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Abstract: The main aim of this study is to survey about various techniques of fault prediction, clustering and 
classification to identify the defects in software modules. A software system consists of various modules and any of 
these modules can contain the fault that harmfully affects the reliability of the system. But early predictions of faulty 
modules can help in producing fault free software. So, it is better to classify modules as faulty or non-faulty after 
completing the coding. Then, more efforts can be put on the faulty modules to produce a reliable software. A fault is 
a defect or error in a source code that causes failures when executed. A faulty software module is the one containing 
number of faults, which causes software failure in an executable product. A software module is a set of functionally 
related source code files based on the system’s architecture. Fault data can be collected from problem reporting 
system based on the module level. Defect prediction is particularly important in the field of software quality and 
reliability. Accurate prediction of faulty modules enables the verification and validation activities focused on the 
critical software components. A software quality classification model predicts the risk factor for software modules, 
which is an effective tool for targeting timely quality improvement actions. A desired classification technique 
provides better classification accuracy and robustness. This study surveys various fault prediction, clustering and 
classification techniques in order to identify the defects in software modules. 
 
Keywords: Bayesian classification, Expectation Maximization (EM), Fuzzy C-Means (FCM) clustering, Hyper 

Quad Tree (HQT), k-means clustering, Similarity-based Software Clustering (SISC), spiral life cycle 
model, Support Vector classification (SVM) 

 
INTRODUCTION 

 
Software fault prediction (Karpagavadivu et al., 

2012) method is used to enhance the quality of the 
software and to assist software inspection by locating 
possible faults. It is a major part of software quality 
assurance, which is very popular and essential concept 
for researchers within the software engineering 
community. The software quality prediction is 
performed by identifying the prediction of module as 
faulty or non-faulty. Faults are major problem in 
software systems that needs to be resolved. A software 
fault or error refers a defect in a system. The major 
classes of software faults are shown in below: 
 
• Syntactic faults 
• Semantic faults 
• Service faults 
• Communication faults 
• Exceptions 
 

The major problem of fault prediction (Catal, 2011; 
Hall et al., 2012) is finding the relationship between the 

modules in the software. There are many software 
defect  prediction  and  classification  methods  that  are 
available to detect and isolate faults. Each approach has 
their benefits and limitations. This study presents the 
survey  on  software  fault  prediction  (Rohit  Mahajan 
et al., 2014; Gao et al., 2011) and classification models. 
The spiral life cycle model is a type of iterative 
software development model, which is generally used 
in high risk projects such as, defect prediction and fault 
classification. Under the spiral life cycle model, 
identifying the faulty modules early in an iteration leads 
to a more reliable prototype. The high reliability of each 
iteration translates into a highly reliable product.  

The spiral model (Hashmi and Jongmoon, 2007) 
has four quadrants, which includes, object 
determination, risk identification, product development 
and next phase planning. The first phase begins with the 
identification of the product objectives and 
functionalities. The next step deals with evaluating the 
alternative relative to the objectives and constraints. 
The third quadrant follows the waterfall model to 
incorporate the further incremental development. 
Finally, planning for the next phase starts after the end 
of this incremental model. Quality is built into the spiral 
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model by means of activities involved in each phase, 
like risk analysis, development plan, validation, 
verification and acceptance testing. Moreover, the 
development phase of spiral performs step by step 
analysis of the product, which ensures that no faults are 
escaped. In this model, the Dependent and Independent 
(DID) modules are identified based on their 
functionality. A data detection is the quantifiable 
expression of a rule and the rules can be detected in the 
source code by using the fragments of the data. The 
process of data detection includes, standardization, data 
centering and whitening.  

Classification (Lessmann et al., 2008) is a process 
of finding a set of models that describe and distinguish 
data classes or concepts. The derived model is 
represented in various forms such as classification 
rules, decision tree etc. In software engineering, there 
are many studies representing the use of Bayesian 
classification to solve different challenges. Bayesian 
classifiers produce probabilities for class assignments, 
rather than a single definite classification. It has been 
surveyed in this study to predict the software prone 
modules at an early stage with the help of probability 
distribution models. Bayesian classifiers provide better 
reliability, when compare with the existing methods 
like logistic regression, Support Vector Machine 
(SVM) and classification trees.  

