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Abstract: In this study a new Bat Algorithm (BA) based on multi-swarm technique called the Multi-Swarm Bat 
Algorithm (MSBA) is proposed to address the problem of premature convergence phenomenon. The problem 
happens when search process converges to non-optimal solution due to the loss of diversity during the evolution 
process. MSBA was designed with improved ability in exploring new solutions, which was essential in reducing 
premature convergence. The exploration ability was improved by having a number of sub-swarms watching over the 
best local optima. In MSBA, when the quality of best local optima does not improve after a pre-defined number of 
iterations, the population is split equally into several smaller sub-swarms, with one of them remains close to the 
current best local optima for further exploitation while the other sub-swarms continue to explore for new local 
optima. The proposed algorithm has been applied in feature selection problem and the results were compared against 
eight algorithms, which are Ant Colony Optimization (ACO), Genetic Algorithm (GA), Tabu Search (TS), Scatter 
Search (SS), Great Deluge Algorithm (GDA) and stander BA. The results showed that the MSBA is much more 
effective that it is able to find new best solutions at times when the rest of other algorithms are not able to. 
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INTRODUCTION 

 
In bio-inspired algorithms, there must exists a 

balance between exploitation (intensification) and 

exploration (diversification); two of which very 

important components that affect the overall efficiency 

and performance of the particular learning algorithm. In 

intensification the promising regions are explored more 

thoroughly in the hope to find better solutions. 

Diversification non-explored regions must be visited to 

be sure that all regions of the search space are evenly 

explored and that the search is not confined to only a 

reduced number of regions. Too much intensification 

and too little diversification could cause the system to 

be trapped in local optima, which could lead to loss of 

the global optimum. Only a good combination of these 

two major components will usually ensure that the 

global optimality is reachable. This is essentially the 

problem of premature convergence suffered by many 

bio-inspired algorithms (Dorigo and Blum, 2005; 

Mallipeddi et al., 2011; Choubey and Kharat, 2013), 

whereby learning stops during convergence of non-

optimal solutions due to the loss of diversity in the 

process of evolution. 

Literature has shown that BA, as a bio-inspired 
algorithm, also it may suffers from the premature 
convergence phenomenon (Lin et al., 2012; Xie et al., 
2013; Wang et al., 2013a, b). In order to avoid this, 
Wang et al. (2013b) enhanced the bats’ flight skills as 
well as flight modes by dynamically regulating the 
flight speed and direction while assuming the position 
of the prey continuously change with time. Meanwhile, 
Lin et al. (2012) proposed a synergistic approach based 
on chaotic sequence and chaotic Levy flight in the 
meta-heuristic search in efficiently generating new 
solutions. The study suggested chaotic sequence is able 
to generate several neighborhoods of suboptimal 
solutions and maintain the variability in the solutions. 
This, in turn, could prevent premature convergence. 
 

LITERATURE REVIEW 
 

Premature convergence has also been treated using 
Multi-Swarm Approach (MSA) (Brits et al., 2007; 
Zhao et al., 2008). Multi-swarm approach is based on 
the use of multiple sub-swarms instead of one standard 
swarm. The general approach in multi-swarm 
optimization is that each sub-swarm focuses on a 
specific region while a specific diversification method 
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decides where and when to start the sub-swarms. The 
idea of MSA start with the implementation of parallel 
Genetic Algorithm called island model, whereby each 
population is located into a processor (island) with their 
own independent evolution process. In order to promote 
cooperation between islands, a new operator, called 
migration is created. According to some predefined 
strategy, individuals migrate from one island to another. 
The island model has been applied in various 
applications such as multiprocessor scheduling problem 
(Corcoran and Wainwright, 1994), surveillance tests 
policy optimization (Pereira and Lapa, 2003), airline 
crew scheduling (Levine, 1996), multi-track music 
segmentation (Rafael et al., 2013) and many others. 
Overall, implementation of the island model in previous 
studies have reported better search performance as 
compared to single population model. 

