410 —
Xi— 1|
T Disgn(Rimy — &) Ri—1- &) + n+1 p%o; p%o;
S S Rim — ®)F + iy pllxi—l - X%l -
1 pllxl 1— X +Zn+1_p%1 p%;
= L@ - &) + S %%y — K| -
n+1_ p%l p%l (7)
Substituting the Eq. (4) into the (7), we can get:
VS-S Rioy — &) (®)
From Eq. (8), we can confirm that (X;_; — X;) and

p%; are bounded. Similarly, p; is bounded from Eq.
(4). Integrate the Eq. (8) and we can get:

IN 2”“1 (Riz1 () — 2:(1))* dr<- V() + V(0) < V (0)
= T (Ri-1 (0) — £(0)) + T 1_ p%i0) (9

Then, as ¥(0) and /; are constants, Y1 (% —
x0) €L, As pi, (xi—1— x7), and |x/+1— x/—1| have

been proved bounded, we can get Y1t ;t &z, — X)) €
Lo. Through using Barbalat’s lemma, lim
t—> oo

L (Rima (D) — £(1)) = 0.

Theorem 2: (non-adaptive stability) for the system (1),
the cascade differential tracker of y; = 0 is given to
guarantee that the differential estimation error is
globally uniformly bounded.

Prove: as y; = 0 and the parameter estimated value p; is
a constant. For the non-adaptive Lyapunov function, we
hold that:

2

01—--2"“ Xi—1— X;) (10)
From the Eq. (7), we can obtain:
Va=- XL (®ieg — 27+ XY p%il%i-0 — & (11)

where, set ¥ = 2Vy = Zn+1(xl 1~ x) 5 s
(n+1)mingicpry i

Then use

lo
and p%p = (n + 1)max;c<+ p%.
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|x1 1 - xll

By Schwarz inequality, we can get:

1
2 <2V F 1 %o A7 2oy (12)

By replacing, solve this type of equation. In fact,
1

set = xz and we can get:

1

2

dan
dat

1
-5
dt

(13)
Rewrite (12) and we can get:

1 1
X2 = 2+ 1 p%, - 2lox| 2 = 2Vn + 1 p%s 2l

n (14)
Plugging the Eq. (14) into the (13), we can get:
n+lon=vn+1p%, (15)

Solve the linear Eq. (16) to get the solution of 1
and it is available that:

no = VAt Y1 et + n0) et =
VR 122 (n(0) - W””"’) (16)

Return y by the replacement y = 1%, then we can get:

x(t) = {\/n + 122 p/‘"’ + e~ lot (x(O)z _ \/n—_l_lp/oo)} 5

pvﬁii%@(xmy—vﬁiigﬂ)+
0 0
(0)12—n+1p%0[0e—/0t+ (n + 1) p%0/02  (17)

<

This proves that the solution of y is globally
uniformly non- adaptive bounded, i.e., when t = oo (t)

>+ 1)("/"0) .

RESULTS AND DISCUSSION

The design of model free controller: Sety; (i=1,L,p)
as the ith given input. X;; = [y, yr(l1 ), (n‘ 1)]T 1s the
ith given input differential vector. X,; = [XrTl, Vi ‘)]T
and X; = [X], yl(n’)]T denote respectively the ith given
input expanding differential vector and output
expanding differential vector:

E;=[En, Eo, L, Ein)]' = X - X,

= [e, e, L, e 1)]
Ei=Xq- X =[E], ™07 (18)
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E; and E; in Eq. (18) denote respectively the ith
error differential vector, the ith error expanding
differential vector. Therein, g = y,; - y;. It assumes that
y;; can achieve the n;-order bounded differential (Wang
et al., 2009).

Theorem 3: For system (2), the model free controller

can be expressed as follows:
i:biI?EiJraii:l,L, (19)

where, K; [kin,, L, kij, 1] makes

s + ky s™' + L + ky, become a Hurwitz

polynomial, 41; is the estimated value of u;. Then the

received model free control algorithm has the following

properties:

e [t can realize the linear decoupling control.

It makes the closed-loop system asymptotically
stable and meets the following convergence:

Jmom X=X 20)
e All system variables are bounded.
Prove: putting Eq. (19) into (2), it is available that:
vy =f (X, 0+ b(R; B+ @) +d(0),i=1,L,p  (21)

Then, we can get:

O+ Ky Lt ky) = 0+ kay D+
L+kipys)i=1Lp (22)

where 6; = #I; - u. Based on Eq. (22), p linear
decoupling differential equations are obtained. From
the definition of scalar g in formula (22) and the
definition of scalar Ej,, we can get:
() _
g V=

