
Research Journal of Applied Sciences, Engineering and Technology 10(5): 537-546, 2015
DOI:10.19026/rjaset.10.2461
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.
Submitted: November 13, 2014 Accepted: January 27, 2015 Published: June 15, 2015

Corresponding Author: Rohanin Ahmad, Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi

Malaysia, UTM Skudai 81310, Johor, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

537

Research Article

Performance Comparison of Constrained Artificial Bee Colony Algorithm

Soudeh Babaeizadeh and Rohanin Ahmad
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai

81310, Johor, Malaysia

Abstract: This study is aimed to evaluate, analyze and compare the performances of available constrained Artificial
Bee Colony (ABC) algorithms in the literature. In recent decades, many different variants of the ABC algorithms
have been suggested to solve Constrained Optimization Problems (COPs). However, to the best of the authors'
knowledge, there rarely are comparative studies on the numerical performance of those algorithms. This study is
considering a set of well-known benchmark problems from test problems of Congress of Evolutionary Computation
2006 (CEC2006).

Keywords: Artificial bee colony, constrained optimization, nature inspired algorithms, swarm intelligence

INTRODUCTION

Population-based optimization algorithms are

nature-inspired algorithms that can generate near-
optimal solutions for hard optimization problems. A
general characteristic of all population-based
algorithms is that the population of possible solutions is
improved iteratively by applying some search operators
on the individuals depending on the quality of their
fitness. As a result, the population is steered towards
more promising region of the search space. Population-
based optimization algorithms can be classified in two
main categories, Evolutionary Computation (EC) and
Swarm Intelligence (SI).

Genetic Algorithm (GA) (Tang et al., 1996),
Evolution Strategy (ES) (Rechenberg, 1978), Genetic
Programming (GP) (Koza, 1992), Differential
Evolution (DE) (Storn and Kenneth, 1997) and
Evolutionary Programming (EP) (Fogel et al., 1966)
have been at the core of recent advancements on EC
class.

Swarm intelligence has also captured attention of
many researchers in recent years. The most prominent
SI algorithms proposed in the literatures are as follow.
Ant Colony Optimization (ACO) (Dorigo and Stützle,
2010), Particle Swarm Optimization (PSO) (Kennedy,
2010), Bee Swarm Optimization (BSO) (Drias et al.,
2005), Bacterial Foraging Optimization (BFOA)
(Passino, 2002), Biogeography-Based Optimization
(BBO) (Simon, 2008), Artificial Immune Systems
(AIS) (Farmer et al., 1986) and Artificial Bee Colony
(ABC) (Karaboga, 2005) and so on.

ABC is one of the most successful SI algorithm
inspired from the foraging behavior of honey bee

swarm and was firstly suggested by Karaboga (2005) in
2005 to solve unconstrained optimization problems.
Numerical studies show that this algorithm is
competitive to other population-based algorithms with
an advantage of simplicity and employing fewer control
parameters (Karaboga and Basturk, 2007a, 2008;
Karaboga and Akay, 2009). This method was then
extended to solve Constrained Nonlinear Optimization
Problems (CNOPs) which can be formulated as in
Problem:

 ��� ���� 	. � �
��� ≤ 0 � = 1,2, ⋯ , � ℎ
��� = 0 � = � + 1, � + 2, ⋯ , � (1)

where, � = [��, ��, ⋯ , ��] ∈ �� is n-dimensional
decision vector and each �� is bounded by lower and
upper bounds as � !� ≤ �! ≤ � "# . The objective
function ���� is defined on 	 an n-dimensional search
space in ��.

This study presents a comprehensive comparative
study on the performances of available constrained ABC
algorithms.

Artificial bee colony: ABC is a recently proposed
population-based algorithms by Karaboga (2005) being
inspired by foraging behavior and waggle dance of
honey bee colonies. This algorithm has been widely
used to solve optimization problems (Gao et al., 2014;
Aydina et al., 2014; Xiang and An, 2013; Li et al.,
2012). ABC algorithm simulates the cooperative
intelligence in foraging behavior of a honey bee swarm.
In this algorithm, the position of food source denotes a

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

538

possible solution to the optimization problem and the
nectar amount of food source represents fitness value of
the associated solution. In ABC algorithm, half of the
colony includes employed bee and the other half consist
of onlooker bees. The number of employed bees is equal
to the Number of Solutions (SN) in the population. At
initialization step, ABC generates a randomly
distributed initial population of SN solutions using
following Equation:
 �!,
 = � !�,
 + $%�&�0,1�'� "#,
 − � !�,
) (2)

where, each solution �! , � = 1,2, ⋯ , *+ is d-dimensional
vector for � = {1,2, ⋯ , &} , � !�,
 and � "#,
 are the
lower and upper bounds for the dimension j,
respectively. After initialization, the fitness value of
associated solutions are evaluated and saved. Then, the
population of the solutions is subjected to predetermined
number of cycles called Maximum Cycle Number
(MCN) of the search processes of the employed bees,
the onlooker bees and the scout bees' phases.