Like-wise, multi-swarm approaches have shown 
similar outstanding results as in Muhlenbein (1991), 
Niu et al. (2005), Brits et al. (2007) and Marinakis and 
Marinaki (2010). The research began with application 
in PSO called the multi-swarm, which was originally 
presented by Parsopoulos and Vrahatis (2002) and later 
developed by Blackwell and Branke (2004). The main 
idea is to extend the single population in PSO into 
charged particle swarm optimization methods by 
constructing interacting multi-swarms. Niu et al. (2005) 
introduced a master-slave model as inspired by the 
phenomenon of symbiosis in natural ecosystem. In a 
master-slave model, the population consists of one 
master swarm and several slave swarms. The slave 
swarms execute PSO or its variants independently to 
maintain the diversity of particles, while the master 
swarm enhances its particles based on its own 
knowledge and also the knowledge of the particles in 
the slave swarms.  

Several variations of multi-swarm PSO have been 
employed across different domains such as dynamic 
optimization (Blackwell and Branke, 2004; Liang and 
Suganthan, 2006; Liu et al., 2012) and benchmarked 
function (Niu et al., 2005; Liang and Suganthan, 2006). 
The reported results for these studies demonstrate 
superior performance of multi-swarm PSO as compared 
to the single-swarm PSO. Nonetheless, in the literature, 
multi-swarm algorithm has only been applied to the 
problem of feature selection by Liu et al. (2011), which 
is the Multi-Swarm PSO. To date, multi-Swarm 
strategy has not been considered for Bat Algorithm yet, 
hence motivating this research to develop a multi-
swarm BA that is capable avoiding premature 
convergence phenomenon in addition to improving 
exploration and exploitation ability of BA. 
 

METHODOLOGY 
 
Proposed multi-swarm bat algorithm: Swarm 
algorithms are founded based on the theory that similar 
animals aggregate together, generally cruising in the 
same direction. For instance, termites swarm to build 
colonies, birds swarm to migrate and bees swarm to 

collect food. Multi-swarm algorithms are based on the 
use of multiple sub-swarms instead of one swarm. In 
general, each sub-swarm will focus on specific region, 
therefore each swarm will learn from its experience in 
searching for the global optima. Swarm algorithms are 
suitable for problems where multiple local optima exist. 
In the BA, the searching space for promising areas is 
identified by the loudness and the pulse rate in bats. So 
in some cases the bats may mislead, because they start 
to slow down the speed assuming they are reaching 
global optimal solution area while in reality they are 
not. Therefore the bats may get stuck in local optima, 
this behavior of bats will result early convergence to 
non-optimal solution.  

For applying single swarm or stander BA in feature 

selection problem it can be referred to Taha and Tang 

(2013) and Taha et al. (2013). In this study, 

implementation of the MSBA starts with single swarm 

that consists of a group of M bats looking for global 

optima. When the best solution cannot be improved 

after certain number of iterations, all the bats will be re-

initialized randomly except the one with the best 

solution which will remain for further exploitation. The 

bats will then be grouped into S new and independent 

sub-swarms.  

All swarms are autonomous as they have their own 

independent evolution process, such as the global best 

and the average loudness. The new swarms will 

discover different region of the search space looking for 

better solutions. If any of the sub-swarm finds a new 

solution better than the previous global best solutions 

from other swarms, the best swarm will call bats from 

other swarms. In this case all bats will migrate to the 

swarm with global best solution, each with their own 

loudness, pulse rates and velocity. Traveling from the 

old positions to the new potential positions facilitate 

exploration of new areas in the search space because 

the bats communicate with the new global best. 

Furthermore, crossing in the features between the new 

global best and the old global best provide unique 

solutions that single population cannot provide. If any 

bat from the immigrants’ bats finds a new solution 

better than the previous potential swarm solution, the 

new solution can be considered as the new potential 

swarm and the process continues as illustrated in Fig. 1 

with the union and successive movements.  
After the new global optima have been recognized, 

all bats will facilitate more exploitation in the proposed 
new swarm. In the case where even the multi-swarm 
search fails to improve the global best solution after T 
iterations, then all the bats will be re-initialized except 
the one with global best solution. The search will then 
continue in form of single-swarm. The switching 
between single-swarm and multi-swarm search will 
continue until the stopping criteria are met.  

