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Abstract: The study presents an adaptive neural network output feedback tracking control scheme for a class of 

complicated agricultural mechanical systems. The scheme includes a dynamic gain observer to estimate the un-

measurable states of the system. The main advantages of the authors scheme are that by introducing non-separation 

principle design neural network controller and the observer gain are simultaneously tuned according to output 

tracking error, the semi-globally ultimately bounded of output tracking error and all the states in the closed-loop 

system can be achieved by Lyapunov approach. With the universal approximation property of NN and the 

simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system 

construct simple. Finally the simulation results are presented to demonstrate the efficiency of the control scheme. 
 
Keywords: Agricultural mechanical systems, higher relative degree, neural network, non-separation principle, 

output feedback 

 
INTRODUCTION 

 
After it was proven that Neural Network (NN) and 

Fuzzy Logic Systems (FLSs) are universal function 

approximators, the adaptive control algorithms of 

unknown or ill-defined nonlinear systems that employ 

NN and FLSs have been developed (Chen et al., 2009; 

Yu et al., 2011; Liu et al., 2010; Hu et al., 2010a; Liu 

and Wan, 2002; Chen and Jiao, 2010), especially when 

modern mechanical or electrical systems that are to be 

controlled become more and more complicated and, 

thus, their mathematical model is often hard to be 

established. To remove the assumption that the states of 

the system are available for measurement in the 

aforementioned control approaches, in the references 

(Leu et al., 2005; Hu et al., 2010b; Tong and Qu, 2005; 

Wang et al., 2010; Ge and Zhang, 2003), the problem 

of adaptive fuzzy or neural network output feedback 

control for uncertain SISO, MIMO nonlinear system via 

state observers has been investigated and the stability of 

the resulting closed-loop adaptive control system has 

been analyzed. For state observers, likewise high gain 

observers, it is often very hard to choose a proper 

observer gain. In some schemes (Ge and Zhang, 2003), 

a  low-pass  filter  is  designed  to  make  the  estimation 

error dynamics satisfy the Strictly Positive-Real (SPR) 
condition so that they can use Meyer-Kalmon-
Yakubovitz (MKY) lemma, which makes the stability 
analysis of the closed-loop system and real 
implementation very complicated. And the parameters 
of filter are hard to be chosen. Above researches are all 
based on the concept of separation principle which can 
realize the original state feedback with the 
corresponding observer states and thus the 
corresponding output feedback controller can be 
constructed. But it is hard to choose the observer and 
controller design parameters. Such problems have been 
solved by using some non-separation principle designs 
by Qian and Liu (2002), Bullinger and Allgower (2005) 
and Du and Ge (2010), but they need to satisfy 
Lipschitz assumptions. 

To simplify the system construct and relax the 
constraints, in this paper an adaptive neural network 
output feedback tracking control scheme for a class of 
affine nonlinear higher relative degree systems is 
presented. Combined with non-separation principle, the 
gains of the observer and the neural controller are 
simultaneously tuned according to output tracking 
error. The proposed scheme has few adapting 
parameters to be tuned and Lipschiz assumption, SPR 
condition are not required. 
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PROBLEM FORMULATION 
 

The following notations and definitions will be 
used extensively throughout this study. Let R be the real 
number and R

i
 represent the real i-vectors. |k|

 
denotes 

the usual Euclidean norm of a vector k. In case where k 
is a scalar, |k|

 
denotes its absolute value. 

Consider the following SISO affine nonlinear 
uncertain system: 
 

( ) ( )

( )

x f x g x u

y h x

= +


=              

&
                              (1) 

 

where, [ ]1, , n

nx x x R= ∈L are the states of the 

system and y ∈ R, u ∈ R are system output and input, 
respectively. Only y

 
is available for control design. f 

(x), g (x) are unknown smooth nonlinear function. h (x) 
∈ R

 
is smooth scalar function. The system has higher 

relative degree r<n. According to differential geometry 
theory of nonlinear system, there is a nonlinear 
coordinate transformation T (x) = (ξ

T
, η

T
)

T
  which can 

change the original system (1) into the equivalent input-
output description, namely: 
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where, 1 ( )i

i fL h xξ −= , ( , ) ( )r

fL h xα ξ η =  and

1( , ) ( ) 0r

g fL L h xβ ξ η −= ≠ . For all ( ), xx u R∈Ω ×  the 

function β (ξ, η) is nonzero and bounded. This implies 
that β (ξ, η) is strictly either positive or negative. 
Without loss of generality, we assume β (ξ, η) >0 and 
there exist constants βmax≥βmin>0  such that βmin≤ |β (•)| 

≤βmax on the compact set { }, cη ξ ∈ Ω ; the smooth 

nonlinear functions q (ξ, η), α (ξ, η) and β (ξ, η) are 
unknown and satisfy q (0, 0) = 0. The subsystem

( , )qη ξ η=   & is unmodelled zero dynamics and the states 

(ξ2,…, ξr) and η
 
are not measurable. 