An employed bee produces a modification on the
solution �! defined as:
 .!,
 = �!,
 + ∅!,
'�!,
 − �0,
) (3)

where, 1 ∈ {1,2, ⋯ , *+} and � ∈ {1,2, ⋯ , &} are
randomly chosen indexes, 1 has to be different from �, ∅!,
 is a random number in the range [−1, 1]. After
each .! is calculated the fitness value of this solution is
evaluated and a greedy selection mechanism is applied
comparing �! and .!.

If the fitness value of the new solution is higher
than the current solution the bee is replaced with the
new solution, otherwise the current solution remains.
After the employed bee phase, the solution information
is transferred to the onlooker bee phase. Onlooker bees
choose a solution depending on the probability value 2!
associated with that solution calculated using following
equation:
 2! = 3!456 3!47897:; (4)

where, ���! is the fitness value of solution i. Once the
onlooker has selected solution �! a modification is done
on the solution using Eq. (3). Then fitness values of
generated solutions are evaluated and similar to
employed bees phase, greedy selection mechanism is
employed. If new solution has better fitness value than
current solution, the new solution remains in population
and the old solution is removed. In the scout bee phase,
if solution �! cannot be improved further through a
predetermined number of trails (limit), then that
solution is abandoned and replaced with a new solution
generated randomly in scout phase. This process
employs Eq. (2).

The ABC algorithm consists of three control
parameters, the Number of Solutions (SN), the total

Number of Cycles (MCN) as well as the number of
cycles that a non-improving solution will be kept before
being abandoned and replaced by a new solution
generated by the scout bee mechanism (limit). In ABC
algorithm the employed and onlooker bees are
responsible for exploitation processes and scout bees
control the exploitation process. In recent years the vast
majority of unconstrained ABC algorithm have been
presented and applied for practical problems (Akay and
Karaboga, 2012; Gao et al., 2013; Banitalebi et al.,
2015; Karaboga and Gorkemli, 2014; Kiran et al.,
2015).

METHODOLOGY

Constrained artificial bee colony: ABC algorithm has
been originally proposed to deal with unconstrained
optimization problems (Karaboga, 2005). The ABC
algorithm is then adapted to tackle constrained
optimization problems. The presence of various
constraints and interferences between constraints makes
COPs more difficult to tackle than unconstrained
optimization problems. In this section, several
constrained ABC algorithm are concisely reviewed to
facilitate experimental studies, analysis and
comparison.

Original constrained artificial bee colony: ABC
algorithm for the first time was adapted by Karaboga
and Basturk (2007b) to solve constrained optimization
problems. In this algorithm (Deb, 2000) mechanism is
employed to cope with constraints, due to its simplicity,
computational cost and fine tuning requirement over
other constraint handling methods. Deb's method
applies a tournament selection operator, comparing two
solutions at a time with assumption that any feasible
solution is preferable than any infeasible solution.
Therefore, based on Deb's method the following criteria
are always enforced:

• Any feasible solution is preferred to any infeasible

solution
• Among two feasible solutions, the one having

better fitness value is preferred
• If both solutions are infeasible the one having

lowest constraint violation is preferred

As initialization with feasible solutions is very time
consuming mechanism and in some situation,
impossible to generate a feasible solution randomly, the
constrained ABC algorithm does not consider the initial
population to be feasible. Alternatively, Deb's rules
were employed instead of greedy selection to direct the
solutions to feasible region of search space. In addition,
scout bee phase of the algorithm provides a diversity
mechanism that allows new and probably infeasible
individuals to be in the population.

In order to produce a candidate solution from the
current solution in memory, the constrained ABC
algorithm uses following equation:

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

539

.!
 = <�!,
 + ∅!,
'�!,
 − �0,
) �
 < >��!
 , ?�ℎ@$A�	@ B (5)

where, 1 ∈ {1,2, ⋯ , *+} is randomly chosen index
which has to be different from i, �
 is randomly chosen
real number in the range �0, 1� and � ∈ {1,2, ⋯ , &}. >�, is parameter that controls the probability of
modification of the coefficient of the new solution.

Scout Production Period (SPP) is another
parameter that controls the non-improving solution. If a
solution cannot be improved further after certain trials
new solution is generated randomly by scout bees.
According to what is described above, the Original
ABC algorithm (Karaboga and Basturk, 2007a) is
explained as Algorithm 1.