The destroying and reinitialize sub-swarms serves 
to enhance the diversification or exploration in the 
search space and avoid premature convergence, while 
calls  sub-swarms  to  grouping  in  single-swarm search  
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Fig. 1: Multi-swarm movement 

 
aims to enhance the local search or exploitation. The 
stopping criteria that have been set in this study are as 
follows; whether the algorithm reached the maximum 
number of iteration or single feature with maximum 
number of fitness function, the pseudo code is provided 
in below. 
 

Pseudo code of multi-swarm bat algorithm: 
Initialize parameters 
Initialized M bats  
While stop condition not met  

While the fitness of global best solution is 
improving before N iteration and stop condition is 
not met  

Perform single swarm search with M bats  
End-while 
If stop condition is not met 

Keep only the bat with global best solution and 
initialize the remaining M-1 bats 

 Divide the M bats into S swarm 
While the fitness of global best solution is not 

improving before T iteration and stop 
condition is not met 
Perform single swarm search for each of 
the S swarms 

End-While 

If new better solution found 

 Set global best solution to the new better 

solution 
Else 

Keep only the bat with global best solution and 
initialize the remaining M-1 bats 

End-if 

End-if 

End-while 
 

EXPERIMENTAL RESULTS 

 

In order to demonstrate the effectiveness algorithm, 

a series  of   experiments  were  carried  out  on   twelve  

Table 1: Characteristics of datasets 

Datasets No. of features No. of samples 

Lung 56 32 

WQ 38 521 
Derm2 34 358 

Derm 34 366 

LED 24 2000 
Mushroom 22 8124 

Credit 20 1000 

Vote 16 300 
Heart 13 294 

Exactly2 13 1000 

Exactly 13 1000 
M-of-N 13 1000 

 

benchmarked datasets from various domains have been  

selected. Each dataset has different number of features 

and samples as shown in Table 1. The parameters is set 

as follow S equal to 4, M equal to 50, N equal to 30, T 

equal to 60. The experimental results were compared 

against seven well-known optimization algorithms as 

listed below: 

 

• Genetic algorithm for Rough Set Attribute 

Reduction (GenRSAR) (Jensen and Shen, 2003) 

• Ant colony optimization for Rough Set Attribute 

Reduction (AntRSAR) (Jensen and Shen, 2003) 

• Simulated annealing for Rough Set Attribute 

Reduction (SimRSAR) (Jensen and Shen, 2004) 

• Tabu Search for Attribute Reduction (TSAR) 

(Hedar et al., 2008) 

• Scatter Search for Attribute Reduction (SSAR) 

(Jue et al., 2009) 

• Scatter Search for Attribute Reduction (SSAR) 

(Jue et al., 2009) 

• Great Deluge algorithm for Rough Set Attribute 

Reduction (GD-RSAR) (Abdullah and Jaddi, 2010) 

• Bat Algorithm for Attribute Reduction (BAAR) 

(Taha and Tang, 2013) 

 

In this study MSBA is based on rough set theory 

similar to the above mentioned algorithms, the 

experimental setups were also the same as provided in 

the literature. For each dataset, MSBA was run 20 times 

with different initial solutions and terminated after 250 

iterations. All algorithms have the same number of runs 

for each dataset, except the results of SimRSAR using 

Heart, Vote and Drem2 datasets, for which the number 

of runs are 30, 30 and 10, respectively. Comparison on 

the number of features is summarized in Table 2 and 3, 

note that between the brackets is indicates the total 

number of runs that this cardinality was achieved. The 

number of features without brackets denotes that the 

method could obtain this number of features for all 

runs.  

