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Abstract: To provide the reasonable basis for scientific management of water resources and certain directive 
significance for sustaining health of Gufu River and even maintaining the stability of water ecosystem of the Three-
Gorge Reservoir of Yangtze River, central China, multiple statistical methods including Cluster Analysis (CA), 
Discriminant Analysis (DA) and Principal Component Analysis (PCA) were performed to assess the spatial-
temporal variations and interpret water quality data. The data were obtained during one year (2010~2011) of 
monitoring of 13 parameters at 21 different sites (3003 observations), Hierarchical CA classified 11 months into 2 
periods (the first and second periods) and 21 sampling sites into 2 clusters, namely, respectively upper reaches with 
little anthropogenic interference (UR) and lower reaches running through the farming areas and towns that are 
subjected to some human interference (LR) of the sites, based on similarities in the water quality characteristics. 
Eight significant parameters (total phosphorus, total nitrogen, temperature, nitrate nitrogen, total organic carbon, 
total hardness, total alkalinity and silicon dioxide) were identified by DA, affording 100% correct assignations for 
temporal variation analysis, and five significant parameters (total phosphorus, total nitrogen, ammonia nitrogen, 
electrical conductivity and total organic carbon) were confirmed with 88% correct assignations for spatial variation 
analysis. PCA (varimax functionality) was applied to identify potential pollution sources based on the two clustered 
regions. Four Principal Components (PCs) with 91.19 and 80.57% total variances were obtained for the Upper 
Reaches (UR) and Lower Reaches (LR) regions, respectively. For the UR region, the rainfall runoff, soil erosion, 
scouring weathering of crustal materials and forest areas are the main sources of pollution. The pollution sources for 
the LR region are anthropogenic sources (domestic and agricultural runoff, hydropower exploitation and municipal 
waste). The study demonstrates the utility of multivariate statistical techniques for river water quality assessment, 
identification of pollution sources, and exploring spatial and temporal variations of water quality. 
 
Keywords: Multivariable statistical analysis, three gorges reservoir of Yangtze River, water quality assessment 
 

INTRODUCTION 
 

Water quality is an important indicator of river 
ecological system, which directly affects the water use 
and development in river basin (Lopes et al., 2004). As 
the influences of both anthropogenic factor (land use, 
industrial and agricultural activities, urban and 
exploitation of water resources) and natural processes 
(forest areas, soil erosion, precipitation, geological 
composition and weathering) (Carpenter et al., 1998), 
the river water quality is the result of the combination 
and interaction of multifactor and multilayer and water 
quality variation will exert a series of influence on 
aquatic ecosystem, which also largely reflects basic 
characteristics of drainage area (Bonacci and Roje-
Bonacci, 2003). In consideration of the spatial-temporal 
variations in the hydrochemistry of surface waters, 
regular monitoring measurements are necessary for 

representative and credible estimation of the water 
quality (Dixon and Chiswell, 1996; Singh et al., 2004). 
These generated produces large data sets with high 
complexity, which are often difficult to interpret and to 
obtain the meaningful information. Different 
multivariate statistical techniques, such as Cluster 
Analysis (CA), Discriminant Analysis (DA) and 
Principal Component Analysis (PCA), were broadly 
applied to interpretate a large and complex data matrix 
consisted of a good deal of physico-chemical 
parameters to better understand the water quality of 
studied systems (Vega et al., 1998; Helena et al., 2000; 
Alberto et al., 2001; Brodnjak-Vončina et al., 2002; 
Reghunath et al., 2002; Simeonov et al., 2003; 
Bengraine and Marhaba, 2003; Liu et al., 2003). 
Multivariate statistical techniques have been employed 
to characterize and assess surface water quality, and it 
is conducive to demonstrating spatial and temporal 
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variations caused by natural and anthropogenic factors 
linked  to  seasonality  (Vega et al., 1998; Reisenhofer 
et al., 1998; Helena et al., 2000; Singh et al., 2004, 
2005; Shrestha and Kazama, 2007; Qadir et al., 2008). 

The Three Gorges Dam is the greatest key water 
control project in China or even the world at present. 
However, water environment problems it caused had 
been the focus of the society concern in recent years 
(Wu et al., 2003). Branches of the Yangtze in water 
quality directly affected that of reservoir, additionally, 
the types of land use are various in the river basin of 
reservoir, mainly including forest land, arable land, 
industrial and mining and residential land. Land use 
activities which affect the health of the river by 
numerous point source and non-point sources. As a 
result, it is essential to prevent and control the rivers 
pollution and to provide reliable information on river 
water quality effective management and protection. 
Some reports have been published on the water quality 
of the Three Gorges Reservoir and its primary 
tributaries (Liu and Qu, 2002; Liu et al., 2010), but no 
water quality assessment of the secondary tributaries as 
Gufu River that were influenced by impounding and 
that research on is helpful to understand water 
environmental condition to conjecture the root of water 
environment problems. In this study, taking Gufu River 
as the research object, multivariate statistical methods 
are compositely used to evaluate spatial and temporal 
variation of water quality from 21 sampling sites at one 
year. The objectives of the research are to obtain 
information about: 

