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Abstract: This study investigated the popularity of stochastic volatility in recent literature. Stochastic volatility 
models are common in the financial markets and decision making process. Efficient managing scenarios to these 
problems will reduce risks in future valuations in many financial assets. A volatility model that is stochastic can 
better capture the time-varying elements mostly absent in its counterpart, a standard volatility model. In this study, a 
content analysis is conducted to extract information on mostly used enhancement-stochastic models available in 
literature. The finding indicates that stochastic volatility with long memory pioneers in SciVerse search engine, 
whereas stochastic volatility with jump is the highest numbers in publication, in particular the Google Scholar. 
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INTRODUCTION 
 

Stochastic volatility models are commonly used in 
the field of mathematical finance and gaining 
popularity in financial econometrics and management 
field in particular asset and risk management. These 
models are those in which the variance of a stochastic 
process is itself randomly distributed. Models with 
stochastic volatility in its element can specifically 
capture the time-varying volatility, which has been 
presence in many financial markets and decision 
making (Shephard and Andersen, 2009). The 
understanding of stochastic volatility is important in 
various field of study, in particular option pricing, asset 
pricing, efficient portfolio allocation and accurate risk 
assessment and management. They are able to provide 
more accurate insight of what is actually happening in 
the financial data. A good management of such 
financial problems will reduce unnecessary risks that 
normally pose threats to most of traders and investors-
both the bulls and the bears. 

Models assimilated by good volatility component 
are able to mimic closely to the actual phenomena and 
produce better generalization of forecasting and 
estimating of variables, in particulars particulates in 
many financial models. As standard volatility model 
has been in the literature from early introduction of 
option pricing by Black and Scholes (1973), the early 
version of stochastic volatility was first being study by 
Taylor (1982). Early work on stochastic volatility 
models mostly focus on the inconsistence in implied 
volatility values (Taylor, 1982, 1986). However, these 

works are limited in the literature due to the difficulties 
of deriving its mathematical formulation.  

Works by Stein and Stein (1991) and Heston 
(1993) has improved the Black Scholes model’s 
assumptions, in which innovations to volatility need not 
be perfectly correlated with innovations to the price of 
the underlying asset; and use the stochastic volatility 
model in their works. Such models can give details for 
some of the empirical features of the joint time-series 
behavior of option prices and stock, which cannot be 
captured by more limited models. 

There are two main streams when discuss the 
stochastic volatility. One is based on the discrete time 
setting and the other is in a continuous-time setting. The 
discrete-time setting is dominated by variant of 
Autoregressive Conditionally Heteroskedastic (ARCH) 
model, while the representation of stochastic 
differential equations represents the continuous-time. 
Though the theoretical part of the ARCH type models 
has drawbacks and open to criticism, they have been 
favored over continuous time setting for their ease of 
estimation. We present some preliminaries of important 
definitions in stochastic volatility. 
 
Definition 1: A stochastic process �(�) is a Brownian 
Motion (BM) if it satisfies the following properties: 
 
• � (�) is a continuous function of time with 

� (0)  =  0. 
• � (�) has independent increments, i.e., for all 

� > 	, � > � �� � > �, � (�)  −  �(	) and 
�(�) − �(�)  are independent. 
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• �(�) has normal increments, i.e., for all � >
	, � (�)  − �(	) ~ � (0, � − 	). 

 
Definition 2: A stochastic process St is said to follow a 
Geometric Brownian Motion (GBM) if it satisfies the 
following Stochastic Differential Equation (SDE): 
 

��� = ����� + ������                             (1) 
 

where,  
�� : A BM 
� : The percentage drift 
� : The percentage volatility are constants 

 
In a stochastic volatility model, the constant 

volatility � is replaced by a function �� that models the 
variance of �� as follows: 
 

��� = ����� + ��� ������                                 (2) 
 
��� = ��,��� + ��,�����                             (3) 

 
where, αs,t and βs,t are some functions of 

tυ  and ���  is 

another standard Gaussian that is correlated with ��� 
with constant correlation factor  . 