Next the results were then statistically tested using 

two tests; Kolmogorov-Smirnov and Levene test 

(Lilliefors, 1967). However, the Kolmogorov-Smirnov 

and   Levene   test   did   not  meet  the  assumptions  of 
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Table 2: Number of features comparison (a) 

Datasets MSBA BAAR SimRSAR AntRSAR GenRSAR 

M-of-N 4(2) 5(7) 6(11) 6 6 6 6(6) 7(12) 

Exactly 4(1) 5(2) 6(17)  6 6 6 6(10) 7(10) 

Exactly2 7(2) 8(2) 9(5) 10(11) 10 10 10 10(9) 11(11) 

Heart 4(3) 5(17) 5 6(29) 7(1) 6(18) 7(2) 6(18) 7(2) 

Vote 5(1) 6(1) 7(6) 8(12) 8 8(15) 9(15) 8 8(2) 9(18) 

Credit 7(8) 8(12) 8 8(18) 9(1) 11(1) 8(12) 9(4) 10(4) 10(6) 11(14) 

Mushroom 3(1)  4(19) 4 4 4 5(1) 6(5) 7(14) 

LED 4(2) 5(18) 5 5 5(12) 6(4) 7(3) 6(1) 7(3) 8(16) 

Derm 5(1) 6(17) 7(2) 6(13) 7(7) 6(12) 7(8) 6(17) 7(3) 10(6) 11(14) 
Derm2 7(1) 8(12) 9(7) 9(12) 10(8) 8(3) 9(7) 8(3) 9(17) 10(4) 11(16) 

WQ 11(1) 12(5) 13(14) 12(2) 13(11) 14(7) 13(16) 14(4) 12(2) 13(7) 14(11) 16 

Lung 4(11) 5(9) 4(10) 5(6) 6(4) 4(7) 5(12) 6(1) 4 6(8) 7(12) 

 
Table 3: Number of features comparison (b) 

Datasets MSBA TSAR GD-RSAR SSAR 

M-of-N 4(2) 5(7) 6(11) 6 6(10) 7(10) 6 

Exactly 4(1) 5(2) 6(17)  6 6(7) 7(10) 8(3) 6 

Exactly2 7(2) 8(2) 9(5) 10(11) 10 10(14) 11(6) 10 

Heart 4(3) 5(17) 6 9(4) 10(16) 6 

Vote 5(1) 6(1) 7(6) 8(12) 8 9(17) 10(3) 8 

Credit 7(8) 8(12) 8(13) 9(5) 10(2) 11(11) 12(9) 8(9) 9(8) 10(3) 

Mushroom 3(1)  4(19) 4(17) 5(3) 4(8) 5(9) 6(3) 4(12) 5(8) 

LED 5(18) 4(2) 5 8(14) 9(6) 5 

Derm 5(1) 6(17) 7(2) 6(14) 7(6) 12(14) 13(6) 6 

Derm2 7(1) 8(12) 9(7) 8(2) 9(14) 10(4) 11(14) 12(6) 8(2) 9(18) 

WQ 11(1) 12(5) 13(14) 12(1) 13(13) 14(6) 15(14) 16(6) 13(4) 14(16) 

Lung 4(11) 5(9) 4(6) 5(13) 6(1) 4(5) 5(2) 6(13) 4 

 

Table 4: Wilcoxon test results 

 BAAR-MSBA SimRSAR-MSBA AntRSAR-MSBA GenRSAR-MSBA 

M-of-N 0.005 (MSBA) 0.005 (MSBA) 0.005 (MSBA) 0.000 (MSBA) 

Exactly 0.102 0.102 0.102 0.000 (MSBA) 

Exactly2 0.007 (MSBA) 0.007 (MSBA) 0.007 (MSBA) 0.000 (MSBA) 

Heart 0.083 0.000 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Vote 0.008 (MSBA) 0.001 (MSBA) 0.008 (MSBA) 0.000 (MSBA) 

Credit 0.005 (MSBA) 0.002 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Mushroom 0.317 0.317 0.317 0.000 (MSBA) 

LED 0.157 0.157 0.010 (MSBA) 0.000 (MSBA) 

Derm 0.014 (MSBA) 0.008 (MSBA) 0.157 0.000 (MSBA) 

Derm2 0.000 (MSBA) - 0.001 (MSBA) 0.000 (MSBA) 

WQ 0.001 (MSBA) 0.002 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Lung 0.025 (MSBA) 0.025 (ANT) 0.003 (MSBA) 0.000 (MSBA) 