 
 The similarities or dissimilarities between the 

sampling periods and sampling sites 

 Significant water quality parameters responsible 
for temporal and spatial variations of river water 
quality and  

 The influence sources on the water quality 
parameters of Gufu River. The water quality of 
Gufu River decides the existence and development 
for residents in Gufu town, at the same time, also 
the stability of aquatic ecosystem in the Three 
Gorges Area to some extent. Therefore, research on 
the spatial and temporal variation rule of water 
quality are not only the bases for assessing water 
quality, but also can provide the scientific 
evidences for the efficient management of fresh  
water and the protection of aquatic ecosystem 

 
MATERIALS AND METHODS 

 
Study area and monitoring sites: The Gufu River 
basin is situated in the northern Xingshan County of 
Hubei Province and originated in the Luomadian of 
Shennongjia Forest District, is major tributaries of the 
Xiangxi River in the Three Gorges Reservoir, covering 
an area of 1189 km2. It lies within latitudes 31°15'48" 
to 31°39′36″ N and longitudes 110°44'16" to 
110°55′34″ E. The catchment is illustrated in Fig. 1. 
The average gradient of the river is 20‰; with a total 
length of about 68 km. Gufu River basin enjoys a 
subtropical continental monsoon climate, abundant 
precipitation. Annual total precipitation ranged from 
900 mm to 1200 mm, of which 82% fell from October 
to  April  (Song  et al., 2011). In this region, topography 
 

 
 

Fig. 1: Study area and distribution of the sampling points 
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fluctuation is larger, more complex topography, 
temperature and the vertical changes obviously. The 
special characteristic of climate is suited to grow many 
kinds of plants, with significant vegetation vertical 
distribution pattern (Jiang et al., 2002). Soil presents 
evolution pattern with increasing altitude. The types of 
land use are various, largely consisting of forest land, 
arable land, industrial and mining and residential land. 

In the present research, twenty one sampling points 
(Fig. 1), viz. Site-1~Site-21, from the source of Gufu 
River to the junction of it and Xiangxi River, were 
chosen on the river as the water quality monitoring 
network. The difference between altitudes for the 
neighboring sampling sites is 50~100 m. All sampling 
sites selected can cover a wide range of whole 
determinants at key sites, which reasonably represent 
hydrological characteristics of the river system. 
 
Sampling and analytical methods: The data sets for 
21 water quality sampling sites, consisting of 13 water 
quality parameters monitored monthly over one year 
(August 2010 to July 2011, no sampling at January 
2011). Because of the spatial-temporal variations in 
hydrochemistry of rivers, it is necessary to sample 
regularly for reliable estimates of the water quality. The 
water quality parameters selected included total 
phosphorus (TP, mg/L), Total Nitrogen (TN, mg/L), 
Nitrate Nitrogen (NO3

--N, mg/L), ammonium nitrogen 
(NH4

+-N, mg/L), chemical oxygen demand (COD, 
mg/L), dissolved oxygen (DO, mg/L), water 
temperature (Temp,C), Total Alkalinity (T-Alk, 
mg/L), Total Hardness (T-Hard, mmol/L), Silica (SiO2, 
mg/L), Electrical Conductivity (EC, μS/cm), Total 
Organic Carbon (TOC, mg/L) and Chlorophyll a (Chl 
a, μg/mL). The sampling, preservation, transportation 
as well as analysis of these water samplings followed 
standard methods (APHA, 1998; ASTM, 2001). Temp, 
DO and EC were measured with a portable multimetre 
in the field. All other parameters were determined in the 
laboratory according to standard protocols (ISO, 1986; 
APHA, 1998). The one year data set consisted of 3003 
observations of Gufu River water quality in the Three 
Gorges Reservoir. 
 
Data treatment: Analysis of Variance (ANOVA) was 
used to study the significant differences both spatial and 
temporal (p<0.05). Spatial and temporal correlation 
analysis of water quality parameters was tested using 
Pearson's coefficient with statistical significance set at 
p<0.05. Spatial and temporal and variations of the river 
water quality parameters were evaluated using 
Spearman non-parametric correlation coefficient 
(Spearman's R) via period and site–parameter 
correlation matrix (Alberto et al., 2001; Singh et al., 
2004; Shrestha and Kazama, 2007). 

In terms of CA and PCA, all log-transformed 
datasets were z-scale standardized (the mean and 

variance were configured to 0 and 1, separately) to 
eliminate the influences of difference measurement 
units and variance of variables and to turn into the data 
dimensionless (Lattin et al., 2003; Liu et al., 2003; 
Singh et al., 2004; Zhou et al., 2007). In addition, 
before performing PCA, the suitability of the data for 
PCA was examined by Kaiser-Meyer-Olkin (KMO) and 
Bartlett's sphericity tests (Shrestha and Kazama, 2007; 
Varol and Şen, 2009). 
 