Clustering is a non-hierarchical procedure in which 
items are moved among sets of clusters until the desired 
set is reached. Each clustering technique makes some 
assumptions about the underlying dataset. It is hard to 
satisfy all the assumptions, so it is beneficial to apply 
different clustering methods on the same dataset. 
Similarity-based Soft Clustering (SISC) is a clustering 
technique that is based on the similarity function given. 
SISC is similar to other clustering techniques, such as 
K-Means, Fuzzy C-Means. It starts with a carefully 
selected set of initial cluster and uses an iterative 
approach to improve the clusters. This approach only 
requires a similarity function to be defined properly and 
does not rely on any underlying probability 
assumptions. SISC is able to run faster than the 
traditional hard clustering algorithms. This technique is 
robust against outliers and it is also able to find clusters 
that hard clustering algorithms cannot able to find. 

A software system may have defects in the 
software module and the defect may affect the 
reliability of the software. So, the defects must be 
predicted in order to improve the quality of the software 
system. This survey study depicts about various 
techniques for the identification of defects in software 
modules. 

 
SOFTWARE FAULT PREDICTION AND 

CLASSIFICATION TECHNIQUES 

 

The software fault prediction and classification 
comprises of following stages: 

• Software fault prediction 
• Software reliability enhancement 
• Defect classification 
• Clustering 
 
Software fault prediction techniques: Software fault 
prediction (Rawat and Dubey, 2012) is the process of 
classifying software modules into fault prone and non-
fault prone. Early detection of fault prone module 
enables verification experts to concentrate their time 
and resources on the problem areas of the system under 
development. Due to some faulty modules, the 
maintenance phase of software products could become 
really painful for the users and costly for the 
enterprises. This section presents some of the software 
fault prediction techniques. The techniques are, Spiral 
model life cycle, Hyper Quad Tree (HQT) and the EM 
algorithm, Ripple Down Rule (RIDOR), metric based 
approaches and hybrid feature selection method.  
 
Spiral Life Cycle model (SDLC): The spiral life cycle 
model is related to the incremental model in Software 
Development Life Cycle (SDLC) (Ruparelia, 2010), 
with more emphases placed on risk analysis. The spiral 
model has four phases, planning, risk analysis, 
engineering and evaluation. A software project 
repeatedly passes through these phases in iterations 
(called spirals) (Madachy et al., 2006). Each iteration of 
a spiral life cycle model produces a prototype system 
that is more suitable for operational testing. With the 
help of spiral life cycle model, the software fault prone 
modules are predicted at early stage, which improves 
better system reliability. Discriminant analysis can be a 
useful tool in identification of fault modules in tactical 
systems. A key benefit of the spiral model is that it 
attempts to contain project risks and costs at the outset. 
It has more advantages compared than the other 
models. The spiral life cycle model is one of the most 
flexible model in SDLC. It is more suitable for high 
risk and mission critical software projects, where 
business needs may be unstable. An important feature 
of the spiral model is that each cycle is completed by a 
review involving the primary people or organizations 
concerned with the product. A highly customized 
product can be developed using life cycle and it also 
used for high amount risk analysis. The spiral model is 
characterized by iterative development of evolutionary 
prototypes, which is more suitable for operational 
testing. It creates a risk driven approach to the software 
process rather than a document driven or code driven 
process. It combines the strengths of the other models 
and resolves many of their difficulties and problems. 
The advantages of this model is that its range of options 
provides the good features, while its risk driven 
approach avoids many of their difficulties. 
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Hyper Quad Tree (HQT) and Expectation-