Stochastic Volatility (SV) model is typically 
analyzed by using advanced models, which became 
helpful and accurate as computer technology emerges; 
in which shows significant increase in number of 
literatures that work on this problem in recent years. 
We can use the stochastic volatility model to evaluate 
derivatives securities such as option. We can say that 
the stochastic volatility model is introduced to account 
for inconsistence in implied values. 

Hence, SV models are one ways to give treatment 
to the drawback of the Black Scholes model. This 
original model assumes that the volatility is constant 
over time but this assumption was rejected as showed in 
previous empirical studies (Stein, 1989; Aït‐Sahalia and 
Lo, 1998). This handicap exposed by the Black Scholes 
model motivated large number of authors to propose 
many alternative models, for example, generalized 
Lévy processes, fractional Brownian motion, the 
diffusions with jumps and stochastic volatility models. 

Johnson (1979) was the first researcher who used 
continuous time SV models in option pricing by using 
time varying volatility models. For more details, reader 
are encourage to see Johnson and Shanno (1987), 
Wiggins (1985) and Hull and White (1987). The 
common target of all these authors was to find a new 
enhanced formula to generalize the Black and Scholes 
(1973) method to option pricing models with the 
volatility clustering. 
 

DISCRETE AND CONTINUOUS  
STOCHASTIC VOLATILITY 

 
In this section, we present some widely used basic 

models in discrete and continuous stochastic volatility 

models as follows. In discrete setting, generalized 
autoregressive conditionally heteroskedasticity 
(GARCH (1, 1)) model introduced by Bollerslev (1986) 
as follows. 
 
Definition 3: A process "t is called a GARCH (p, q) 
process if its first two conditional moments exist and 
satisfy: 
 

# ("�$"% , � < �) = 0 � ∈ (                                 (4) 
 

There exist constant ), �* , + = 1, 2, … … . , / and 
�0 , 1 = 1,2, … … . , 2 such that: 

 
�� = �3 ("�$"% , � < �) = ) + 4 �*"�5* 

�6
*7� +

4 �0��50
�8

07� , where � ∈ (  
 

Box and Jenkins (1970) has also introduced the 
Autoregressive Integrated Moving Average (ARIMA) 
model. 
 
Definition 4: Given a time series of data 9�  where � is 
an integer index and the 9� are real numbers, then an 
:;<=: (2, �, /) model is given by: 
 

>1 − 4 ?*@*8
*7� A(1 − 2)B  9� = (1 + 4 C*@*6

*7� )D�  
(5) 

 
where,  
@ : The lag operator  
? : The parameters of the autoregressive part of the 

model  
C* : The parameters of the moving average part  
D� : Error terms  

 
The continuous setting of stochastic volatility 

follows the Ornstein-Uhlenbeck (OU) model defined as 
below. 
 

Definition 5: The Orstein Uhlenbeck (OU) model is the 
solution to the linear SDE: 
 

�9� = C(� − 9�)�� + ���(�)                           (6) 
 
where, �(�) is a Brownian Motion (BM), C ∈ ℝ and µ 

and σ>0 are parameters.  
A simple discrete SV was considered by Hamilton 

(1989), whereas Hull and White (1987) presented the 
continuous time diffusion model. These models assume 
that the underlying volatility is constant over the life of 
the derivatives and unmoved by the changes in the price 
level of the underlying security. Hence they cannot 
explain long-observed elements of the implied volatility 
surface such as volatility smile and skew, which 
showed that the implied volatility have a tendency to 
differ with respect to strike price and expiry. By 
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assuming that the volatility of underlying price is 
stochastic process rather than constant, it will be 
possible to model derivatives more accurately. 
However, in the empirical literature, the appearance of 
the basic SV is mostly in discrete approximation of the 
continuous time SV models, such as work by Hull and 
White (1987). 

