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Abstract: Life testing plans are more vital for carrying out researches on reliability and survival analysis. The 
inadequacy in the number of testing units or the timing limitations prevents the experiment from being continued 
until all the failures are detected. Hence, censoring grows to be an inheritably important and well-organized 
methodology for estimating the model parameters of underlying distributions. Type I and II censoring schemes are 
the most widely employed censoring schemes. The chief problem associated with the designing of life testing 
experiments practically is the determination of optimum censoring scheme. Hence, this study attempts to determine 
the optimum censoring through the minimization of total cost spent for the experiment, consuming less termination 
time and reasonable number of failures. The ABC algorithm is being employed in this study for obtaining the 
optimal censoring schemes. Entropy and variance serves as the optimal criterion. The proposed method utilizes Risk 
analysis to evaluate the efficiency or reliability of the optimal censoring scheme that is being determined. Optimum 
censoring scheme indicates the process of determining the best scheme from among the entire censoring schemes 
possible, in accordance to a specific optimality criterion. 
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INTRODUCTION 

 
The life testing and reliability studies may not 

always acquire the entire information on failure times 

for each and every experimental unit. Here, the problem 

under consideration is to produce results that enable 

making of deductions about the processes or 

populations involved. The data resulting from such 

experiments are known as censored data. Censoring is 

mainly employed to decrease the entire test time and 

the cost related with the experiment (Rolski et al., 

1999; Hogg and Klugman, 1984; Klugman et al., 2004). 

Utilization of various types of experimental designs is 

limited by both cost and time factors. Hence, censoring 

serves as an efficient tool for limiting the time, cost or a 

mixture of both. This allows deciding the most 

excellent designs that are capable of making inferences, 

when these constraints are provided (Benckert and 

Jung, 1974; Beirlant and Teugels, 1992). Getting extra 

information from future independent samples also 

draws attention. When several independent censored 

samples are available, the probability can be written 

unambiguously at all times. Yet, this is not applicable 

for multiple independent samples when distributional 

assumptions are not being made. A censoring scheme 

that can balance between total times used up for the 

experiment, number of units utilized in  the experiment  

and the efficiency of statistical inference depending on 
the outcomes of the experiment is much preferred.  

There are two types of censoring schemes that are 
used in common. They are the Type-I censoring and the 
Type-II censoring (Mikosch, 1997; Lawless, 1982) 
weibull distribution; (Ross, 1994, 1996; Yang and Xie, 
2003). In Type-I (time) censoring; the life testing 
experiment will be ended at a fixed time T. On the other 
hand, the life testing experiment will end up at the 
commencement of r-th (r is pre-fixed) failure in Type-II 
(failure) censoring. But, the conventional Type-I and 
Type-II censoring schemes lack the flexible nature of 
removing units at points other than the terminal point of 
the experiment. To compensate this flexibility problem, 
a more common censoring scheme called progressive 
Type-II right censoring has been introduced (Weibull 
Distribution). 

The two independent samples that are both Type-II 
right censored or progressively Type-II censored allow 
the way of making distribution free intervals for 
quantiles, tolerance intervals and prediction intervals 
(Kalaivani  and  Somasundaram,  2013;  Balakrishnan 
et al., 2010). The authors have proved that the gains in 
the maximum coverage probabilities were far better for 
two sample situation than using one sample. Beutner 
and Cramer (2010) have thought of nonparametric 
inference for two independent samples of minimal 
repair systems. In addition, they have shown that how 
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the prediction intervals for future samples can be made 
until a specified time has been reached. Yet again there 
are gains than in the equivalent one sample scenarios. 
One may search for approaches that hold excellent for 
one or more samples (Balakrishnan and Aggarwala, 
2000; Rai and Singh, 2008). Determination of optimal 
progressive censoring schemes has been taken into 
account for several criteria with different assumptions. 
The main objective of this research is to select the 
optimal censoring scheme for a set of censor data. Here 
we are intended to use Artificial Bee Colony 
Optimization to find the suitable censoring scheme. 
This will be based on entropy and variance. This 
research determines the optimum censoring through the 
minimization of total cost spent for the experiment, 
consuming less termination time and reasonable 
number of failures.  