Multivariate statistical methods: In the present study, 
CA, DA, and PCA were comprehensively coupled to 
perform multivariate analysis for the water quality data 
sets (Vega et al., 1998; Alberto et al., 2001; Simeonov 
et al., 2003; Panda et al., 2006; Shrestha and Kazama, 
2007; Varol and Şen, 2009). The CA and DA were 
carried out using STATISTICA 6.0 and PCA used 
SPSS 19.0. A summary of theories of CA, DA, and 
PCA is described as follows. 
 
Cluster Analysis (CA): CA is an unsupervised pattern 
recognition technique, divides a large group of cases 
into smaller groups or clusters of relatively similar 
cases that are dissimilar to other groups. Hierarchical 
Clustering Analysis (HCA) is the most common 
approach where clusters are formed sequentially, by 
starting with each case in a separate cluster and joins 
the clusters together step by step until only one cluster 
remains (Vega et al., 1998；Singh et al., 2004). The 
Euclidean distance usually gives the similarity between 
two samples, and a distance can be represented by the 
difference between transformed values of the samples 
(Otto, 1998). In this study, HCA was performed on the 
standardized experimental data set using Ward's 
method with Euclidean distances as a measure of 
similarity. Both temporal and spatial variations in water 
quality were determined from hierarchical CA on 
standardized data using Ward’s method with squared 
Euclidean distances (Otto, 1998; Vega et al., 1998; 
Helena et al., 2000). 
 
Discriminant Analysis (DA): Discriminant analysis 
automatically computes the classification functions. 
These are not to be confused with the discriminant 
functions. The classification functions can be used to 
determine to which group each case most likely 
belongs. There are as many classification functions as 
there are groups. Each function allows us to compute 
classification scores for each case for each group, by 
applying the equation: 
 

Si = ci + wi1*x1 + wi2*x2 + ... + wim*xm           (1) 
 
where, 
i  =  The respective group 
1, 2... m  =  The m variables 
ci  =  A constant for the i'th group 
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wij  = The  weight  for the  j'th  variable   in   the 
 computation of the classification score for  

  the i'th group 
xj  =  The observed value for the respective case 

 for the j'th variable. 
Si  =  The resultant classification score.  
 

DA is used to determine the variables, which 
discriminate between two or more naturally occurring 
groups. It operates on original data and the technique 
constructs a discriminant function for each group 
(Johnson and Wichern, 1992; Alberto et al., 2001; 
Singh et al., 2004), as in the equation below Eq. (2): 

 

f (Gi) = ki + 


n

ijji pw
1j

  (2) 

 
where, 
i  =  The number of groups (G)  
ki  =  The constant inherent to each group 
n  =  The  number  of parameters used to classify a set  
  of data into a given group 
wj  =  The  weight  coefficient,  assigned  by  DA  to   a  
  given selected parameter (pj) 
 

In this study, DA was performed on original data 
set using the standard, forward stepwise and backward 
stepwise modes to evaluate both the temporal and 
spatial variations in river water quality. The best 
discriminant functions for each mode were constructed 
considering the quality of the classification matrix and 
the number of parameters. The sites (spatial) and 
periods (temporal) were the grouping (dependent) 
variables as well as all the measured parameters built 
the independent variables. 

 
Principal Component Analysis (PCA): The PCA is 
one of the most powerful and common techniques used 
for reducing the dimensionality of the dimensions of 
multivariate problems. As a non-parametric method of 
classification, it makes no assumptions about the 
underlying statistical data distribution (Huang et al., 
2011). The PCA technique extracts the eigenvalues and 
eigenvectors from the covariance matrix of original 
variables. An eigenvector is a list of coefficients 
(loadings or weightings) by which we multiply the 
original correlated variables to obtain new uncorrelated 
(orthogonal) variables, called Principal Components 
(PCs), which are weighted linear combinations of the 
original variables. The PCA provides information on 
the most significant parameters due to spatial and 
temporal variations that describes the whole data set by 
excluding the less significant parameters with minimum 
loss of original information (Singh et al., 2004; Kannel 
et al., 2007). It is a powerful technique for pattern 
recognition that attempts to explain the variance of a 

large set of inter-correlated variables and transforming 
into a smaller set of independent (uncorrelated) 
variables (principal components). FA follows PCA, 
Factor analysis further reduces the contribution of less 
significant variables obtained from PCA. The new 
groups of variables, also known as Varifactors (VFs), 
were constructed by rotating the axis defined by PCA. a 
PC is a linear combination of observable water quality 
variables, whereas a VF can include unobservable, 
hypothetical, ‘‘latent’’ variables (Vega et al., 1998; 
Helena et al., 2000). PCA of the normalised variables 
(water-quality data set) was performed to extract 
significant PCs and to further reduce the contribution of 
variables with minor significance; these PCs were then 
subjected to varimax rotation (raw) to generate VFs. 
 

RESULTS AND DISCUSSION 
 

The essential statistics for all of the water quality 
variables measured during the sampling period of one 
year at twenty different sites on the river are 
summarized in Table 1. 