 

Table 5: Wilcoxon test results 

 TSAR-MSBA GD-RSAR-MSBA SSAR-MSBA 

M-of-N 0.005 (MSBA) 0.000 (MSBA) 0.005 (MSBA) 

Exactly 0.102 0.000 (MSBA) 0.102 

Exactly2 0.007 (MSBA) 0.000 (MSBA) 0.007 (MSBA) 

Heart 0.000 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Vote 0.008 (MSBA) 0.000 (MSBA) 0.008 (MSBA) 

Credit 0.000 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Mushroom 0.102 0.001 (MSBA) 0.007 (MSBA) 

LED 0.157 0.000 (MSBA) 0.157 

Derm 0.025 (MSBA) 0.000 (MSBA) 0.564 

Derm2 0.000 (MSBA) 0.000 (MSBA) 0.001 (MSBA) 

WQ 0.001 (MSBA) 0.000 (MSBA) 0.000 (MSBA) 

Lung 0.014 (MSBA) 0.000 (MSBA) 0.003 (ANT) 

 

normality distribution and equality of variance, which 

then led us to the use of Wilcoxon test. Table 4 and 5 

presents Wilcoxon test results for the proposed MSBA 

algorithm against other feature selection algorithms, 

between the brackets refer to the algorithm that 

performs better than another algorithm. The 

classification accuracy for the resulted features 

achieved by MSBA have been evaluated using three 

deferent classifier which are JRip, PART and J48. Then 

the results compared with BAAR, SimRSAR and 

GenRSAR, the average classification accuracies in 

percentage are presented in Table 6 to 8. 
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Table 6: Average classification accuracy using JRip classifier 

Datasets MSBA BAAR SimRSAR GenRSAR 

M-of-N 94.24 98.90 98.90 98.90 

Exactly 93.02 99.30 99.30 99.31 
Exactly2 74.22 73.80 73.80 73.80 

Heart 66.96 66.32 78.74 78.57 

Vote 94.93 95.00 95.00 94.66 
Credit 69.35 69.78 69.95 70.57 

Mushroom 99.97 99.97 99.98 99.98 

LED 100.00 100.00 100.00 100.00 
Derm 65.70 70.78 68.46 80.54 

Derm2 79.63 82.09 82.28 80.49 

WQ 66.18 65.73 66.02 64.81 
Lung 70.62 75.30 71.55 68.74 

 

Table 7: Average classification accuracy using PART classifier 

Datasets MSBA BAAR SimRSAR GenRSAR 

M-of-N 95.20 100.00 100.00 100.00 

Exactly 94.02 100.00 100.00 99.98 

Exactly2 76.20 78.30 78.30 78.30 
Heart 65.60 65.30 75.81 75.06 

Vote 94.13 94.00 94.00 94.19 

Credit 70.21 70.60 71.35 71.88 
Mushroom 100.00 100.00 100.00 100.00 

LED 100.00 100.00 100.00 100.00 

Derm 61.60 63.60 61.90 79.94 
Derm2 82.29 84.20 84.68 83.85 

WQ 62.97 64.27 62.33 62.24 

Lung 71.25 70.62 75.93 65.93 

 

Table 8: Average classification accuracy using J48 classifier 

Datasets MSBA BAAR SimRSAR GenRSAR 

M-of-N 95.12 100.00 100.00 100.00 
Exactly 93.72 100.00 100.00 99.92 

Exactly2 74.18 73.10 73.10 73.10 

Heart 62.98 62.92 77.68 77.21 
Vote 94.06 94.00 94.00 93.93 

Credit 70.41 70.68 70.83 71.08 

Mushroom 100.00 100.00 100.00 100.00 
LED 100.00 100.00 100.00 100.00 

Derm 64.17 70.97 66.03 80.37 

Derm2 83.10 84.96 84.74 84.29 
WQ 64.04 65.02 62.83 64.35 

Lung 70.31 72.49 75.93 67.80 

 

DISCUSSION 

 
The experimental results showed that MSBA has a 

superior performance in eleven out of twelve datasets. 
This implies that the proposed algorithm is able to find 
the new best known solutions that the other algorithms 
fail to search. In the Exactly2 dataset, MSBA found 
new three best known solutions with slightly higher 
classification accuracy in two classifiers, which are 
JRip and J48. MSBA is also significantly better than the 
single swarm BA as well as other algorithms as shown 
in Table 4 and 5. In the Mushroom dataset, even though 
the classification accuracy achieved by MSBA is the 
same with other algorithms, but MSBA has the 
advantage of new found solutions and it is statistically 
better than GenRSAR and GD-RSAR.  