 

LITERATURE REVIEW 

 

This section presents a brief review on a handful of 

recent research works available in the literature.  

Pradhan and Kundu (2013) have made an 

estimation of unknown parameters of the Birnbaum- 

Saunders distribution, provided that the data are 

progressively Type-II censored. The MLEs that 

correspond to the unknown parameters cannot be 

obtained in explicit forms. Hence, they have utilized the 

EM algorithm for computing the unknown parameters 

and to estimate the asymptotic variance-covariance 

matrix numerically. They have offered the optimal 

censoring scheme depending on various information 

measures. The computation of the optimal censoring 

scheme is fairly computer intensive and this has lead to 

the development of new censoring schemes. The 

relative efficiencies of the sub-optimal censoring 

schemes are found to be moderately large in all cases. 

Hence, sub-optimal censoring schemes can be 

reasonably used in practice. 

Sen et al. (2013) has taken the Bayesian inference 

of the Linear Hazard Rate (LHR) distribution into 

consideration under a progressively censoring scheme. 

A combination of both Type I and II censoring is 

presented based on the independent gamma priors for 

the parameters to obtain the posteriors as mixtures of 

gamma. The priors are motivated from a probability 

matching perspective. A joint credible set is built 

together with marginal inference and prediction by 

making use of the posterior distribution of certain 

quantities of interest. The Bayesian inference reveals a 

close connection to the frequent inference results 

obtained with Type-II censoring scheme. Bayesian 

planning strategies help in discovering the optimal 

progressive censoring schemes based on a variance 

criterion and a principle based on the length of a 

credible interval for percentiles. 

Sultan et al. (2014) have made a research on the 

statistical inference of the unknown parameters of a two 

parameter Inverse Weibull (IW) distribution. This 

scheme relies on the progressive Type-II censored 

sample. The maximum likelihood estimators are not 

available in explicit forms. For this reason, they have 

introduced the approximate maximum likelihood 

estimators that can be made available in explicit forms. 

The Bayes and generalized Bayes estimators for the IW 

parameters and the reliability function that depend on 

the squared error and Linex loss functions are 

presented. The Lindley’s approximation is utilized to 

produce the Bayes and generalized Bayes estimators 

because they cannot be obtained explicitly. Moreover, a 

computation on the highest posterior density credible 

intervals of the unknown parameters based on Gibbs 

sampling technique is being made and then the optimal 

censoring scheme is achieved using an optimality 

criterion. Simulation experiments are carried out to 

evaluate the effectiveness of the estimators and two 

data sets have been examined for descriptive purposes. 

The chances of employing entropy-information 

measures for designing an optimality type-II 

progressive censoring scheme with an illustrative 

application to a simple form of Pareto distribution is 

being examined by Awad (2013). They have formulated 

several mathematical formulas on the basis of sixteen 

entropy-information measures for the efficiency of 

progressive type-II censoring scheme. Yet, these 

sixteen information measures do not support in 

selecting an optimal scheme because their values are 

not dependent on the censoring scheme vector. Since 

the selection of a sup-entropy measure results in an 

optimal scheme, they have developed a Mathematica-7 

code for calculating the numerical value of the ten sup-

entropy measures dealt in this study. A numerical 

example has been demonstrated to prove that the 

optimal scheme is a one-step censoring from left after 

the detection of first failure. 

Kohansal and Rezakhah (2013) have proposed the 

joint R´enyi entropy of progressively censored order 

statistics in terms of an incomplete integral of the 

hazard function and have presented a simple estimate of 

the joint R´enyi entropy of progressively Type-II 

censored data. A goodness of fit test statistic that relies 

on the R´enyi Kullback-Leibler information with the 

progressively Type-II censored data was set up and the 

performance was compared against the leading test 

statistic. A Monte Carlo simulation study provides 

evidence that the proposed test statistic offers better 

powers than the leading test statistic and the alternatives 

with monotone increasing, monotone decreasing and 

non monotone hazard functions. 