Most water quality parameters showed significant 
temporal variations (p<0.05) other than TP, T-Alk and 
Chl a. TP, TN, NO3

--N, NH4
+-N, DO, Temp and Chl a 

shown significant spatial variations (p<0.05), whereas 
remaining water quality parameters (TOC, SiO2, T-Alk, 
T-Hard, EC and COD) not significant spatial variations 
(p>0.05). 

The spatial and temporal changes of the river 
water-quality parameters (Table 2) were estimated via 
period–parameter and site-parameter correlations 
matrix. Apart from T-Alk and Chl a, all the analyzed 
parameters were found significantly correlated with 
period (p<0.05). Among these, Temp and COD 
displayed the highest correlation coefficient 
(Spearman's R = 0.87). Other parameters exhibiting 
correlation with period were T-Hard (R = -0.81), DO (R 
= -0.78), NO3

--N (R = 0.73), NH4
+-N (R = 0.73), SiO2 

(R = 0.71), TN (R = 0.69), TOC (R = -0.67), TP (R = 
0.36) and EC (R = -0.39). The site-parameter 
correlation matrix indicated that TP, TN, NO3

--N, 
NH4

+-N, Temp and DO showed correlation with site. 
Among these, Temp showed the highest correlation 
coefficient (R = 0.828), followed by DO (R = -0.71), TP 
(R = 0.61), TN (R = 0.65), NO3

--N (R = 0.60) and 
NH4

+-N (R = 0.51). The period and site-correlated 
parameters can be regarded as representing the major 
source of temporal and spatial variations in water 
quality of the river. In view of the source types in the 
river watershed, these correlations can be interpreted on 
the basis of temporal and spatial features in the 
studying region. 
 
Temporal similarity and period grouping: Temporal 
CA generated a dendrogram (Fig. 2), grouping one year 
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Table 1: Descriptive statistics of all water quality parameters on the river 
Parameter Mean SE SD Variance Min Max 
TP 0.0300 0.00 0.010 0.0100 0.0100 0.0500 
TN 1.1500 0.05 0.230 0.0600 0.6600 1.6300 
NO3-N 0.9900 0.05 0.220 0.0500 0.5500 1.4300 
NH4+-N 0.1300 0.01 0.030 0.0010 0.0600  0.2000 
COD 1.1300 0.03 0.160 0.0300 0.8300 1.4300 
DO 9.7400 0.15 0.670 0.4500 8.5900 10.890 
EC 432.10 4.98 22.81 520.45 397.00 484.00 
Temp 17.510 0.50 2.290 5.2500 12.700 21.800 
T-Hard 1.9900 0.03 0.150 0.0200 1.6500 2.3200 
T-Alk 179.11 2.19 10.06 101.13 159.33 198.88 
SiO2 2.1900 0.09 0.410 0.1700 1.4300 2.9400 
TOC 8.7300 0.72 3.280 10.740 0.6700 16.790 
Chl a 8.4700 0.76 3.490 12.200 0.2700 16.660 
 
Table 2: Pearson correlation matrix of the 13 physico-chemical parameters determined 
  TP TN NO3

--N NH4
+-N COD DO EC Temp T-Hard T-Alk SiO2 TOC Chl a 

TP  1.000             
TN -0.371  1.000            
NO3

--N -0.270  0.610**  1.000           
NH4

+-
N 

 0.317 -0.485* -0.160  1.000          

COD  0.138 -0.444* -0.166  0.284  1.000         
DO -0.361  0.308  0.638** -0.231 -0.304  1.000        
EC -0.294  0.131 -0.138 -0.086 -0.027 -0.384  1.00       
Temp  0.378    -0.614** -0.465*  0.753**  0.369 -0.581**  0.011  1.000      
T-Hard -0.263  0.224 -0.039 -0.487* -0.005 -0.215  0.714** -0.353   1.000     
T-Alk -0.370  0.388  0.090 -0.437* -0.038 -0.254  0.585** -0.238   0.785**  1.000    
SiO2  0.134  0.402 -0.058 -0.309 -0.083 -0.256  0.187 -0.244 0.512*  0.606**   1.000   
TOC  0.122 -0.071 -0.201  0.475*  0.002 -0.264  0.463*  0.224   0.324  0.268   0.321 1.000  
Chl a  0.446* -0.295 -0.193  0.504*  0.076 -0.163 -0.293  0.462*  -0.519* -0.540*  -0.489* 0.067 1.000 
Characters in bold text highlight significant (*p< 0.05 and **p<0.01) correlation values according to the test 
 

 
 

Fig. 2: Dendrogram of temporal cluster analysis based on Ward method 
 

into two statistically significant clusters at 
(Dlink/Dmax)×100<8. Cluster 1 (the first period) 
consisted of Match-October, roughly corresponding to 
the wet season (April-October) in Three Gorges 
Reservoir (Song et al., 2011). Cluster 2 included 
November to next February, approximately 
corresponding to the dry season (October to next 
Match). More than 80% of annual precipitation occurs 

during the period from April to September in Three 
Gorges Reservoir, so the grouping by CA generally 
corresponds to the wet/dry seasons. 
 