The control objectives of this study is to utilize an 
adaptive neural network to determine a tracking 
controller for a class of affine nonlinear systems (1) 
with strong relative degree such that the system output 
y
 
follows a desired trajectory yd 

while all signals that 
are involved in the resulting closed-loop system are 
bounded.  

 

Assumption 1: Zero dynamics 
��

��
= � (0, �)

 
is 

exponentially stable and the function q (ξ, η) is 

Lipschitz in ξ. By Lyapunov converse theorem, there is 

a Lyapunov function V0 (η) which satisfies: 

2 2

1 0 2( )a V aη η η≤ ≤                 (3) 
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η
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                 (5) 

 
where, ai, i = 1, 2, 3, 4 are positive constant: 
 

( , ) (0, )q q Lξξ η η ξ− ≤                  (6) 

 
where, Lξ is Lipschitz constant. 
 
STATE OBSERVER AND ADAPTIVE OUTPUT 

FEEDBACK CONTROLLER DESIGH 
 

Define the vector
� = [
�   
�� … 
�

(���)
]�  ∈ ��, 

state vector � = [��  �� … ��
 ]�  ∈ �� . The reference 

signal yd 
and its time derivative are assumed to be 

smooth and bounded. We also define the tracking error 
as e = y - yd and corresponding error vector as 

( 1)

1 , ,
T

r r

d d r de y y y Rξ ξ ξ − = − = − − ∈ L . 

The error equation is as follows: 
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where, 
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Consider the following observer that estimates the 

state vector e in (7): 
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Define: 
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Equation (8) can be rewritten as: 
 

1

1

ˆ ˆ

ˆ ˆ

k

T

e A e e

e C e

ρλ= +

=

& %
                 (9) 

 

where, �� = [���, … , ���]�, ��� =  �� − ���, �� =

[��/  , . . . , ��/ �]�. 
Choose the vectors K = [k1, …., kr]

T
, λ = [λ1, …., 

λr]
T 

to make matrices Ak, Aλ 
be Hurwitz. Thus, there 

exist square matrices PK = P
T

K>0, Pλ = P
T

λ>0, 

0, 0T T

K KQ Q Q Qλ λ= > = >  satisfying: 

 
T

k K K k KA P P A Q+ = − ,
TA P P A Qλ λ λ λ λ+ = −           (10) 

 
The gain of the observer is time-variable (0<ρ≤1) 

and is updated by: 
  

( )2

1 0 1 0

1 0

  
(0) 0

0                  

e e
e

e

α κ
ρ α α−

 − Ξ > Ξ
= = ≥

≤ Ξ
&，    (11) 

 

where, design parameters
0

,κ Ξ are positive. 

Considering the Eq. (7), the ideal control law 
*u  is 

chosen as: 
 

( )* ( )1
( , )

( , )

r T

du y K eα ξ η
β ξ η

= − + −              (12) 

 
Then, the following equation holds: 
 

( )

( )

( ) ( ) * *

* ( ) ( )

*

( , ) ( , )

1
                                    *

                                    

r r

d d

r r T

d d

T
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u u y y K e

K e u u

α ξ η β ξ η α β β β

α β β β α
β

β
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                                           (13) 
 
Then system (7) can be rewritten into: 
 

             (14) 
 

Define the observing error as �� = � − ��. Subtracting 

(14) from (8), we have: 
 

            (15) 

Considering the following change of coordinates

1 2
1 21 2 0

,  , , r
r rr r

e e e
z z z e

ρ ρ ρ− −
= = = =

% % %
%% % %L , (15) can be written as: 

 

  (16) 

 

where, 
 

[ ]1 , ,
T

rz z z=% % %L , 

1

0

0

0

rρ
ρ

ρ

− 
 

=  
 
 

O   

 

and e zρ=% % . 