 

PROPOSED METHODOLOGY 

 

Estimation of hazard rate: Weibull distribution 

constitutes a continuous probability distribution. The 

Weibull distribution is much familiar because of its 

ability to take huge number of shapes with the variation 
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in its parameters. Works have been performed on this 

distribution to a larger extent, both from the frequentist 

and Bayesian perspective. The probability density 

function of a Weibull random variable x is as follows: 
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k is the shape parameter whose value is greater 

than zero and λ is the scale   parameter  of  the  
distribution with values greater than zero. Its 
complementary cumulative distribution function is a 
stretched exponential function. The Weibull distribution 
has relation to a number of other probability 
distributions, specifically, it interpolates between the 
exponential distribution (k = 1) and the Rayleigh 
distribution (k = 2). If the quantity x is a "time-to-
failure", the Weibull distribution provides a distribution 
for which the failure rate is proportional to a power of 
time. The shape parameter is power plus one and hence, 
this parameter can be inferred directly as follows: 

 

• A value of k<1 specifies that the failure rate 

decreases over time. This would occur if a 

significant "infant mortality" exists or if the 

defective items fail early and the failure rate reduce 

over time as the defective items are weeded out of 

the population. 

• A value of k = 1 denotes that the failure rate is 

constant over time. This might imply that the 

random external events are producing mortality or 

failure. 

• A value of k>1 indicates that the failure rate 

increases with time. This takes place due to the 

occurrence of an "aging" process or parts that are 

more expected to fail as time go on. 

 

The Weibull distribution is utilized in survival 

analysis, reliability engineering and failure analysis and 

industrial engineering to characterize manufacturing 

and delivery times, extreme value theory and weather 

forecasting. It is eminent that the Weibull Probability 

Density Function (PDF) can be decreasing or unimodal 

and the Hazard Function (HF) can be either decreasing 

or increasing based on the shape parameter. Due to the 

flexible nature of the PDF and HF, the Weibull 

distribution has been used fairly in situations where the 

data denotes a monotone HF. The Weibull distribution 

is not applicable when the data specifies a non-

monotone and unimodal HF. Hence in several practical 

implementations, it is initially determined that the 

hazard rate (Rai and Singh, 2008) is not a monotone.  

Here, entropy is used to find the optimal censoring 

schemes and a progressive Type II censored schemes 

has been considered. Progressive censoring scheme is 

of greater interest than the other censoring schemes in 

the past few years, especially in reliability analysis. It is 

a more general censoring mechanism when compared 

to the traditional Type I and II censoring schemes. This 

approach depends on the maximization of the joint 

entropy of progressive censored samples.  

The entropy H is a measure of the uncertainty of 

random variables. Let X be a random variable with a 

Cumulative Distribution Function (CDF) F (x) and 

Probability Density Function (PDF) f (x) The 

differential entropy H (X) of the random variable is 

given in Eq. (1): 

 

H (X =) ( ) ( )dxxfxf log∫
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The entropy is equivalent to unity minus the 

expectation of the natural logarithm of the hazard rate. 

Hence, maximization of the entropy is equivalent to 

minimization of the expectation of the logarithm of 

hazard rate. The joint entropy in progressive Type II 

censor (X1:m:n, X2:m:n …. Xm:m:n) can be defined as: 

 

H1….m:m:n = -E {log f1:m:n,….m:m:n 

(x1:m:n,x2:m:n…xm:m:n)}, = - ∫ ∫
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The likelihood function is given as in Eq. (2): 
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And, c = n (n - R1 - 1) (n - R1 - R2 - 2) … (n - R1 - R2 

- R3… - Rm-1 - m + 1). The joint entropy contained in 

(X1:m:n, X2:m:n ... Xi:m:n), i.e., a collection of first i of 

progressively Type II censored OS, is defined to be: 

 

H1....i:m:n = E {log f1:m:n,...., i:m:n (X1:m:n, 

X2:m:n … Xi:m:n)} 

 

where f1:m:n,...., i:m:n (x1:m:n, x2:m:n …, xi:m:n), is 

the density function of (X1:m:n, X2:m:n・Xi:m:n). 