Spatial similarity and period grouping: Spatial CA 
produced a dendrogram as shown in Fig. 3, where all 
twenty-one sampling points on the river were divided 
into two large statistically significant clusters at 
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Fig. 3: Dendrogram of spatial cluster analysis based on Ward method 
 

(Dlink/Dmax)×100<12. Cluster 1 contained site 1-site 9, 
and cluster 2 contained site 10-site 21. In terms of 
sampling point’s distribution map shown in Fig. 1, the 
clustering procedure rendered two groups of sites in a 
very compellent way, because the sites in these groups 
have similar characteristic features and natural 
background source types. Cluster 1 corresponded to 
Upper Reaches (UR) of Gufu River with little 
anthropogenic interference. In cluster 2, eleven sites 
corresponded to Lower Reaches (LR) running through 
the farming areas and towns that are subjected to some 
human interference, so the water quality of these sites is 
relatively poorer than UR. 
 
Temporal and spatial correlation analysis of water 
quality parameters: The 21 sampling sites were 
combined to evaluate the correlation matrix using 
Pearson correlation coefficients of the 18 water quality 
parameters (Table 2). Because they are affected by 
spatial and temporal changes at the same time, the 
correlation coefficients should be interpreted with 
prudent. Nevertheless, in this study, some explicit 
hydrochemical relationships could be easily inferred. A 
significantly positive correlation was observed among 
T-Hard, T-Alk, EC (r = 0.585, 0.714, 0.785, 
respectively), which are responsible for water 
mineralization. SiO2 was positively correlated with T-
Hard and T-Alk, indicating that these variables are 
rooted in similar sources and also moving together. TN 
was positively related to NO3

--N, but anti-correlated 
with NH4

+-N and Temp, as the higher temperature 
could promote ammonia in the water into nitrite and 
nitrate. Chl a had a significant positive correlation with 
TP, NH4

+-N and Temp, which contributed to 
phytoplankton growth, however, a significant negative 
correlation with T-Hard, T-Alk and SiO2, which are 
responsible for Solubility nutrient in the water. The 
reason the chlorophyll increased was high levels of 
nitrogen and phosphorous from water body, in the 

meantime, the chlorophyll increasing could contribute 
to increase in nitrogen and phosphorous content; the 
chlorophyll increasing mean that algal biomass 
increases, which accompanied by the absorption of 
solubility nutrient, so the chlorophyll are negative 
correlation with Solubility nutrient. COD showed no 
significant correlation with any other variables. As 
expected, DO was negatively related to temperature (r 
= -0.581) as the solubility of oxygen in the water 
decreased as the temperature increased. 
 
Temporal variations in water quality: Temporal 
variation in water quality was further evaluated by DA, 
the clusters based on the raw data grouping of the Gufu 
River into two groups defined by CA. In this study, the 
purpose of DA was to test the significance of 
discriminant functions and determine the most 
significant variables associated with the differences 
between the clusters. As shown in Table 3, the values of 
Wilks’ lambda and the chi-square for each discriminant 
function were rather small (0.044, 0.047, and 0.085 for 
each mode, respectively) and quite high (101.523, 
110.103, 95.994, respectively), respectively, and the p-
level (0.00) was lower than 0.05, which manifested that 
the temporal DA was credible and valid. 

DA was carried out through standard, forward 
stepwise and backward stepwise methods. Discriminant 
Functions (DFs) and classification matrices (CMs) 
obtained from the above three methods of DA are 
shown in Table 4 and 5. The accuracy of temporal 
classification using standard, forward stepwise, and 
backward stepwise mode DFs were 100% (23 
discriminant variables), 100% (8 discriminant 
variables), and 100% (2 discriminant variables), 
respectively (Table 5). Using Forward stepwise mode, 
TN, Temp, TP, NO3

--N, TOC, T-Hard, T-Alk and SiO2 
were found to have a high temporal variation. This 
indicates that these parameters have high variation in 
terms of their temporal distribution. While, in the 
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Table 3: Wilks’ Lambda and Chi-Square test of DA of temporal variation of water quality 
Modes Test of fun. (s) Eigen-value R Wilks’ λ Chi-Sqr. p-level
Standard 1 21.651 0.978 0.044 101.523 0.000
Forward 1 20.294 0.976 0.047 110.103 0.000
Backward 1 10.721 0.956 0.085 95.994 0.000
 
Table 4: Classification functions Eq. (2) for discriminant analysis of temporal variations in water quality of Gufu River 
 Stand mode 

--------------------------------------- 
Forward stepwise mode
---------------------------------------

Backward stepwise mode
------------------------------------------

 Dry season 
coefficient* 

Wet season 
coefficient*

Dry season 
coefficient*

Wet season 
coefficient*

Dry season 
coefficient* 

Wet season 
coefficient*

TP  27.141 -81.684 -9.371 -116.324  
TN  80.028  129.052 9.548 55.161 18.596 34.273
NH4

+-N  90.374  52.088  
NO3

--N -63.786 -101.915 17.269 -19.480  
Temp  8.182  11.922 5.408 9.066 3.012 6.065
DO  28.965  29.697  
COD  14.902  20.469  
TOC  0.857 -1.114 2.904 1.082  
T-Hard -18.198 -35.403 21.400 5.495  
T-Alk  2.937  3.151 1.616 1.851  
SiO2 -1.929  3.016 -18.959 -15.724  
Chl a  6.511  7.412  
EC  0.519  0.590  
Constant -588.562 -676.979 -222.401 -270.226 -22.520 -84.848
*: Discriminant function coefficient for dry season and wet season corresponds to wij as defined in Eq. (1) 
 