Considering (9), (10), (14) and (16), we have: 
 

   (17) 
 

The control design presented in this study employs 

a Radial Basis Function (RBF) neural network to 

approximate the unknown function over a compact 

region of the state space because of their good 

capabilities in function approximation. The following 

RBF NN is used to approximate the any continuous 

function ( ) : nh z R R→ over a compact region nRΩ ⊂
with arbitrary accuracy by choosing enough nodes: 

 
*( ) ( ) ( ),Th z W z z zφ ε= + ∀ ∈Ω               (18) 

 

where, W
*

 is a vector of adjustable weights, " ∈

 Ω$%% ⊂ �'

 
is the input vector and the kernel vector is 

( (") =  (� ("), . . . ()  (")]�with active function 

(*  (") = exp[
�./�01.2

31
2 ] , 4 = 1, 2, … , 7. l is the hidden 

layer nodes number and ( )zε is the approximation 

error. We define the ideal weight vector 

 which is an artificial 

quantity required for analytical purposes. Since the 

functions are approximated over a compact set, we have 

the following relationship: 

 
*

max max, , ZNNW zω ε ε≤ ≤ ∀ ∈ Ω              (19) 

 

where, 
max max

, 0ω ε > . According to Equation (15), we 

have: 

  
* *

max max( ) ( ) ( ) ( ) ( ) ( )T TW z z W z z z zφ ε φ ε φ ω ε ςψ+ ≤ + ≤ + ≤  

                             (20) 
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where, ( )2

1
( ) ( ) 1

l

m
z zψ φ

=
= +∑ , 

max maxmax{ , }ς ω ε= . 

 

Lemma 1 (Du and Ge, 2010):  If  Gaussian  radial  

basis function is used, then for 

[ ] [ ]1 1, , , , ,
T T

n nX x x Y y y= =L L , there exists a 

positive constant ( )2

1
2 1

l

p ii
L n v

=
= ∑ on R n such that: 

  

( ) ( ) pX Y L X Yφ φ− ≤ −                            (21) 

 

So the unknown function u
*

 in (17) can be 

approximated by RBF NNs: 

 
* ( ) * ( )( , , ) ( , , )r T r

d du e z y W e z yφ ε= +              (22) 

 

where, W
*
 is the ideal NN weight vector and ε is the 

approximating error. With Lemma 1, 1ρ ≤  and 

e z zρ= ≤% % % , we can obtain: 

  

 

 
                                                        (23) 

 

where, ( )( ) 2 ( )

1
ˆ ˆ( , , , ) ( , , , ) 1

lr r

d d d dm
e z y y e z y yψ φ

=
= +∑ , 

*

max max
max{ , }ς ω ε= . 

*ς is an unknown parameter and 

we define ς̂  as the estimation of unknown scalar

*max

min

β
ς

β
, Define: 

 
*max

min

ˆ
β

ς ς ς
β

= −%                             (24) 

 

The adaptive and control laws are chosen as 

follows: 

 
2

22 ˆˆ
ˆ ˆ ˆˆ

ˆ ˆ

TT
KT K

K T T

K K

e P Be P B
u e P B

e P B e P B

ψψγ
ς ς τ ρς

ψ σ ψ σρ
= − − = − +

+ +
&，  

                             (25) 

 

where, design parameters γ, τ and σ are positive. 

 

STABILITY ANALYSIS 

 

In this section, stability analysis for the proposed 

output feedback tracking control scheme will be 

presented. To this end, we firstly give the relationship 

according to (3), (4) and (5): 
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 We are now ready to establish the main theorem of 

this study. 

 

Theorem 1: Consider the closed-loop system 

consisting of the plant (1) under the assumption 1, the 

adaptive controller and adaptation law (25), with an 

appropriate initial value 
*(0)α α≥  for 

*α satisfying the 

condition (31), all closed-loop signals are semi-globally 

uniformly bounded over the following compact sets, 

namely: 
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2 2 2

max max

6

3

2 pL
q

a

β ω
= ,

1 max min 4( )c qβ β ψ= + ，
2 max 4 max p

c q Lβ ω= , 
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min min2
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c c

β γ
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2 2 2 2

4 max max

4

3

2 pq L
c

a

β ω
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Let the Lyapunov candidate function be defined as: 
 