In the case of H1....m:m:n, problem emerges from the 

removal as well as the expression of H1....i:m:n, which 

involves integration over i random variables. Hence, 

simplifying the calculation of H1....i:m:n is more striking. 

This study focuses on the properties of the joint entropy 

in progressively Type II censored OS. Here, a 

computational method for calculation of the joint 

entropy based on progressive type II censoring is being 

employed. Reducing m integrals in the calculation of 
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H1....m:m:n to no integral where the computation of the 

entropy in progressively Type II censored samples 

simplifies to a sum; entropy of the smallest OS of 

varying sample size h 1:n. 

Let X1 X2,…, Xn, be the random sample of size n 

from pdf f (x) with cdf F (x)  and  hazard  function  h 

(x) = 
� (�)

��� (�)
 and let X1:n X2:n X….Xn:n, be OS 

corresponding to this sample then: 

H1:n= 1 - log n - ( )∫
∞

∞−

dFxhlog  1:n (x) 

 

Let (X1:m:n, X2:m:n…… Xm:m:n) be a progressively 

Type II censored sample with censoring scheme (R1, 

R2,… Rm). The entropy in the progressively Type II 

censored sample (X1:m:n, X2:m:n…… Xm:m:n) can be 

written as in Eq. (3): 

 

H1....m:m:n = -log (m)+ ( )∑∑
==
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i
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ijα
ic

11

,  {log jγhjγ :1+ }   (3)  

 

where, h1: γj is the entropy of smallest OS varying 

sample size γj. 

Using markov chain properties of progressive Type 

II censoring, we can write: 

  

f1:m:n…….,m:m:n (x1:m:n,…., xm:m:n) = f1m:n: (x1) f2|l:m:n 

(x2|x1) …. Fm|m - l:m:n (xm|xm-1)                             (4) 

 

The density of the first order statistic of a sample 

of size (n - R1-... - Ri - i) with the truncated density is g 

(x) =
( )
( )11 xF

xf

−
. Therefore, we have: 

  

H1:m:n,……, m:m:n = H1:m:n + H2|1:m:n+….+ Hm|m-1:m:n                (5) 

 

Thus, the expected entropy can be calculated as in 

Eq. (6): 

 

 Hi+l:m:n = E{-	 

�

�� i+l:m:n (x|x+i:m:n) log fi+l:m:n 

(x|xi:m:n) dx}                                                          (6) 

 

Noting the condition on Xi:m:n = xi, Xi+1:m:n has same 

pdf as first order statistics for the random sample: 

 

(n - R1-... - Ri- i) with pdf g (x) =
( )
( )11 xF

xf

−
  

 

The above equation can be written as: 

 

Hi+l:m:n = 1- log (n - R1-... - Ri - i) - I                     (7) 

 

where,  

I = E { ∫
∞

nmxi

f

::

 i+l|i:m:n (x|xi:m:n) log h (x) dx} 

 

By changing integrals we have: 
  

Hi+l:m:n = 1- log (n - R1-... - Ri - i) - ( ){ }∫
∞

∞−

fxhlog  i+1 

(x) dx                                                                    (8) 
 

By using (5) and (8) and marginal density function, 

we can derive H1:m:n as: 
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Applying the identity �′ (�) �
��,�

��
�
��� =1, the result 

follows. But still, there are some integral expressions 

which were hidden in h1: γj
 
and these might be difficult 

to compute.  