Maximization (EM) algorithm: Quad Tree (4-ary 
tree) is the recursive data structure, this tree stands for a 
division of the matrix into sub matrices (nodes). Leafs 
of the QT are classified into complete and blank nodes. 
The QT (Bishnu and Bhattacherjee, 2012) based 
method assigns the suitable initial cluster centers and 
eliminates the outliers. It has some general features, it 
decomposes the space into adaptable cells in which 
each cell has a high capacity. Hyper quad tree 
(Sasidharan and Sriram, 2014) works in n-dimensions, 
hence it finds better initial cluster centers than former 
algorithms. This algorithm is mainly used to predict the 
software faults in a given module. It offers a better 
cluster center and lower fault ratio in a given dataset. 
The HQT is a universal quad tree, which represents a 
total recursive division of the n-dimensional vector 
space. Every inner node of HQT includes a covering 
hyper-quad and 2n links to all its sub hyper-quad. 
Finally, it divides the regions recursively, so that no 
region contains more than one data point. The 
Expectation Maximization (EM) (Meenakshi et al., 
2012) algorithm is a popular iterative refinement 
technique that can be used for finding parameter 
estimation. HQT based EM algorithm (Rawat and 
Dubey, 2012) is known to be an appropriate 
optimization for finding compact clusters. It guarantees 
an elegant convergence and assigns an object to a 
cluster based on the probability of membership 
functions. After that, it iteratively rescores the objects 
and updates the estimates. The accuracy of fault 
prediction is enhanced using the HQT based EM 
(Varade and Ingle, 2013) algorithm. However, this 
algorithm also has some limitation. The user has to 
initialize the number of clusters, which is very difficult 
to identify using HQT based EM algorithm. It is not 
providing the exact centroid.  
 

Ripple Down Rule (RIDOR): Ripple Down Rules 
(RIDOR) (Najadat and Alsmadi, 2012) is a knowledge 
acquisition method, which controls the communications 
between the expert and a shell to attain the correct 
knowledge. Multiple Classification Ripple Down Rules 
is an extension of RIDOR, which provides a basis for 
solving a general classification problems by using 
beyond classification. This approach does not use any 
notion for extracting or mining the expert’s knowledge. 
The RIDOR inference operation is based on searching 
the knowledge base as a decision list. It also shifts the 
development emphasis to maintenance by blurring the 
dissimilarity between the initial development and 
maintenance. This algorithm learns defect prediction 
using mining static code attributes, which is used to 
predict the faults with high accuracy and low error rate. 
This approach used the rule based classification method 
to classify the modules from their fault prone. The main 
intention of this method is to enhance the software 

development process and effectively allocate the 
resources. The limitation of RIDOR is that the 
knowledge base is ill structured, which results a 
repetition of knowledge. However, this could 
exponentially increase the knowledge acquisition task. 
In order to overcome these drawbacks, the spiral 
development life cycle model is developed. 
 

Metric based approaches: Faults and failures are the 
cost factors in software, which describes the significant 
amount of any project budget. This information can be 
used as a feedback to the enhancement of the 
development process. It also used for process 
improvement and cost reduction. Based on these 
reasons, it is clear that the methods (Radjenović et al., 
2013) are needed to enhance, control and predict fault 
handling in general. This type of methods is categorized 
into two major classes: methods for predicting the 
number of faults in a specific module and methods for 
identifying the fault prone modules. The first type of 
methods are problematic to develop a valid model, 
which is transferable between projects or organizations. 
Thus, methods for identification of fault and failure 
prone modules and models for prediction are a potential 
way to enhance software quality and to diminish cost. 
Effective defect prediction models help to enhance the 
quality assurance activities on defect prone modules. 
Machine learning approaches are used to predict the 
probability of fault proneness. The dependent variable 
is predicted based on the faults found during the 
software development life cycle. Both level metrics and 
class metric methods are used to predict the defects. 
Level metrics are suitable for both procedural and 
object oriented programs and class metrics are only 
suitable for object oriented programs. The diversity of 
these metrics (Catal, 2012; Shanthini and 
Chandrasekaran, 2012) inhibits the progress that often 
results from focusing on one simple target. It requires a 
long term commitment, which are the disadvantages of 
this method. In order to overcome these limitations a 
spiral life cycle model is developed. 
 
Software reliability enhancement: Software reliability 
(Lyu, 2007) can be enhanced through extensive testing 
and debugging. Reliable software is compulsory, 
complex mission critical systems.  
 