Many authors (Harvey, 1998; Breidt et al., 1998) 
considered the discrete time models as a fractionally 
integrated process provided that the log of the volatility 
had been modeled. With respect to continuous time, 
Comte and Renault (1998) worked on modeling the log 
of volatility as fractionally integrated BM. The 
important paper by Comte et al. (2012) introduced the 
second root model driven by fractionally integrated 
BM, while Barndorff‐Nielsen and Shephard (2001) 
presented the infinite superposition of non-negative 
Ornstein Uhlenbeck processes. 
 

SOME EXTENSION WORKS ON  

STOCHASTIC VOLATILITY 

 

Realizing the importance of Stochastic Volatility 
(SV) in financial models, we made extensive 
investigation on SV in various search engines available 
in digital prints. We are interested to see in which 
enhancement does works related to SV has been 
undertaken. This investigation will help us to narrow 
the potential works to be conducted in relation to SV. 

To obtain the current state and evolution on works 
concerning SV model in both settings i.e., the discrete 
and continuous, we conducted a systematic literature 
investigation in some selected academic databases for 
the past ten years. Google scholar, EBSCO host and 
SciVerse were used as search engines, by using some 
keywords as follow: 
 
• "Stochastic volatility" and "jumps" and 

"continuous" 
• "Stochastic volatility" and "jumps" and "discrete" 
• "Stochastic volatility" and "moment-based 

inference" and "continuous" 
• "Stochastic volatility" and "moment-based 

inference" and "discrete" 
• "Stochastic volatility" and "simulation-based 

inference" and "continuous" 
• "Stochastic volatility" and "simulation-based 

inference" and "discrete" 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1: Number of stochastic volatility literature from 2002 to 

2012 
 
• "Long memory stochastic volatility" and 

"continuous" 
• "Long memory stochastic volatility" and "discrete" 

 
We illustrate the findings in Table 1 and Fig. 1. 

From the table and figure, there is significant difference 
between stochastic volatility that has been published 
with jumps with the rest of other keywords. This is 
prominent in the Google Scholar database. The long 
memory comes second in frequency. However, for 
Sciverse database, works on long memory are more 
pronounce.  

Works on simulation-based inference also interest 
researchers, making it being in the third place in 
frequency, while moment-based inference are very rare 
in literature. 

In the following subsections, we introduce some 
selected extension works on stochastic volatility model 
under study. 
 
JUMPS: A number of authors, in empirical studies, 
have improved standard SV models by adding jumps to 
the volatility dynamics or price process. Bates (1996) 
proved necessity to adding jumps to the SV, at least 
when volatility is Markovian. 

Barndorff‐Nielsen and Shephard (2001, 2002) 
designed the volatility model based from the pure jump 

Table 1: Number of stochastic volatility literature from 2002 to 2012 
 Continuous setting 

-------------------------------------------------------- 
Discrete setting 
------------------------------------------------------ 

Total  Google scholar EBSCO  Sciverse Google scholar EBSCO Sciverse 
Long memory 225 1 443 193 3 405 1270 
Jumps 5510 31 1 4820 10 1 10373 
Moment-based inference 8 0 12 7 0 11 38 
Simulation-based inference 108 0 221 105 0 221 655 
Total 5851 32 677 5125 13 638 12336 
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processes. With jumps in their model, � represents the 
square root of the solution of the stochastic differential 
equation:  
 

dσH
� = −λσH

�dt + dzLH, λ > 0                               (7) 
 
where, M represent a subordinator with independent 
non-negative and stationary increments. 
 
Long Memory Stochastic Volatility (LMSV): Long 
memory also called long-range dependence, meaning 
that the various time observations are strongly 
correlated. For example, slowly decaying 
autocorrelation function. Via the long memory 
stochastic volatility models, there were attempts to 
describe a slowly decaying autocorrelations and 
recently there are increase numbers of attempts 
targeting this model, in discrete or continuous time 
setting. 