 

Estimation of variance and entropy: Progressive type 

II censoring schemes are being employed to compute 

the variance. The analysis of competing threats data 

when the data are progressively type II censored under 

the latent failure times model. The Maximum 

Likelihood Estimators (MLEs) of the unknown 

parameters are being calculated. It is found that the 

MLEs cannot be obtained in explicit form. But, it can 

be obtained by solving a one dimensional optimization 

problem. Due to the fact that the MLEs cannot be 

obtained in explicit form, Approximate Maximum 

Likelihood Estimators (AMLEs) that has explicit 

expressions can be used. 

The following m observations can be made to get 

the Maximum likelihood estimates for the given 

R1……, Rm: 

 

{(xi:m:n, 1); i ε I1} and {(xi:m:n, 2);) i ε  I2} 

 

Based on the above observations, the log-

likelihood function without the additive constant can be 

denoted as in Eq. (10): 

 

ln l ( )2,1, λλα  = mln α  + m1ln 1λ  + m2 ln 1λ  + 
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i 1

ln1(α  x1:m:n - ( )∑
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The log-likelihood of α  can be obtained with the 

derivation of λ1 and λ2 and equating for fixed α as: 
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The MLE of a can be obtained by maximizing the 

above equation with respect to a Approximate 

maximum likelihood estimator. If the random variable 

X follows Weibull (a, λ), then the pdf of Y = lnX has 

the  extreme  value  distribution  with  the  pdf  as  in  

Eq. (11): 

 

Fy (y; µ, σ) =
σ

1

σe

µy

σe

µy −
−

−
 -∞<y<∞              (11) 

 

It is assumed that X1i and X2i are independent 

Weibull random variables with parameters (a, λ1) and 

(a, λ2) respectively. Therefore, Yi = min {X1i; X2i} will 

also indicate a Weibull (a, λ1) distribution. Ignoring the 

cause of failures, the Approximate Maximum 

Likelihood Estimators (AMLEs) of µ and λ can be 

obtained as in Eq. (12): 

 

µ~ = A - B σ~                                                        (12) 

 

In AMLE, the operations are as follows: λ1 and λ2. 

First obtain σ~ >0 and then, σ~ =
σ~
1

 is a AMLE of. Now 

compute 1
~

λ = 1
~

λ ( )α~  and 1
~

λ  = 1
~

λ ( )α~
 
from MLE as 

the AMLE of λ1 and λ2. 

 

Optimal selection of censoring scheme using ABC 
algorithm: After assuming or determining the values of 
n, m, the progressive censoring scheme {R1,…., Rm}, 
such that R1+...+ Rm = n-m are fixed. Practically, 
selecting an optimal censoring scheme is vital to 
provide maximum information of the unknown 
parameters. It is evident that unless n and m are fixed, 
the problem may not make much sense. Naturally, it is 
very apparent that choosing n = m and making n larger 
would offer more information of the unknown 
parameters. Further in practical applications, the sample 
size n and the elective sample size m are fixed in prior 
always. Therefore, the usual query is whether the 
progressive censoring scheme {R1, …, Rm} has to be 
selected based on convenience or depending on some 
scientific basis. Here, for fixed n and m, possible 
censoring schemes implies the entire possible choices 
of R1, …, Rm, such that: 

 

∑ =
=+

m

i
nmRi

1
                                         (13) 

 

Equation (13) denotes the selection of the 

particular scheme that provides maximum information 

of unknown parameters among the available censoring 

schemes. Usually two questions arise. The former query 

is how to define information measures of unknown 

parameters s based on particular progressive censoring 

data and the latter query is how to compare two 

different information measures based on two different 

progressive censoring schemes. As a result, two 

important issues are involved while discovering the 

optimal censoring scheme. They are as follows: 

 

• Find a proper criterion  

• Find the best censoring scheme based on this 

criterion 

  

Both the points are essential and neither of it is an 

insignificant issue in this case.  