Decision tree and fuzzy logic: Decision trees (Pandey 
and Goyal, 2010) are great and standard tools for 
classification and prediction. It produces classifiers in a 
form of tree structure, where each leaf node illustrates a 
decision node. In this method (Sehgal et al., 2012), 
classification starts from the root and continues to move 
down until the leaf node is reached. It helps to classify 
the faulty and non-faulty modules in software. In fuzzy 
decision tree, each path from the root node to a terminal 
node corresponds to a fuzzy rule. Generally, the 
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decision tree technique is used for inductive learning 
and it is used to feature subset selection process in the 
software cost estimation model. ID3, C4.5 and CART 
methods are widely for constructing a decision tree. 
This method is weak in handling uncertainty and 
fuzziness, which are the drawbacks of fuzzy decision 
tree. ID3 (Elyassami and Idri, 2011) is a type of 
decision tree method for software effort estimation, 
which is designed by incorporating the concepts of 
fuzzy set. C4.5 (Wang et al., 2012) is also a type of 
decision tree, which is used to build a decision tree 
from a set of training data by using information 
entropy. The disadvantage of this method is the module 
selection and the distribution of defects tends to one or 
two defects in one file. In order to overcome these 
drawbacks, the spiral life cycle model is enhanced. 
 
Radial Basis Function (RBF): The software reliability 
and quality are enhanced by using Radial Basis 
Function (RBF) (Buchtala et al., 2005), which is the 
best approach to identify the software faults. Initially, 
the data is split into clusters using fuzzy subtractive 
clustering after that, the RBF is applied to predict the 
faults. It is a real valued function, whose values 
depends on the distance from its respective field center. 
RBF provides a flexible way to generalize linear 
regression function, which possess strong mathematical 
properties of best approximation. This model can be 
viewed as a realization of a sequence of two mappings. 
The first method is a nonlinear mapping of the input 
data and the second method is a linear mapping of the 
basis function output. The selection of RBF centers is 
difficult, which are not guaranteed to capture the 
structure of information that is the limitation of this 
method. 
 
Defect classification: The classification perspective 
determines the information extracted from the fault 
classification. The main intention of fault classification 
is to identify the faults correctly and the key issue is to 
enhance the process based on the faulty information. It 
is necessary to monitor the agreement between the 
clusters to assure the correctness in the classification. A 
classifier performs the fault placement process into a 
certain classification category. This section presents 
some techniques to classify the faults in software. 
 
Bayesian classification: Bayesian classification (Catal 
et al., 2011) provides a natural statistical framework for 
decision making by using the software utilities. Their 
representation of causal relationships among variables 
are meaningful to software practitioners, which is based 
on the Bayes theorem. It allows to capture uncertainty 
about the model in a principled way by determining 
probabilities of the outcomes. This technique (Tosun 
Misirli and Basar Bener, 2014) can predict class 
membership probabilities, such as the probability of a 

given tuple belongs to a particular class. It can be 
exploited to support effective decision making for 
improving the software process. This classification 
method (Mahajan et al., 2012) is used to deduce the 
probability distribution for a target variables (i.e., defect 
detected). This model is feasible, adaptable to object 
oriented systems and useful to predict the faulty prone 
classes in software. This technique successfully 
classifies the software components into faulty and fault 
free. It offers the following advantages, it maintains the 
observations, statistical distribution and prior 
assumptions. It encodes the causal relationships among 
variables to predict the future actions. It is necessary to 
use a suitable fault classification technique to handle 
the software faults. 
 
Logistic regression: Logistic Regression (Reddy and 
Babu, 2013) is a type of statistical classification model, 
which is used to predict a binary response from a binary 
predictor. It measures the relationship between a 
dependent and independent variables, which are 
commonly continuous. This technique uses class level 
metrics for the software fault prediction that is based on 
the statistical approach. A negative binomial regression 
model is developed to identify the number of faults on 
each file of the system. It provides the number of faults 
for each file of a release based on a characteristics, such 
as, the file size, number of faults, programming 
language and age of the file. The logistic regression 
consists of two models, namely, discrete and 
conventional. The parameter estimation in the logistic 
curve models reproduced the values of the parameters 
very accurately. The parameter estimates of the 
continuous model vary with the number of data points. 
The discrete model proves the stable values for various 
numbers of data points. This characteristic is very 
essential for the software reliability enhancement. 
Logistic regression offers an easier interpretation 
compared to other classification techniques. It provides 
low design quality, which is the drawback of this 
technique. The mentioned drawback of this method is 
overwhelmed by enhancing the Bayesian classification 
technique.  
 

