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Abstract: The optimization of the process parameters was the aim of this study to obtain a powder from the 
pumpkin juice (Cucúrbita moschata) using the spray drying method. For the optimization of spray drying a surface 
response methodology was used, considering a central design composed of three factors: Maltodextrin concentration 
(10-25%), the temperature of the air inlet (150-170°C) and feed flow rate (4000-5000 mL/h) and the response 
variables evaluated to determine the optimal conditions of the process were: powder yield, humidity, hygroscopicity 
and solubility of the powder. The results of the statistical analysis indicate that all factors significantly affected the 
response variables, an increase in the addition of maltodextrin concentration to the pumpkin juice flow, generates an 
increase in yield, solubility and lower hygroscopicity values, the increase of the inlet temperature and the feed flow 
rate produced a decrease in the moisture content of the obtained powder. The optimal conditions of the process were 
reached with a 25% of maltodextrin concentration, 170°C for the air inlet and a flow rate of 4000 mL/h. These 
process parameters, allow obtaining a powder with a yield of 62.70%, humidity 3.40%, hygroscopicity 28.70% and 
solubility 71.5%, indicating a technological opportunity to generate and economic value to the pumpkin fruit, which 
allows improving the life quality of the country's farmers. 
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INTRODUCTION 

 
Pumpkin (Cucúrbita moschata) is an annual 

herbaceous plant of the Cucurbitaceae family. It is one 
of the most important vegetables in global agricultural 
systems (Maran et al., 2013). In Colombia, it is 
cultivated non-intensively in association with some 
legumes and it is used in the preparation of typical 
dishes and to obtain food products nutritionally rich in 
fats, carbohydrates and minerals (Zhang et al., 2000), 
dietary fiber and vitamins (Nawirskan et al., 2009), 
important components that provide beneficial effects 
for human health (Wang et al., 2012). 

Spray drying is characterized by its rapid water 
evaporation and short drying time, which are 
characteristics that allow it to diminish thermal damage 
and loss of nutrients. It has been used to obtain good 
quality powders from tomato juice (Goula and 
Adamopoulos, 2005), white carrot (Ersus and Yurdagel, 
2007), watermelon (Solval et al., 2012), eggplant 
(Arrazola et al., 2014), cantaloupe (Oberoi and Sogi, 
2015) of easy distribution and storage at room 
temperature for long periods, without compromising its 
stability (Jayasundera et al., 2011). The physical-

chemical properties of the powders obtained through 
spray drying depend on some variables of the process, 
like a concentration of the encapsulating agent in the 
feed mix, air intake temperature and feed flow (Tonon 
et al., 2008). 

Spray drying is affected by the viscosity and 
hygroscopicity of the solutions fed to the drying 
equipment, given the presence of sugars and acids of 
low vitreous transition temperature that allow the 
particles to adhere to the wall of the drying chamber, 
producing a low yield process. These problems can be 
solved by adding encapsulating agents of high 
molecular weight, like proteins, maltodextrin and gums 
with high vitreous transition temperatures (Caliskan and 
Dirim, 2016). No publications report on the parameters 
to obtain pumpkin powder; hence, the aim of this 
research was to optimize the parameters of the drying 
process through spray drying to obtain quality pumpkin 
powder with desirable characteristics. 
 

MATERIALS AND METHODS 
 
Raw materials: Fresh pumpkin with an acceptable 
degree of ripeness and horticultural quality, acquired  in  
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the local market in the city of Armenia, Colombia. 
These were washed, had the seeds and the skin removed 
and was cut into pieces in an electric mixer 
(Thermomix Tm 21) by adding distilled water in 1:3 
proportion during the 60 sec and constant velocity of 
7000 rpm and then filtered. The pumpkin juice obtained 
was mixed with different concentrations of 
maltodextrin Equivalent in Dextrose (DE) 19-20 
(Shandong Boalingbao Biotechnology Co Ltd) in 9:1 
ratio (p/p) The mixture was sonicated by using an 
ultrasonicator (Model WU-04711-70, Cole-Parmer Inc., 
Vernon Hills, IL, USA) fitted with a 22-mm tip 
diameter for 10 min in an ice bath at 4°C. The resulting 
pumpkin juice mixture with maltodextrin was spray 
dried, as described ahead. 
 