Dervis Karaboga has explained ABC algorithm in 

2005. This algorithm has its motivation from the smart 

behavior of honey bees. The colony of artificial bees 

possesses three set of bees in ABC algorithm and they 

are the employed bees, the onlookers and the scouts. A 

bee which stays on the dance area for composing a 

selection to accept an association rule is called an 

onlooker and a bee which goes to the Censoring 

Schemes that is chosen by the onlooker is called an 

employed bee. The scout bee is the one that performs 

disorderly search for discovering new sources. The 

place of the censoring schemes or rules describes a 

practical solution to the optimization issue and the 

value of schemes linked to the quality (fitness) of the 

associated solution is estimated by Eq. (14): 

 

i
i

r
FIT

+
=

1

1

                                                       (14)  

 

where, 

i  =  Number of censoring schemes 

r  =  Censoring schemes 

 

The key steps of ABC algorithm are as follows. 

 

Initialize: Association rules repeat. 

Place the employed bees on the censoring schemes. 

Place the onlooker bees on the censoring schemes 

depending on their nectar amounts. 

Send the scouts to the search area for discovering new 

censoring schemes. 

 

Memorize: The best censoring schemes found so far 

until requirements are met. 

The collective intelligence of honey bee swarms 

comprises of three components. They are Employed 

bees, Onlooker bees and Scout bees. There are two 

main behaviors.  

Censoring schemes: To select the censoring schemes, 

hunter bee evaluates various properties. To reduce 

effort, one quality can be considered.  
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Employed bees: The employed bee is used in specific 

censoring schemes. Its function is to distribute the 

information about the particular Censoring Schemes 

with other bees in the hive. The data which is carried by 

the bee includes direction, Profitability and the 

distance. 

 

Unemployed bees: The unemployed bees can be both 

the onlooker bees and the scout bees. The onlooker bee 

looks for the Censoring Schemes with the help of data 

provided by the employed bees. The scout bee looks for 

the Censoring Schemes randomly in the environment. 

Each cycle in an ABC algorithm consists of three 

steps. In the initial step, the employed bee is sent to 

trace out the Censoring Schemes to evaluate their 

values and then, the onlooker bee uses the data supplied 

by the employed bee to select the Censoring schemes. 

Later, the scout bees were sent to find out the novel 

Association rules. During the initialization stage, the 

values of the numerous censoring schemes discovered 

by the bees are calculated. At the first step of the cycle, 

the employed bees visit the hive to distribute the data 

regarding the Censoring Schemes and their value 

information to the bees waiting in the dance area. The 

onlooker bees receive the data about the Association 

rules. The employed bees would then take a voyage to 

their appropriate Censoring Schemes that has been 

previously visited and locate the neighboring Censoring 

Schemes in comparison through visual information. 

During the second phase of the cycle, the onlooker 

bee selects the Association rules based on the data 

supplied by the employed bees. The chances of 

choosing Censoring Scheme increases with increase in 

optimization. The onlooker bee on entering the region 

would select the neighboring Censoring Schemes by 

using the data of the employed bee and visually 

comparing the values like the employed bee. This 

visual comparison of values by the bees enable new 

Censoring schemes to be discovered. At the third phase 

of the cycle, novel Censoring schemes are found while 

the Censoring schemes already discovered are used up 

the bees. A scout bee would randomly select the novel 

Censoring Schemes and replaces the old Censoring 

Schemes with the new Censoring schemes. The bee 

which has high fitness values results in higher fitness. 

The detailed description of the ABC algorithm is as 

follows: 

 

• Initialize the Schemes of the solutions si, j. 

• Compute the population. 

• Set cycle = 1; the cycle indicates an iterative value. 

• Generate a solution ui, j
 
in the neighborhood of si, j

 using the following formula: 

( )jkjijijiji sssu ,,,,, −Φ+=
 
 

where, 

k  : Solution of i 

Φ  : Random number of range (-1, 1) 

 

Pseudo-code for ABC algorithm: 

 

Require: Max_Cycles, Colony Size and Limit  

Initialize: The Censoring Schemes  

Evaluate: The Censoring Schemes  

Cycle = 1  

while cycle≤Max_cycles do  

Construct new solutions using employed bees  

Assess new solutions and apply greedy selection 

process  

Calculate the probability values using fitness values  

Produce new solutions using onlooker bees  

Evaluate the new solutions and apply greedy selection 

process  

Produce new solutions for onlooker bees  

Apply Greedy selection process for onlooker bees  

Determine abandoned solutions and generate new 

solutions in the scout bee section 

Memorize the best solution found so far  

Cycle = Cycle + 1  

end while  

return best solution 

 

• Apply the greedy selection process amid ui, j
 
and si,j

 
based on the fitness. 