Support Vector Machine (SVM) classification: SVM 
is a classification technique, which has been 
successfully applied for solving classification and 
regression analysis. It is adaptive to model nonlinear 
functional relationships that are difficult to model with 
other techniques. It provides nonlinear function 
approximations by nonlinearly mapping input vectors 
into feature spaces. This method (Xing et al., 2005) 
combines the advantages of linear and non-linear 
methods by embedding the data into a feature space. It 
uses machine learning techniques and method level 
metrics. It is robust in nature than other techniques for 
software quality prediction. SVM provides the best 



 

 

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015 

 

835 

prediction performance in terms of precision, recall and 
accuracy. The results indicate that the performance of 
SVM (Elish and Elish, 2008) is better than the other 
classification methods. But, the disadvantage is that it 
does not work well in public data sets. The mentioned 
drawback is overwhelmed by enhancing the Bayesian 
classification method. 
 
Classification trees: Classification tree is a popular 
approach for software defect prediction, which are 
based on the statistical based approach. It involves the 
process of modules categorization represented by a set 
of software metrics or code attributes into faulty and 
non-faulty modules. This method (Catal and Diri, 2009) 
uses two different types of datasets, namely, JM1 and 
KC1. Each dataset includes various software modules 
together with their number of faults and characteristic 
code attributes. The accuracy metric is not suitable for 
software fault prediction studies because, imbalanced 
datasets cannot be evaluated with this metric, which is 
the drawback of this metric. But, the accuracy metric of 
the Bayesian classification method is suitable for 
predicting software faults. 
 
Clustering: Clustering is defined as the classification 
of data or object into diverse groups. It is the process of 
partitioning the data set into diverse subsets. This sector 
presents some of the clustering algorithms for the 
prediction of software faults. The clustering methods 
are, SISC, K-Means clustering and Fuzzy C-Means 
clustering. 
 
Similarity-based Soft Clustering (SISC): Similarity-
based Soft Clustering (SISC) (Shanthini and 
Chandrasekaran, 2012) is a clustering techniques based 
on the similarity function given. It aims to provide a 
soft clustering on a set of documents based on a 
similarity measure. In this model, the documents can be 
clustered into multiple clusters. SISC is able to execute 
the codes in an efficient manner and it provides security 
against outliers. In this technique, the software metrics 
are used as independent variables and fault data is used 
as dependent variables. This clustering method is an 
unsupervised learning approach, which is used to group 
the modules having similar metrics by using similarity 
measures or distances. After clustering, the mean values 
of each the software metrics within clusters can be 
checked against the metric threshold values. If the 
limits are exceeded, the cluster can be labeled as fault 
prone. After that, the evaluation parameters are used to 
evaluate the performance of the clustering process. 
Hence, False Positive Rate (FPR), False Negative Rate 
(FNR) and the error values are calculated based on the 
outcomes. 
 
K-means clustering: K-Means clustering (Hribar and 
Duka, 2010) is a non-hierarchical clustering procedure 

in which items are moved among sets of clusters until 
the desired set is reached. This technique follows a 
partitional clustering approach in which partitioning 
method creates an initial partitioning. After that, it uses 
an iterative relocation technique that attempts to 
enhance partitioning by moving objects from one group 
to another. This algorithm begins with finding the 
initial centroids for potential clusters i.e., each cluster is 
associated with a centroid. The observation is assigned 
to each cluster based on their distance from the 
centroid. When partitioning the data set the sum of the 
intra-cluster distance is diminished to an optimum 
value. This algorithm reassigns and executes the data 
points until the convergence criterion is met. The K-
Means algorithm (Sandhu et al., 2010) has some 
general properties, every member of a cluster is closer 
to its cluster than any other cluster. There are always K-
clusters and it has at least one item in each cluster, 
which are non-hierarchical. However, the K-Means 
algorithm also has some drawbacks. The user has to 
initialize the number of clusters, which is very difficult 
to identify in most of the cases. It requires the selection 
of the suitable initial cluster centers, which is again 
subject to error. The structure of the cluster depends on 
the initial cluster center this may result in an inefficient 
clustering. K-Means algorithm is very sensitive to 
noise. In order to overcome these drawbacks, the 
Similarity-based Soft Clustering (SISC) technique is 
developed. 
 