Drying process and optimization: The spray drying 
process was carried out in an SD-06 Labplant drier 
(United Kingdom) at pilot plant scale basically 
composed of a feed system for the liquid, an atomizing 
device, an atomizing chamber and a powder collector 
system. The equipment operates with an airflow of 30 
m3/h, air evaporation rate of 1.5 L/h) with the counter 
flow.  

The response surface methodology obtained the 
optimal level of the independent variables considering a 
central compound design that generated 16 
combinations of experimental tests (Table 1) analyzed 
in the Statgraphics Centurion XVII software and with 
Analysis of Variance (ANOVA) with 95% significance 
level. The factors optimized were the Maltodextrin 
(MD) concentration, air intake Temperature (TE) and 
feed Flow rate (VF), which varied between 10 and 
25%, 130-150°C and 400-600 mL/h, respectively. The 
response variables optimized to obtain the best quality 
characteristics of the pumpkin powder were the 
efficiency of the process (%), humidity (%), 
hygroscopicity (%) and solubility (%). The regression 
analysis was solved with a second-order polynomial 
model, according to Eq. (1): 
 

Y ൌ b  ∑ b୧
୩
୧ୀଵ x୧  ∑ b୧୧

୩
୧ୀଵ X୧

ଶ  ∑ ∑ b୧୨X୧X୨
୩
୨ୀଶ

୩ିଵ
୧ୀଵ  

                               (1) 
 
where,  
Y : The response  
Xi and Xj : Variables (i and j range from 1 to k)  
β0 : The model intercept coefficient  
βj, βjj and βij : Interaction coefficients of linear, 

quadratic and the second-order terms, 
respectively  

k : The number of factors (kԜ=Ԝ3 in this 
study) and is the error (Maran et al., 
2013) 

 
Finally, the pumpkin powder samples obtained 

were weighed, placed in tightly sealed bags and stored 
in desiccators until their further analysis. The output in 
weight obtained after drying through atomizing was 

calculated from the determinations of the weight of the 
powder obtained, according to Eq. (2): 

 
Yield ሺ%ሻ ൌ ୰ୟ୫ୱ ୮୭୵ୢୣ୰ ୭ୠ୲ୟ୧୬ୣୢ

 ୰ୟ୫ୱ ୮୰୭ୢ୳ୡ୲ ୣୢ
100               (2) 

 
Humidity content: Water content was quantified via 
the AOAC 925.10 gravimetric method: A 2-g sample 
was dried in a hot-air furnace at 103°C during 1 h and 
loss of humidity was determined by weighing and 
comparison of the weight of the sample before and after 
drying (AOAC, 2005). 
 
Hygroscopicity: One gram of powder was placed in a 
Petri dish at 25°C and introduced into a chamber 
containing a saturated NaCl solution (75.4% relative 
humidity). After 1 week, the samples were weighed and 
results were expressed as grams of humidity/100 g of 
dry solids (g/100 g) (Cai and Corke, 2000; Ersus and 
Yurdagel, 2007). 
 
Solubility: One gram of powder was added to 100 mL 
of distilled water, which was agitated manually until 
solubilizing the entire sample and centrifuged at 3000 
rpm for 10 min. A representative sample of 25 mL of 
the supernatant was taken and transferred to a Petri 
dish. Finally, the sample was dried in a drying oven at 
105°C for 5 h. Solubility (%) is calculated by weight 
difference (Ochoa et al., 2011).  
 
Morphological characterization: This 
characterization was performed by using Scanning 
Electron Microscopy (SEM) in which the product is 
placed on the SEM slide using double-sided adhesive 
tape (Nisshin EM, Tokyo, Japan) and analyzed at an 
accelerating voltage of 20 kV after Pt-Pd sputtering by 
using an MSP-1S magnetron sputter coater 
(Soottitantawat et al., 2005). 
 

RESULTS AND DISCUSSION 
 

The yield process values, humidity content, 
hygroscopicity and solubility for each experimental trial 
are presented in Table 1 shows. The graphic 
representation of each response is presented in 
simultaneous function of both independent variables 
according to their importance for the response. The 
graphics for the process yield, humidity content, 
hygroscopicity and solubility in function of the 
variables (concentration of MD, TE and VF are shown 
in Fig. 1 to 4). 
 
Characterization of pumpkin powder:  
Process yield: The influence of the independent 
variables over the yield during the spray drying process 
is presented in Fig. 1 shows. The independent variables 
displayed a significant effect on the process yield. 
Increased TE increased the process yield, which may be 
attributed to higher heat and mass transfer efficiency at 
high temperatures.  