• Calculate the probability values Pi for the solutions 

si, j
 
using their fitness values based on the following 

formula: 

 

∑
=

=
SN

i

i

i
i

FIT

FIT
P

1

 

  

• In order to estimate the fitness values of the 

solution, the following formula is being used: 
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• Normalize the Pi 
values into (0, 1). 

 

Finally, the optimal censoring scheme is chosen 

depending on the optimal fitness in ABC. 

 

RESULTS AND DISCUSSION 

 

The proposed method utilizes ABC algorithm to 

choose the optimal censoring scheme based on entropy
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Table 1: Sample data set 

Star Type Teff Ind_Be LogN_Be Sig_Be Ind_Li LogN_Li 

103166 1 5320 1 0.50 0.00 1 0.00 

6434 1 5835 1 1.08 0.10 0 0.80 

9826 1 6212 1 1.05 0.13 1 2.55 

10647 1 6143 1 1.19 0.10 1 2.80 

10697 1 5641 1 1.31 0.13 1 1.96 

12661 1 5702 1 1.13 0.13 0 0.98 

13445 1 5613 0 0.40 0.00 0  -0.12 

16141 1 5801 1 1.17 0.13 1 1.11 

17051 1 6252 1 1.03 0.13 1 2.66 

19994 1 6109 1 0.93 0.12 1 1.99 

22049 1 5073 1 0.77 0.00 0 0.25 

27442 1 4825 0 0.30 0.00 0  -0.47 

38529 1 5674 0  -0.10 0.00 0 0.61 

46375 1 5268 0 0.80 0.00 0  -0.02 

52265 1 6103 1 1.25 0.11 1 2.88 

75289 1 6143 1 1.36 0.00 1 2.85 

 
Table 2: Reliability and hazard rate measurement  

α β λ Hazard rate Reliability 

0.0360 0.2950 0.0085 0.0047 0.6372 

0.1349 0.5790 0.0270 0.0154 0.8640 

0.0991 0.2857 0.0190 0.0130 0.7474 

 

Table 3: Entropy estimation 

Entropy Hazard rate 

0.1804 2.5773 

0.1803 2.5773 

0.1744 2.5773 

 

 
 

Fig. 1: Relibility and hazard rate for different α and β values  

 

and variance. The CASt (Santos et al., 2004; CASt 

dataset) censoring database that is depicted in Table 1 is 

used to illustrate the proposed work. Based on these 

values, the computation of hazard rate and reliability 

value is made.  

 

Dataset: The censored dataset used here is from stellar 

astronomy. The authors search for differences in the 

properties of stars that do and do not host extra solar 

planetary systems. This study targets on the abundances 

of the light elements Beryllium (Be) and Lithium (Li) 

that are believed to be depleted by internal stellar 

burning, so that surplus Be and Li should be present 

only in the planet accretion scenario of metal 

enrichment.  

The columns of the dataset are as follows: 

  

• Star name 

• Sample: Type = 1 indicates planet-hosting stars. 

Type = 2 is the control sample  

• Teff (in degrees Kelvin) stellar surface temperature  

• Log N (Be), log of the abundance of beryllium 

scaled to the Sun's abundance (i.e., the Sun has log 

N (Be) = 0.0) 

• Measurement error to log N (Be) based on model-

fitting of the observed stellar spectrum  

• Log N (Li), log of the abundance of lithium scaled 

to the Sun's abundance 

 

The dataset consists of 39 stars known to host planets 

(plotted as filled circles) and 29 stars in a control 

sample (open circles). 