In the Led dataset, MSBA achieved 100% 

classification accuracy aside from obtaining a new best 

known solution. In the Credit dataset, it can be noted 

that MSBA obtained the new best known solution with 

seven features in eight runs out of twenty runs. It can 

also be noted that MSBA is significantly better than all 

other algorithms. For the Credit dataset, all algorithms 

provided almost the same classification accuracy in all 

three classifiers. In the Vote dataset, MSBA found three 

new best known solutions with the same classification 

accuracy as other classifiers. In particular, the results 

for MSBA are significantly better than BAAR and other 

traditional methods.  

The Derm2 and WQ dataset are considered as the 

most challenging datasets as no algorithm is able to 

obtain  best  solution  for  all  runs  as  can  be  seen  in  

Table 2 and 3. Nonetheless, MSBA still performed 

significantly better than all others algorithm with the 

same accuracy in the WQ dataset. Meanwhile, in the 

Exactly and Derm datasets, although the classification 

accuracy achieved by MSBA decreased moderately as 

compared to other method, but MSBA was still able to 

find new best solutions. For the Heart dataset, the 

results provided by MSBA with regards to the 

classification accuracy were the same with those 

delivered by BAAR but lower than other methods. 

Finally in the Lung dataset, MSBA could not find any 

new best known and the classification accuracy solution 

was also lower than average of the other algorithm 

results. Nevertheless, the proposed MSBA is still 

significantly better than BAAR and the other four 

others method (GenRSAR, AntRSAR, TSAR and GD-

RSAR).  

As the conclusion, the proposed MSBA is 

significantly better than other single-swarm algorithms 

in eight out of twelve datasets. It also outperformed 

other algorithms in most of the datasets. MSBA is able 

obtain the lowest number of features across the most 

data sets and the results also showed that MSBA is able 

to find new best solutions while maintaining a 

competitive classification accuracy. Nevertheless, in 

few cases, the accuracy results obtained by MSBA are 

less satisfactory than those excellent ones reported by 

rest three methods which are BAAR, SimRSAR and 

GenRSAR. This is attributed to the use of rough set 

theory, whereby MSBA has less sensitivity to the 

changes in the prediction accuracy. The superior 

performance of MSBA and the ability to find new 

solution is influenced by the multi-swarm movement in 

discovering new areas within the search space, beyond 

the reach of other classical algorithms. 

 

CONCLUSION 

 

MSBA is proposed to address the problem of 

premature convergence phenomenon that usually 

occurs in BA. The problem happens when search 

process converges to non-optimal solution due to the 

loss of diversity during the evolution process. MSBA 

was designed with improved ability in exploring new 

solutions, which was essential in reducing premature 

convergence. In MSBA, when the quality of  best  local 
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optima does not improve after a pre-defined number of 

iterations, the population is split equally into several 

smaller sub-swarms, with one of them remains close to 

the current best local optima for further exploitation 

while the other sub-swarms continue to explore for new 

local optima. A series of experiments were carried out 

and the results of MSBA were compared against the 

eight conventional methods. MSBA achieved very good 

results, whereby it produced new best solutions in 11 

out of 12 cases. Furthermore, the statistical analysis 

showed that the proposed method in most data sets 

performed significantly better than the other methods in 

terms of selecting smaller subset of features with 

providing competitive prediction accuracy. For future 

work is highly recommended to extensive study of the 

applications of proposed Multi-Swarm BA model in 

other complex practical optimization problems is 

necessary, to fully investigate the properties, evaluate 

and optimize MSBA performance. 
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