Harvey (1998) and Breidt et al. (1998) introduced 
the first Long Memory Stochastic Volatility (LMSV). 
They proposed a discrete time model: 
 

9� = � (N�) D�                                            (8)  
 
where, (9�) are the returns of stock, (D�) are i.i.d 
presenting shocks and the logarithm of (N�) is described 
by Autoregressive Fractionally Integrated Moving 
Average (ARFIMA). This model described the long-
range behavior of the log-squared returns of market 
indexes successfully. With respect to continuous time, 
Comte and Renault (1998) presented a model of the 
price process such that the dynamics of the volatility 
are designed by the FOU process. In a work by Comte 

et al. (2003), the square root model driven by 
fractionally integrated Brownian motion is introduced. 
Comte et al. (2012) contributed via offering an 
extension of Heston option pricing model to continuous 
time SV such that the volatility process is defined by a 
square root long memory process. 

Chronopoulou and Viens (2012) studied the 
accuracy of three different types of LMSV. One was a 
continuous time stochastic volatility when the stock 
price is geometric Brownian motion such that the 
volatility introduced as a FOU process. The others were 
discrete time models: a discretization of the previous 
continuous model and a discrete model when the 
returns are a zero mean independent identically 
distribution sequence and the volatility is a fractional 
ARIMA process. By working with simulated data and 
call option data of S and P500 index, they found that 
the continuous time model is more accurate than the 
other discrete models. However the main disadvantage 
of continuous time model is computationally expensive 
when applied on real data. 

Wang and Zhang (2014) studied ordinary least 
square estimators of variogram parameters in long 

memory stochastic volatility. They got two estimators 
of diffusion and drift parameters through finding the 
minimum of the distance function between the data 
peridogram and variogram.  
 

Multivariate models: Volatility clustering into 
standard factor models which presented by Diebold and 
Nerlove (1989) are used in more than one areas of asset 
pricing. In continuous time the same author introduced 
the following models: 
 

=� = 4 O P(0)��Q(0)� + R�
S
*7�                               (9)  

 
where, G is a correlated multivariate BM and the 
factors F(1), F(2), . . . , F(J) are independent univariate 
SV models. In the literature some related papers to this 
issue  are  form  King et al. (1994) and Fiorentini et al. 
(2004). They claim that the factor loading vectors are 
constant over time. Harvey et al. (1994) study on 
multivariate discrete time: 
 

=� = V O �����
W

X                                                (10) 
 
where, C is a fixed matrix of constants such that the 
main diagonal all units, WZ is BM and σ is a diagonal 
matrix process. This implies that the risky part of prices 
is just a rotation of a p-dimensional vector of univariate 
SV independent processes. 
 
Moment based inference: There were two separate 
approaches to estimate the efficiency of the stochastic 
volatility models. First, a computationally intensive 
method which can approximate the efficiency of 
likelihood-based inference well, but at the expense of 
using particular and time wasting techniques. Second, 
number of researchers built relatively simple papers 
that were inefficient estimators based on moments of 
the model that were easily to compute. 

The task is to implement inference on C =
(C�, C�, … . C[)′ that is the SV parameter based on 
returns \ = (\�, \�, … . . , \W) by using the moments 
method, Taylor (1982) calibrated the discrete time 
model. Melino and Turnbull (1990) developed the 
inference by basing on a larger set of moment 
conditions and clustering them more efficiently as they 
exploit the Generalized Method of Moments (GMM) 
procedure. Andersen and Sørensen (1996), Genon-
Catalot et al. (2000) and Hoffman (2002) using (GMM) 
approach to give systematic study of which moments to 
heavily weight in stochastic volatility models. The class 
of the GMM inference is sensitive to both the choices 
of the number of moments to include and the particular 
choice of moments among the regular candidates. 

Approach promoted by Harvey et al. (1994) in the 
discrete time log-normal SV models is as the follows. 
First, remove the predictable part of the return and then 
work with: 
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log ya
� = ha + log εa

�                                           (11)  
 
In the case of short memory of the volatility this 

formula can be treated by Kalman filter, but the 
situation changed in the case of long memory models 
which is almost handle within the fluctuation domain. 
In both ways, this transports a Gaussian quasi-
likelihood which can be helpful to estimate the 
parameters of the model. 