From the values in Table 1, the hazard rate and 

reliability can be calculated. The value of the hazard 

rate and reliability are specified in Table 2. 

In this study, the selection of the optimal censoring 
scheme is carried out based on the measures of entropy 
and variance. Table 3 represents the Hazard rates that 
correspond to entropy values. The optimal censoring 
scheme results when the value of the entropy and the 
variance measures is large. An optimal Censoring 
scheme presents improved reliability with decreased 
hazard rate. This is expressed in Fig. 1. 

 

RISK ESTIMATION 

 

The Value at Risk (Pilbeam and Noronha, 2008) 

VaRα (X) for random variable X with the two-parameter 

Weibull distribution is defined. VaRα (X) is the 

efficiency of its estimators that has to be determined as 

the joint efficiency of the estimators of the parameters 

of the Weibull distribution. A large scale Monte Carlo 

simulation is done to assess the performances of the 

various estimators for θ, β and VaRα (X)). The 

estimators are compared in accordance to their means, 

MSEs and Deficiency (Def) values. The use of the
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Table 4: The simulated mean and MSEs of the different estimators of the weibull parameters 

Estimators N 

θˆ 

----------------------------------------------------- 

βˆ 

------------------------------------------------------ 

Def Mean MSE Mean MSE 

MLE 10 1.1457 0.5750 0.5853 0.0345 0.6095

 50 1.0318 0.0991 0.5120 0.0029 0.1020

 100 1.0115 0.0473 0.5065 0.0014 0.0487

TMMLE 10 1.2623 0.7530 0.5144 0.0218 0.7748

 50 1.0106 0.0931 0.5117 0.0036 0.0967

 100 0.9999 0.0456 0.5067 0.0015 0.0471

GSE 10 1.2490 0.7560 0.4673 0.0223 0.7783

 50 1.0551 0.1029 0.4774 0.0039 0.1068

 100 1.0237 0.0433 0.4859 0.0016 0.0449

 
Table 5: Risk estimation 

Estimator α β Risk value 

MLE 5.5440 5.6853 1.8972e+03 
TMMLE 5.7350 5.0161 1.9557e+03 
GSE 5.9584 5.0915 1.9507e+03 

 

 
 

Fig. 2: Risk estimation 

 
Deficiency (Def) concept is necessary to compute the 
diverse estimators of VaRα (X), since the efficiency of ∧ 
VaRα (X) = {-ln (1 - α)} 1/ˆβˆθ relies on the joint 
efficiency of the estimators ˆθ and ˆβ. The risk values 
are estimated using Eq. (15). 

Table 4 represents the simulated mean  and  MSE  
of different estimators of the weibull parameters. Here  
θ = 1 and β = 0.5. The use of the concept of Deficiency 
(Def) is vital for comparing the different estimators of 

VaRα (X) because the efficiency of ∧ VaRα (X) = {-ln (1 
- α)}  1/ˆβ ˆθ depends on the joint efficiency of the 
estimators ˆθ and ˆβ. The risk values are estimated 
based on the Eq. (15): 

  
VaRα (X) = {-ln (1 - α)} 1/ˆβ ˆθ             (15)

   
Table 5 and Fig. 2 reveal the various risk values 

calculated for various α and β values. The proposed 
methodology chooses the optimal censoring criterion 
based on the entropy and variance measures by 
employing ABC algorithm. 

 

CONCLUSION 

  

This study utilizes entropy and variance measures 
as the optimality criterion. Here, the ABC algorithm 

attempts to establish precise optimal schemes for few of 
the significant lifetime distributions through the usage of 
maximum entropy and variance as the optimality 
criterion. The optimal fitness enables the selection of the 
best censoring criteria. The results of experimentation 
prove that the proposed methodology of selecting 
optimal censoring scheme yields better reliability with 
reduced hazard rate. The risk analysis is performed for 
computing the efficiency of the proposed method. The 
optimal censoring scheme obtained with this proposed 
study can produce improved results with any dataset. 
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