Table 5: Classification matrix for discriminant analysis of temporal variations in water quality of Gufu River 

 
Monitoring seasons % Correct

Seasons assigned by DA 
--------------------------------------------------------

 Dry season Wet season
Standard DA mode Dry season 100 21 0
 Wet season 100 0 21
 Total 100 21 21
Forward stepwise mode Dry season 100 21 0
 Wet season 100 0 21
 Total 100 21 21
Backward stepwise mode Dry season 100 21 0
 Wet season 100 0 21
 Total 100 21 21

 
Table 6: Wilks’ Lambda and Chi-Square test of DA of spatial variation of water quality 
Modes Test of fun. (s) Eigen-value R Wilks’λ Chi-Sqr. p-level
Standard 1 23.497 0.979 0.041 39.982 0.000
Forward 1 17.406 0.972 0.054 42.234 0.000
Backward 1 2.726 0.855 0.268 23.677 0.000
    
backward stepwise mode, TN and Temp was also found 
to be the significant variables. Thus, the temporal DA 
results suggest that TP, TN, Temp, NO3

--N, TOC, T-
Hard, T-Alk and SiO2 were the most significant 
indicators for discriminating between the two periods, 
which means that these eight parameters explain most 
of the expected temporal variations in the water quality. 

Box and whisker plots of the discriminant 
parameters recognized by temporal DA (forward 
stepwise mode) were applied to assess different patterns 
related  to  temporal  trend  in water quality given in 
Fig. 4. The average values of Temp, TN, NO3

--N, TP 
and SiO2 were higher in the first period than in the first 
period, while T-Alk, T-Hard and TOC show the 
opposite trend. The first period belongs to the wet 
season in Three Gorges Reservoir, when rainy weather 
can lead to soil loss (Withers and Lord, 2002), storm 
runoff, agricultural runoff (Changnon and Demissie, 
1996; Mander  et  al., 1998), river bed degradation 
(Goolsby et al., 2000; Zhou et al., 2007) and so on 
occurs on many occasions, which makes the value of 

nutrients (nitrogen and phosphorous) relatively higher 
in the first period. Obviously, temperatures in wet 
season are higher, which benefit weathering leading to 
the increase in SiO2. Comparatively, there is less 
precipitation and a drier climate in the second period 
(dry season), which resulted in water of higher 
mineralization was the cause of the increase in T-Alk 
and T-Hard (Zhou et al., 2001). In the second period, 
lots of dead wood and leaves decay, this leaded to 
increase the organic content as TOC. 
 
Spatial variations in water quality: To further 
evaluate spatial variations in water quality between the 
different stream segments, spatial DA was performed 
with the initial data set comprising 13 parameters after 
dividing into two classes of UR and LR by CA. Classes 
were viewed as the dependent variables, while all the 
measured water quality parameters were viewed as the 
independent variables. The values of Wilks’lambda and 
the Chi-square (Table 6) for each discriminant function 
varied from 0.041 to 0.268 and from 23.677 to 42.234 
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Fig. 4: Temporal variation: (a) Temp; (b) TN; (c) T-Hard; (d) T-Alk; (e) SiO2; (f) TOC; (g) NO3-N; (h)TP 



 
 

Adv. J. Food Sci. Technol., 5(7): 908-920, 2013 
 

916 

Table 7: Classification functions (Eq. (2)) for discriminant analysis of spatial variations in water quality of Gufu River 
  Stand mode 

 ---------------------------------------------- 
 Forward stepwise mode 
 --------------------------------------------- 

Backward stepwise mode 
--------------------------------------------- 

  URa coefficient*  LRb coefficient*  UR coefficient*  LR coefficient*  UR coefficient*  LR coefficient* 
TP  7360.58  10407.16 -1117.39 -197.71  1399.512  2380.000 
TN  177.00  12.96  369.67  302.58  16.090 -21.810 
NO3

--N -604.60 -538.08 -368.85 -318.87   
NH4

+-N  3954.73  4935.65    280.465  547.516 
COD  400.60  438.24     
DO  241.44  236.16  150.38  138.83   
EC  2.75  3.26  1.41  1.52  1.193  1.497 
Temp -10.91 -14.99  11.99  13.53   
T-Hard  410.57  388.34  172.60  143.74   
T-Alk  9.73  11.16       
SiO2  176.27  175.66  84.75  78.44   
Chl a  68.56  69.13     
TOC -109.92 -130.19   -3.969 -10.829 
Constant -2761.35 -2876.00 -1482.74 -1361.93 -266.326 -308.116 
a: Upper reaches includes site 1-9; b: Lower reaches includes site 10-21; *: Discriminant function coefficient for different catchments 
corresponds to wij as defined in Eq. (1) 

 
Table 8: Classification matrix for discriminant analysis of spatial variations in water quality of the Gufu River 

 
Monitoring seasons % Correct 

Seasons assigned by DA 
---------------------------------------------------------

 UR LR 
Standard DA mode UR 100 9 0 
 LR 100 0 12 
 Total 100 9 6 
Forward stepwise mode UR 100 9 0 
 LR 100 0 12 
 Total 100 9 12 
Backward stepwise mode UR 88.89 9 0 
 LR 100 0 12 
 Total 95.24 9 12 
     

respectively, and p-level was below 0.05, indicating 
that the spatial DA was credible and effective. 