One of the disadvantages of the continuous time 
SV models is that the moments y is not straightforward 
to compute when using moments based estimators. 
Nonetheless, Meddahi (2001) presents an approach for 
generating moment conditions for the full range of 
models within so-called Eigen function stochastic 
volatility class. Barndorff‐Nielsen and Shephard (2001) 
studied the case of no leverage and obtained the 
properties of y in the second order and their squares.  
 

Simulation based inference: Researchers began to use 
simulation based inference in the 1990s. Both Markov 
Chain Monte Carlo (MCMC) and Efficient Method of 
Moments (EMM) is two popular simulations to be used 
in order to treatment with SV models. To discuss the 
methods above it will be convenient to dealing with the 
simplest discrete log normal stochastic volatility given 
as follows: 
 

ma = σaεa                                                            (12) 
 
had� = µ + ϕ(ha − µ) + ηa                                 (13)  

 
where,  
mi : The risky part of returns  
�* : Non-negative process  
D* : Follows an autoregression with zero mean and unit 

variance  
ℎ* : A non-zero mean Gaussian linear process  
ηa : A zero mean Gaussian white noise process 

 
To simulate from high dimensional later densities, 

for instance the smoothing variables Ө, ℎ$\, where 
ℎ = (ℎ�, ℎ�, … , ℎW)' are the unobserved discrete time 
log-volatilities, we can use Markov chain Monte Carlo 
MCMC. Jacquier et al. (2004) applied a MCMC 
algorithm in attempt to solve this problem, while Kim 

et al. (1998) presented an extensively discussion in 
different MCMC algorithms. 

Although most papers based on MCMC are 
formulated in discrete time there are some work, e.g., 
Eraker (2001), Elerian et al. (2001) and Roberts and 
Stramer (2001), that use the adaptable of general 
approach to deal with continuous time models. Based 
on particle filter, Kim et al. (1998) presented the first 
filter. In addition of the significant role in decision 
making, filtering method permits to computation of 

one-step ahead predictions for model testing and 
marginal likelihood for model comparison. 

From the literature, we can see that there are active 
discussions on SV-enhancement models. Most of the 
works involve with the theoretical development of the 
models. However, the empirical application of SV 
models were limited. This mainly because of the 
difficulties relating with their estimation. The biggest 
problem is in the finding their likelihood function and 
so the Maximum Likelihood (ML) estimation of the 
parameters is not direct. 

These encouraged authors to find other estimation 
method for the SV models. There are two methods to 
estimate the parameter of autoregressive stochastic 
volatility ARSV (1). First, methods based on returns 
observation over the time. These include the Method of 
Moments (MM), Maximum Likelihood Estimation 
(MLE). Second, methods based on log of the square of 
the returns observation such as Quasi Maximum 
Likelihood (QML) estimation. For more details readers 
can refer to Broto and Ruiz (2004). 
 

DISCUSSION AND CONCLUSION 

 
This study uses content analysis to investigate the 

current state and evolution of stochastic volatility from 
2002 to 2012. The result is illustrated in Table 1 and 
Fig. 1. There are significant difference between 
stochastic volatility has been published with jumps and 
long memory stochastic volatility in comparison with 
moment based and simulation based SV. Ten thousand 
three hundred and thirty works on jumps have been 
conducted when Google Scholar was investigated, 
making it the most dominant in the literature, while 848 
works on long memory has been found in SciVerse 
database. Works on moment-based inference are very 
rare. However there are quite number of researches that 
concerned with simulation-based inference. We can 
also identified that researchers are more interested to 
look at the continuous setting involved with 6,560 
articles compared to the discrete time setting with 5,776 
articles. 

Based from extensive amount of works that has 
undertaken in SV model, more potential works on the 
development of the SV model, in particular the 
estimation of important variables involve in the model 
are believe to be interesting to be investigated. A 
throughout understanding of the model will be 
beneficial to minimize the risk in the financial world in 
particular. 
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