Fuzzy C-Means clustering (FCM): Fuzzy C-Means 
(FCM) (Bisht et al., 2012) iteratively moves the cluster 
centers to the right location within a data set. It is the 
fuzzified version of the k-means clustering algorithm, 
which allows one piece of data to two or more clusters. 
This method iteratively moves the cluster centers to the 
right location within a data set by updating the cluster 
centers and the membership grades for each data point. 
It plays an essential role in solving problems in many 
areas including fuzzy intelligent control, pattern 
classification and fault pattern classification. FCM is 
mostly used algorithm for classifying faults and pattern 
classification. In this method, it assigns a data point to 
distinct cluster and membership values to each 
observation in all derived clusters. After clustering, the 
fuzzy model is constructed based on the clustered data. 
The validity measures are scalar indices that assess the 
goodness of the obtained partition. Hence, this measure 
is designed to quantify the separation and compactness 
of the clusters. FCM (Yang et al., 2011) is used to 
improve the software process control and attain high 
software reliability, when predicting the faults in 
software. However, this technique also has the 
disadvantage that the number of fuzzy sets must be 
informed. The mentioned drawback is overwhelmed by 
developing the SISC method. 



 

 

Res. J. App. Sci. Eng. Technol., 10(7): 831-840, 2015 

 

836 

 
 

Fig. 1: Software fault prediction using SDLC 
 

PROPOSED METHODOLOGY 

 

The proposed software defect prediction 
methodology will use the spiral life cycle model to 
predict the faults. This method is used to improve the 
quality of the software and avoid building an error 
prone modules in future. Figure 1 shows the overall 
flow of the proposed software fault prediction model. 
Initially, the Dependent and Independent (DID) 
modules are identified in this model based on their 
functionality. The standardization, data centering and 
whitening processes are performed for faulty data 
detection. Then, the Bayesian classification algorithm is 
used to classify the faulty and non-faulty modules in 
software. Moreover, the SISC method is proposed to 
cluster the similar data based on the similarity measure. 
The performance comparison of a software fault 
prediction will be done by using the SISC method. The 
proposed system accurately predicts and classifies the 
software faults to improve the system reliability and 
quality. 

 

RESULTS AND DISCUSSION 

 
Various techniques for software fault prediction 

and classification are illustrated. The results of this 
survey are shown in Table 1. The defect prediction with 
the Bayesian classification enhances the software 
reliability and quality. From the survey, it is evident 
that the Spiral life cycle model and Bayesian 
classification provide, the better fault prediction results 

compared than the existing methods such as, HQT-EM, 
RIDOR and Metric based approaches. Also, the 
Bayesian classification classifies the faulty and non-
faulty modules effectual compared than the existing 
methodologies, such as, logistic regression, SVM and 
classification trees. Moreover, the SISC method 
performs well than the other clustering methods such 
as, K-Means and FCM. 
 
Summary: From this survey it is observed that, the 
existing software fault prediction models provides 
inappropriate risk management decisions. It does not 
effectively take dependencies between the attributes 
into consideration. Thus, we use a SDLC method to 
improve the performance of the fault prediction results. 
The existing classification methods are very difficult to 
understand and it does not provide the exact 
classification result. Some of the disadvantages of 
existing classification algorithms are its memory 
dependency, computational complexity and large 
computational time. The above mentioned drawbacks 
are overwhelmed in this study by using a Bayesian 
classification method. The existing clustering 
techniques also has some drawbacks, such as, the user 
has to initialize the number of clusters, which is very 
difficult to identify. It needs to select the suitable initial 
cluster centers and it is very sensitive to noise. 
Moreover, it does not improve the quality of clustering 
in an efficient manner. In order to avoid these 
drawbacks, the SISC clustering technique is proposed 
in this study. The SISC method provides the best
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Table 1: Information about different fault prediction and classification techniques 
Techniques Author and reference Year Performance Quality measurement 
Software fault prediction methods 
Spiral life cycle model 

 
Ruparelia (2010) 2010 It splits the SDLC models into three broad 

categories such as, linear, iterative and 
combination of both. It provides a visual 
interface to an end user. 