- kilgi(ni_l) -L- kinisi + bi 6i (23)

ie.,

Ein, = - Kit B~ L - kin, Eirt cibidi (24)
It is easy to get the following important equation
from Eq. (24) and the definition of vector E; in Eq. (25):
E=A4,;E+c;b; 0 (25
where, A, € R™*™ is a controllable matrix and the
matrix parameters are kni, L, kjand ¢;=[0, L, 0,1]T
R™>1_ Similar to the proof of the Theorem 1, & — 0.
Moreover, from Eq. (25), it can be seen that s™ +
kst + L+ kin, is a Hurwitz polynomial and we can

get:
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24 In this section, use the dynamical model of a
miniature relief food helicopter in vertical flight to
verify MIMO model free control. The relief food
helicopter flight height changes with the change of the
pitch angle. Shown in Fig. 1. Neglecting the influence
of ground factors, the relief food helicopter dynamic
equations are described as follows:

'2 T T T T T T T T T 1
0 ! 2 3 4 Tirge (5)6 7 8 ? 10 x :f(x) +g1(x)ul + gZ(x)uZ +A
Fig. 1: First-order differential signal estimations of course y= D’lsJ’Z]T: [x1, x4] (27)
angles
where, x = [X, Xp, X3, X4, Xs]' = [h, h, @, 0, 0]". & is
lim E =0 (26) height. @ is the rotate speed of rotor blade, 6 is the
t—> collective pitch pitching angle of rotor blade. u; is the

throttle control input. u, is the collective pitch control

Hence, based on the higher-order differentiator in input. g,(x) = [0, 0, 1, 0, 0]" and gx(x) = [0, 0, 1, 0, O]".

the above section, we can obtain the model free

controller of the MIMO system below. A is the modeling uncertainty:
X2
[ao +ax, + agx? + (as + agx, — Jas + a4x4)x4
&) =i fon S ff5) = a; + agx; + [ag sinx, + a;o]x? (28)
Xs J
Ay + Apxs + A15X2 4 Sinxy + a14%s
Formula (28) is written as the following form:
x1 = xz
X, = fo= ag + a,a,+ax; + (a3 +aysx, —Jas + a4x4)x§
X3 = f3 + U = a;+agxs + [agSinx, + a;o]xt + uy (29)
x4 = xs

X5 = fs +u2 = aq1 + A7 Xy + a15x32’ sin Ay + Aq4 Xg + U,

It can be seen from the relief food helicopter vertical dynamical model (29) that throttle control #; acts on ®
directly and collective pitch control input u, acts on § directly. Shown in Fig. 2. The outputs of the controlled
objects of relief food helicopters are height h and collective pitch pitching angle 6. u; has control relations with the
rotary speed of propeller blade and collective pitch pitching angles. u, also has control relations with collective pitch
pitching angles and rotary speed of propeller blade. Height h is associated with the rotary speed of propeller blade
and collective pitch pitching angles as well. Therefore, there are strong coupling characteristics in relief food
helicopter vertical dynamics.

One of the two designed tracking differentiators is third-order and another is second-order. The model
parameters in simulations are as follows:

ay=-17.67,ay=-17.67,a;="5.31x10*,
as=-2.82x107, a;=5.31 x 10*, ag=1.632 x 107,
a; = - 1392, ag = - 07, Ao =dayj g~ - 00028,

ayng = - 43488, app =- 800, ap;z=- Ol, aig = - 65.

(coupled analysis: control coupling) In the case (M = 2), take the throttle input value of 0 and take the collective
pitch control input value of 15. The relief food helicopter height and the time domain response curve of pitch angles
are shown in Fig. 3. It can be seen from the open-loop characteristics in Fig. 4a and 4b that whatever the simple
collective pitch control input or the simple throttle control input, the height and the pitch angle all have definite
influence. Hence, the control coupling of the relief food helicopter model is equally serious.

CONCLUSION

Aiming at the small UAV course system with disturbances, the study has considered its flight control problem
and designed the indirect fuzzy self-adaptive supervision course controller. First, take the model transformation for
107
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Fig. 2: Dynamic coupling analysis (M = 1); (a): Height of the
relief food helicopter; (b): Pitching angle
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Fig. 3: Dynamic coupling analysis (M = 2); (a): Height of the
relief food helicopter; (b): Pitching angle

the relief food helicopter course system, i.e., the system
is transformed into a second-order nonlinear time-
varying system. Next, design an indirect fuzzy self-
adaptive course controller for the system. Since the
designed fuzzy self-adaptive course controller depends
on the selection of the fuzzy rule base, in order to
reduce this dependence, continue to design a
supervision controller in the second layer, so that the
stability of the closed-loop system is guaranteed. The
combination of the two methods can make the
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Fig. 4: Control coupling analysis (M = 2); (a): Height of the
relief food helicopter; (b): Pitching angle

controller design possess great freedom and flexibility,
which can greatly reduce the dependency of control on
whether the selection of the rule base is correct or not.
Finally, all designed methods are applied to the control
of the relief food helicopter course system to realize the
tracking control of the relief food helicopter course
channel and achieve good control performance and
effect.
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