Discriminant Functions (DFs) and classification 
matrices were achieved via the standard, forward 
stepwise and backward stepwise modes of DA, are 
shown in Table 7 and 8, respectively. Both the standard 
and forward stepwise mode DFs produced the 
corresponding CMs with 100% correct assignations 
using 13 and 8 discriminant parameters, respectively 
(Table 8). The backward stepwise mode DA obtained 
CMs with close to 88% correct assignations using only 
5 discriminant parameters (Table 7 and 8). Thus, the 
spatial-DA results suggest that TN, TP, NH4

+-N, EC 
and TOC were the most significant water quality 
parameters for discriminating between the two stream 
segments (UR and LR), which means that these five 
parameters explain most of the expected spatial 
variation in water quality. 

Box and whisker plots of the discriminant 
parameters recognized by spatial DA (backward 
stepwise mode) were employed to assess different 
patterns with regard to spatial trend in water quality 
given in Fig. 5. The average values of TP, NH4

+-N, EC 
and TOC were higher in the LR than in the UR, while 
TN shown a reverse trend. In the UR, which relatively 
far from anthropogenic influences, TN and TP were 
influenced by natural factors, however, in the LR, with 
increased human disturbance, nitrogen and phosphorous 
were affected not only by natural factors but also by 

human activities. Presumably, too, nitrogen was more 
often influenced by natural factors, and yet, 
phosphorous more often impacted by various human 
activities. Along with an increasing the human 
activities, various ions (viz. EC) in the water increased. 
With extending downward from the UR to LR, forest 
litter layer of the soil surface gradually accumulate and 
increase, which led to an increase in the TOC content. 
 
Identification of potential pollution sources in 
sampling sites: PCA was employed on the data set to 
compare the compositional patterns between the 
examined water parameters and to identify the latent 
factors in different spatial variability. 

PCA was employed on the data set (13 parameters) 
to examine differences between UR and LR and 
identify the latent factors in different spatial variability. 
PCA of the two data sets derived five PCs for the URS 
and LRS sites with Eigenvalues>1, explaining 91.19 
and 80.57% of the total variance in water quality data 
sets, respectively. Appropriate VFs, variables loading 
and variance explained are displayed in Table 9. 

As shown in Table 5, for the dataset with regard to 
UR, among the four VFs, VF1, explaining 36.19% of 
the total variance, was correlated (loading> 0.7) with 
TN, NO3

--N, Temp, SiO2 and TOC, especially TN and 
NO3

--N. Thus, it represented for nitrogenous nutrient 
pollution, organic pollution and salt. VF2, explaining 
26.11% of the total variance, was correlated with EC, 
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Fig. 5: Spatial variation: (a) TP; (b) TN; (c) NH4-N; (d) EC ; (e) TOC 
 
Temp, T-Hard and T-Alk, which can be explained as a 
mineral component of the surface water of the river. 
VF3, explaining 17.30% of the total variance, was 
correlated with COD and Chl a. Thus, VF3 represented 
organic pollution and eutrophication.VF4, explaining 
11.58% of the total variance, was correlated with TP. 
Thus, it represented phosphorus nutrient pollution. 

For the dataset with regard to LR, among the four 
VFs, VF1, explaining 27.00% of the total variance, was 
correlated (loading> 0.7) with T-Hard, T-Alk, SiO2 and 
Chl a. Thus, it represented for mineral composition and 

eutrophication. VF2, explaining 23.47% of the total 
variance, was correlated with TN, NO3

--N and NH4
+-N, 

and thus represented nitrogenous nutrient pollution. 
VF3, explaining 16.29% of the total variance, was 
correlated with TP and COD. Thus, VF3 represented 
phosphorus and organic pollution. VF4, explaining 
13.79% of the total variance, was correlated with EC 
and Temp. Thus, it represented ion content of water. 