                                                                                                             (27) 

 

With (25), ˆe e e= + %  and 1ρ ≤ , then e z zρ≤ ≤% % % , the derivative of (27) with respect to time is given by: 
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According to (25), the control law can be parameterized as ˆˆT
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Using (26), (29) and (30), (28) becomes: 
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In (31), there exists a constant 
*α for the following relationships hold: 

 
*

*
2

2 3 6 3 42 2 2 2 0 1 0q e q q c c e
α

α + − − − > − ≥，                              (32) 

 

From (11), the variable α is no-decreasing. Considering two aspects:  

 

• If α (0) is chosen large enough 

• α Depends on the output tracking error e1, when e1 increases, which makes (32) hold and thus e1 is decreased 

until it equals to error tolerance 0Ξ . So there exist (0)α  and a finite time t
*

 such that: 
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Then, (31) can be written as: 
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Multiplying both sides of (34) by 
'q te−
 and integrating over [0, ]t , we obtain: 
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Repeatedly, we can obtain the rest conclusions. With the boundedness of vectors e  and e% , it is easy to prove 

the boundedness of the vector ê . This completes the proof. 

 

SIMULATION STUDY 

 

To verify the performance of the proposed adaptive neural network output feedback tracking controller, 

simulations will be taken for a class of affine nonlinear higher relative degree system described as follows: 

 

( )( ) ( ) ( )( )
1 2

2

2 1 1 2 2 1 1 1

1 2

2 1 2 1

1

2 1 2 sin

2 0.2

u

y

ξ ξ

ξ ξ η ξ η η ξ η

η η

η η η ξ

ξ

=

= − − − − − + +

=

= − − +

=

&

&

&

&

                                          (37) 
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Fig. 1: Plots of output tracking of system 

 

 
 

Fig. 2: Plots of state tracking of system 

 

where, ( )1 1( , ) 2 sin 0β ξ η ξ η= + > . The system has an 

unmodelled zero dynamic. Only output is available for 

feedback design. The control objective is to force the 

system output y to follow the desired trajectory that is 

employed as 2sin 2cos(0.5 )
d

y t t= − + . The tracking 

errors 
1 1 2 2

,
d d

e y e yξ ξ= − = − & . 

The system initial conditions are

1 2
(0) 2, (0) 2x x= = − , 

1 2
ˆ ˆ(0) 1, (0) 2e e= = . The 

simulation parameters are selected as follows: 

  

4 10 0
,

10 0 10
K

K Q
   

= =   
   

,
0 1 10.6 1

,
2 10 1 0.3

K KA P
   

= =   − −   
,

140

4
λ

 
=  

 
,

8 0

0 8
Qλ

 
=  

 
,

140 1 0.357 1
,

4 0 1 140.143
A Pλ λ

−   
= =   −   

 

 
Choose other design parameters as follows: 
 

0
0.04Ξ = , 1.6κ = , (0) 3.8α = , 0.2σ = , 0.02γ = ,

0.1τ =  

 

The simulation results using MATLAB is shown in 

Fig. 1 to 4, where the neural network initial structure 

and parameters is adjusted on-line by using GGP-RBF 

algorithm. 

Figure 1 and 2 shows the results of output and state 

tracking. It can be seen that the actual trajectory 

converges rapidly to the desired one. The  control  input 

 
 

Fig. 3: Plots of control input 

 

 
 

Fig. 4: Node number of hidden layer 

 

signal is shown in Fig. 3. The growing and pruning 

automatically of hidden layer nodes is shown in Fig. 4. 

These simulation results demonstrate the tracking 

capability of the proposed controlled and its 

effectiveness for control tracking of affine nonlinear 

higher relative degree systems. 

 

CONCLUSION 

 

A new adaptive neural network output feedback 

tracking control scheme is presented for a class of 

affine nonlinear higher relative degree systems. The 

scheme does not require Lipschitz assumption and SPR 

condition which makes the system construct simple. By 

using the non-separation principle and the universal 

approximation property of NN few adapting parameters 

are required and the observer gains and controller 

parameters can be simultaneously tuned according to 

the tracking error. Output tracking error and all states in 

the closed-loop system are guaranteed to be semi-

globally ultimately bounded by Lyapunov approach. 

Simulation results are provided to demonstrate the 

effectiveness of the proposed control scheme. 
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