 
 

Adv. J. Food Sci. Technol., 16(SPL): 280-286, 2018 
 

282 

Table 1: Experimental design for spray drying runs with their corresponding response values 
Factors 
---------------------------------------------------------------------------------- 

Response variables 
-----------------------------------------------------------------------------------------

Rum  MD (%) TE (°C) VF (mL/h) Yield (%) Humidity (%) Hygroscopic (%) Solubility (%)
1 17.50 140.00 668 51.00 3.15 23.13 58.29
2 17.50 140.00 500 56.57 3.28 24.32 60.89
3 4.88 140.00 500 16.87 2.26 33.86 48.41
4 17.50 140.00 332 58.65 2.72 26.40 63.09
5 10.00 130.00 400 32.88 3.00 27.65 54.41
6 25.00 130.00 600 59.29 2.82 20.82 65.86
7 10.00 130.00 600 26.97 3.01 27.44 52.41
8 17.50 156.81 500 61.03 3.14 26.37 62.69
9 17.50 123.18 500 54.00 3.51 23.83 59.78
10 30.11 140.00 500 49.86 2.16 20.21 70.11
11 10.00 150.00 600 37.80 2.82 30.08 56.36
12 10.00 150.00 400 47.21 2.37 31.59 57.88
13 25.00 150.00 600 56.29 2.52 22.95 67.94
14 25.00 150.00 400 54.40 2.45 24.20 68.82
15 17.50 140.00 500 56.37 3.25 24.32 60.22
16 25.00 130.00 400 53.97 2.45 22.15 63.70
 

   
 

                                                           (a)                                                                                      (b) 
 

 
 

(c) 
 
Fig. 1: Effect of MD concentration, TE and VF on process yield 
 

Similar effects were observed by Ersus and 
Yurdagel (2007), Solval et al. (2012), Silva et al. 
(2013) and Muzaffar and Kumar (2015) and in drying 
through atomizing of carrot, cantaloupe, jaboticaba and 
tamarind juice, respectively. In addition, when using 
high VF, the powder’s humidity content diminished 
upon combining a high drying temperature at the input 
and low output temperatures, which increased the 
amount of water evaporating from the product (Tonon 
et al., 2008) the yield process, humidity content and 
solubility had significant differences in the 

concentration of MD added to the feed juice; an 
increased concentration of MD in feed juices to the 
drying process produced an increased yield of the 
powder obtained (Bhusari et al., 2014). Also, reduction 
of VF at lower concentrations of MD diminishes the 
yield obtained, given that higher amounts of the product 
remain adhered to the internal walls of the drying 
chamber (Largo-Avila et al., 2015). 
 
Humidity content: The effect of the process´s 
variables  on   the   humidity   content   of  the  pumpkin 
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powder is shown in Fig. 2a to 2c. The humidity content 
was significantly influenced by the concentration of 
MD, TE and VF. An increase in TE leads to a decrease 
in the humidity content of the powder samples that may 
be due to a higher temperature gradient between the 
atomized feed and the drying medium, causing rapid 
water elimination and obtaining powders with low 
humidity content. Similar results were obtained by 
Quek et al. (2007) in watermelon juice  and  by  Abadio 

et al. (2004) in pears. The VF revealed a positive effect 
on the powder's humidity content. Increased VF 
produces shorter contact times between the feed flow 
and the drying medium, which leads to less-efficient 
heat transfer and lesser water evaporation. Tonon et al. 
(2008) and Chegini and Ghobadian (2005) found 
similar results in drying through pulverization of acai 
pulp and orange juice, respectively.  

 

    
   (a)                                                                                    (b) 

 

 
(c) 

 
Fig. 2: Effect of MD, TE and VF rate on moisture content 
 

    
(a)                                                                                  (b) 

 
       (c) 

 
Fig. 3: Effect of MD, TE and VF on hygroscopicity 
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Fig. 5: Scanning Electron Microscopy (SEM) of the pumpkin powder 
 

CONCLUSION 
 

A spray drying process is a technological tool that 
provides added value to pumpkin, by increasing its 
useful life, ease of transport and commercialization. 
These characteristics have turned the pumpkin into an 
important raw material for the preparation of soups and 
typical dishes at industrial and domestic levels.  
Experimental optimization of the spray drying process 
allows the improvement quality attributes of the 
powdered products, providing economic value, 
improving the life quality and food and nutrition safety 
of the country’s farmers.  
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