• Drive iterations 
• Requirements management 
• Visual models 
• Control changes 
• Customization 

 Madachy et al. 
(2006) 

2006 The spiral model is extended to address the 
problems of software intensive systems. It 
uses three specialized teams to estimate the 
cost and schedule for hybrid process. 

• Simulation inputs 
• System response to volatility 
• Tradeoff functions 
• Parameterization 

Hyper Quad Tree (HQT) 
-Expectation 
Maximization (EM) 

Bishnu and 
Bhattacherjee (2012) 

2012 It evaluates the effectiveness of QT based 
K-means clustering algorithm to predict 
faulty software modules. 

• AR3, AR4 and AR5 dataset 
• False Positive Rate (FPR) 
• False Negative Rate (FNR) 
• Error value 

 Varade and Ingle 
(2013) 

2013 It proves that the results of hyper-quad tree 
is more accurate than QT and it overcomes 
the weakness of K-means algorithm. 

• AR1, AR3, AR4, AR5 and AR6 
datasets 

• False Positive Rate (FPR) 
• False Negative Rate (FNR) 
• Error rate 

 Meenakshi et al. 
(2012) 

2012 It improves the accuracy of fault prediction 
by using EM algorithm. It proves that EM 
algorithm is more accurate than K-means 
owing to lower error rate. 

• Incorrectly classified species 
• Correctly classified species 
• Error rate 
• Label prediction 

Ripple Down Rule 
(RIDOR) 

Najadat and Alsmadi 
(2012) 

2012 This system classifies the software modules 
into faulty and non-faulty prone. It learns 
defect prediction using mining static code 
attributes. 

• PC1, PC2, PC3, PC4, CM1, 
MW1, KC3 and KC4 datasets 

• Size 
• Faulty module number 
• % of faulty modules 
• Metric number 
• Accuracy 

Metric based approaches Radjenović et al. 
(2013) 

2013 It identifies and depicts the current state-of-
the-art software metrics to assess their 
applicability in software fault prediction. 

• Dataset P2 to P10 
• Fault classification 
• Fault ranking 
• Dependent variable granularity 
• Object oriented metrics 

 Shanthini and 
Chandrasekaran 
(2012) 

2012 This study investigates the significance of 
various software metrics in order to predict 
the defects. It analyzes the performance of 
various classifiers to predict faults based on 
public domain such as NASA and KC1 
dataset. 

• KC1 and NASA dataset 
• Precision 
• Recall 
• F-measure 
• Accuracy 
• True positive rate 

Reliability enhancement 
Decision tree and fuzzy 
logic 

Huang et al. (2006) 2006 It embedding risk assessment information 
into software cost estimation model by 
fuzzy decision tree approach. 

• Fuzzy the software cost drivers 
• Risk assessment model 

construction 
• Risk estimation 
• Prediction Accuracy Rate 

(PRED) 
• Mean Magnitude of Relative 

Error (MMRE) 
 Sehgal et al. (2012) 2012 This technique helps project manager to 

make efficient use of limited resources to 
target those modules that are defected. 

• PC1 and NASA dataset 
• Metrics Data Program (MDP) 
• Binary splits 
• Confidence factor 
• Reduced error pruning 

 Elyassami and Idri 
(2011) 

2011 This study investigates the use of fuzzy ID3 
decision tree for software cost estimation. It 
handles uncertain and imprecise data, when 
describing the software projects. 