According to the results by PCA, we can show that 
most of the change in water quality was explained by 
nutrient group of pollutants (nitrogen and 
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Table 9: Loadings of experimental variables (13) on significant principal components (with Varimax rotation) for the data set Bold value 
indicates strong and moderate loadings 

 UR 
--------------------------------------------------------------------------- 

LR 
----------------------------------------------------------------------------

 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 
TP  0.070 -0.004 -0.227  0.903 -0.116  0.482 -0.835  0.023 
TN -0.964  0.017  0.029  0.186 -0.236  0.928 -0.155  0.080 
NO3

--N -0.967  0.125  0.048  0.114 -0.185  0.828  0.074  0.210 
NH4

+-N  0.669  0.002  0.559  0.369 -0.222  0.702  0.146  0.428 
COD  0.206 -0.029 -0.949  0.135  0.009  0.369  0.794  0.076 
DO -0.440 -0.688  0.194 -0.418 -0.625  0.294 -0.017  0.269 
EC  0.233  0.892  0.184 -0.059  0.196 -0.040  0.520 -0.740 
Temp  0.863  0.187 -0.014  0.315 -0.200  0.289  0.276  0.814 
T-Hard  0.000  0.958  0.125 -0.137  0.839 -0.108 -0.339 -0.028 
T-Alk -0.123  0.912 -0.087  0.143  0.728 -0.205  0.363 -0.337 
SiO2  0.857  0.261  0.144  0.337  0.873 -0.014  0.038 -0.183 
Chl a  0.274  0.084  0.846 -0.209 -0.806  0.114 -0.380 -0.033 
TOC  0.727  0.499  0.386  0.119  0.491  0.636 -0.037 -0.348 
Eigenvalue  4.71  3.391  2.25  1.51  3.51  3.05  2.12  1.79 
% Total 
variance 

 36.19  26.12  17.30  11.58  27.00  23.47  16.29  13.79 

Cumulative 
% variance 

 36.19 62.32  79.62  91.19  27.00  50.47  66.77  80.57 

Bold value indicates strong and moderate loadings 
 
phosphorous), the soluble salts (T-Hard, T-Alk and 
SiO2), physical parameters (Temp, DO), organic 
pollutants (TOC and COD) and eutrophication (Chl a), 
in which nitrogen was the leading factor of causing 
water quality change. UR and LR are influenced by 
nitrogen and phosphorus nutrients with point source or 
nonpoint source, which derive from natural processes 
(surface runoff, erosion, forest areas, scouring 
weathering of crustal materials, etc.) and anthropogenic 
influences (agricultural activities, resident sewage 
emission, etc.). The nitrogen which is a leading factor 
of the water quality change for the UR with little 
anthropogenic interference could attribute to 
‘geological’ nitrogen (Holloway et al., 1998). The T-
Hard and T-Alk might arise from dissolution of 
limestone and gypsum soils (Vega et al., 1998), which 
can be thus explained as a mineral component of the 
surface river water, and the characteristics of water 
quality distribution also accord with mountain river 
water quality characteristics (Day et al., 1998). EC in 
the UR was related mainly to T-Hard and T-Alk, 
whereas it would also due to anthropogenic influences, 
such as land use (Walker and Pan, 2006), hydropower 
exploitation (Zhang et al., 2010), and so on. SiO2 would 
relevant to the natural weathering (Xie et al., 1999). 
Physical parameters such as Temp and DO just are 
related to the river. DO was negatively correlated with 
Temp and ranged from 8.6 to 10.9 mg/L. The result 
showed that the river was in saturation and there was 
strong self-purification capacity. TOC and COD 
represented organic pollution, which probably related to 
plenty of dead wood and leaves which stemed from 
higher vegetation overcast in the river basin discharging 
into water (Ye et al., 2006). 

 
CONCLUSION 

 
In this study, different multivariable statistical 

methods were successfully employed to assess spatial-

temporal variations in surface river water quality of 
Gufu River in the Three Gorge Reservoir. Hierarchical 
CA classified 11 months into 2 periods (the first and 
second periods) and 21 sampling sites into 2 clusters 
(UR and LR), based on similarities in the water quality 
characteristics. DA obtained better results both spatial 
and temporal with good discriminatory ability via 
significance tests. For the temporal variation analysis, 
the DA determined eight significant parameters (TP, 
TN, Temp, NO3

+-N, TOC, T-Hard, T-Alk and SiO2) to 
discriminate between the periods with 100% correct 
assignations. The DA also only used five significant 
parameters (TP, TN, NH4

--N, EC and TOC) to 
discriminate between the regions with 88% correct 
assignations for spatial variation analysis. Whereas, 
PCA did not generate appreciable data reduction as it 
points to 11 parameters (85% of raw 13) required to 
explain the 91% of the data variability of UR region 
sites and 11 parameters (85% of raw 13) required to 
explain 80% of the data variability of LR region sites. 
For UR region, four VFs obtained from PCs indicate 
that the eleven parameters responsible for water-quality 
variations are mainly relevant for nutrient group of 
pollutants, soluble salts and organic pollution load, 
which mainly derived from natural process as the 
rainfall runoff, soil erosion, scouring weathering of 
crustal materials and forest areas. For LR region, four 
VFs obtained from PCs indicate that the eleven 
parameters responsible for water-quality variations are 
mainly relevant for nutrient group of pollutants and 
soluble salts, which largely resulted from anthropogenic 
impact as domestic and agricultural runoff, hydropower 
exploitation and municipal waste. For a better Gufu 
River management, examine of surface water quality 
variations due to anthropogenic interference of LR 
region was compared to that of the UR region. 
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