• Tukutuku and COCOMO’81 
datasets 

• Magnitude of Relative Error 
(MRE) 

• Mean Magnitude of Relative 
Error (MMRE) 

• Prediction rate 
• Significant Level (SL) value 

Radial Basis Function 
(RBF) 

Buchtala et al. (2005) 2005 Evolutionary Algorithms (EA) performs 
feature and model selection process 
simultaneously for RBF. 

• ID dataset 
• Signature verification 
• Lift factors 
• Process optimization 
• Training time 

Defect classification 
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Table 1: Continue 
Techniques Author and reference Year Performance Quality measurement 
Bayesian classification Mahajan et al. (2012) 2012 It provides a best way to support software 

quality through improved scheduling and 
project control. 

• Mean Absolute Error (MAE) 
• Root Mean-Squared Error 

(RMSE) 
• Probability of detection 
• Probability of false alarms 

Logistic regression Reddy and Babu 
(2013) 

2013 It provides an additional decision making rule 
to the software developers, when they 
managing the software resources. 

• PL/I database software 
• Mean squared error 
• Discovery of errors STS2, STS3 

and STS4 
Support Vector Machine 
(SVM) 

Xing et al. (2005) 2005 This study evaluates the software quality 
level and indicates the software quality 
problems in early stage. It performs well even 
in high dimensional spaces under small 
training sample conditions. 

• Eigen value 
• Kernel function 
• T1ERR, T2ERR (error types) 
• Quality Discriminant Analysis 

(QDA) 
 Elish and Elish 

(2008) 
2008 This analysis evaluates the capability of SVM 

to predict software defect prone modules and 
compares its prediction performance against 
statistical and machine learning models. 

• NASA dataset 
• Prediction rate 
• Defect prone modules 

Classification trees Catal and Diri (2009) 2009 This technique investigates the class level 
metrics to predict faults during design phase. 

• RQ1, RQ2, RQ3 and RQ4 
dataset 

• Distribution metrics (class, 
quantitative values and 
component) 

• Statistics machine learning 
Clustering 
Similarity based Soft 
Clustering (SISC) 

Kanimozhi and 
Balakrishnan (2014) 

2014 This clustering method is used to group the 
test cases based on the similarity values to 
each cluster. 

• Test cases 
• Fault detection rate 
• Redundancy level 
• Execution time 

K-means clustering Hribar and Duka 
(2010) 

2010 This method predicts the weibull distribution 
parameters shape, slope and total number of 
faults in the system based on the software 
components. 

• Weibull distribution 
• Prediction rate 
• Beta prediction 
• Accuracy rate 

 Varade and Ingle 
(2013) 

2012 It allocates the centroids to each cluster in a 
cunning way, because different location 
causes various results. 

• Public dataset 
• False Positive Ratio (FPR) 
• False Negative Ratio (FNR) 
• Error rate 
• Precision 

 Sandhu et al. (2010) 2010 This technique determines the intrinsic 
grouping in a set of unlabeled data. It is used 
to find the faulty modules in an open source 
software systems. 

• Public dataset 
• Threshold value 
• Accuracy of prediction 
• Probability of detection 
• Probability of false alarms 

Fuzzy C-Means (FCM) 
clustering 

Bisht et al. (2012) 2012 It produces an optimal c partition by 
minimizing the sum of squared error 
objective function. 

• Accuracy 
• Probability of detection 
• Probability of false alarms 
• MAE value 
• RMSE value 

 Yang et al. (2011) 2011 This method detects and isolates the faults in 
order to avoid overall failure of the system, 
which includes the process of feature 
extraction, selection and classification. 

• Partition co-efficient 
• Partition-entropy 
• Clustering result 
• Precision of fault diagnosis 

 
clustering results, when compared to the k-means and 
FCM clustering algorithms. 
 

CONCLUSION 
 

In this study, an overview of various software fault 
prediction and classification methods are presented. 
From the survey, it is finding out that the spiral life 
cycle model and Bayesian classification are the very 
powerful fault detection techniques to accurately 
predict and classify the software defects. When, 
combined with the SISC clustering method, it improves 

the reliability and quality of the system. The best 
software defect prediction and classification techniques 
can be framed based on the spiral life cycle model, 
Bayesian classification and SISC to achieve the best 
system reliability. 
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