Algorithm 1: Original Constrained ABC
Initialize the population of solution
Evaluate the initial population
cycle = 1
Repeat

Employed bee phase
Apply selection process based on Deb's method
Calculate the probability values for each

solution
Onlooker bee phase
Scout bee phase
Memorize the best solution achieved so far
cycle = cycle+1

 until cycle = maximum cycle number

Smart flight artificial bee colony algorithm: In scout
bee phase, there is no guarantee a solution generated
using uniform random search attracted towards a
promising region of search space. Then, to overcome
this difficulty, Flight ABC (SF-ABC) algorithm
(Mezura-Montes et al., 2010) was introduced which
employ smart flight operator in scout bee phase to
direct the search towards the best-so-far solution. Based
on this algorithm the new the features of this method of
authentication can be listed as follows (Abhishek et al.,
2013):

• Easy to implement
• Requires no special equipment
• Easy to lost or forget
• Vulnerable to shoulder surfing
• Security based on password strength
• Cost of support increases
• Familiar with a lot of users

solution search equation for scout bee is generated
using following Eq. (6):
 .!,
 = �!,
 + ∅!,
'�!,
 − �0,
) +'1 − C!
)'�D,
E�!
) (6)

where, 1 ∈ {1,2, ⋯ , *+} and � ∈ {1,2, ⋯ , &}, �0
 is a
randomly chosen solution that has to be different
form �!,
 and �D
 where �D,
 is the best-so-far
solution. The C!,
 is a random number in �−1, 1�.

If the best solution �D
 is infeasible, the trial
solution has a chance to be located near the boundaries
of the feasible region of search space. Even if the best
solution is feasible, the smart flight will generate a
solution in promising region of search space. In
addition, two dynamic tolerances F-constrained method
and tolerance for equality constraints are applied into
SF-ABC as constrained handling mechanism. In this
algorithm instead of using Deb's rules applied in Deb
(2000) F-constrained method is employed to transform
the original CNOP into unconstrained optimization
problem and use the sum of constraint violation defined
using following equation:
 Φ��0� = 6 max'0, �! �K�) + 6 max �0, Lℎ!���L − M�N
O P� !O� (7)

A tolerance F is used for comparison between two
solutions �! and �
 based on their objective function
values and their constraint violations. Based on this
method �! is preferred to �
 if and only if any of the
following conditions are satisfied:

• If constraint violations of solutions �! and �
 are

less than the tolerance value and ���� < ����.
• If constraint violations of both solutions are the

same and ���� < ����.
• If constraint violation of �! is less than constraint

violation of �
.

This process allows some infeasible solutions
located in the boundary of feasible region to be
considered to improve the preservation of solutions
placed in the promising areas in the boundaries of the
feasible region. The F value varies by:

 F �c� = R Φ��D��1 − S S�T �UV, if g < Z+0, Otherwise B (8)

where, S is the cycle number and S� is the cycle
number where, the F value will become zero and S2 is a
parameter to control the speed of reducing the tolerance
value. The initial value for F corresponds to the sum of
constrain violations of the best solution in the initial
population. The other dynamic tolerance has been
designed for equality constraints based on a tolerance
value M. In this mechanism equality constraints are
transformed into inequality constraint and the value of M reduces with increasing time until a value @b is
reached where M is defined by:
 M�S + 1� = M�S� &@ST (9)

Modification on artificial bee colony algorithm with
multiple onlookers: Subotic (2011) proposed a

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

540

Modified Constrained ABC (MO-ABC) which applies
multiple onlooker bees to improve original constrained
ABC. In this algorithm after initialization by means of
Eq. (2) and the corresponding function evaluation, the
main loop contains employed bee, onlooker bee and
scout bee phases. Solution search equations for
employed bees are generated using Eq. (3) and
evaluated. Deb's rules are then employed to choose
better solution among current and trial solution.
Probability for each solution is also calculated using
Eq. (4) and onlooker bees generates new solution using
equation below:

.!,
 =
cde
df �!,
 + %�C!,
'�!,
 − �0,
) +%�C!,
'�!,
 − �0E�,
) +%gC!,
'�!,
 − �0E�,
), �
 < >��!,
 , ?�ℎ@$A�	@

B (10)

where, .!,
 is new solution, �0,
 , �0P�,
 and �0P�,
 are
uniformly random solutions, �
 is randomly chosen
parameter in the range of �0, 1� and %�, %�, %gare
quotients which show that how much every particular
individuals partitioned in new solution. >� is control
parameter that controls the probability of the
modification on the parameters of the new solution.
After evaluation of solutions generated by onlooker
bees, in scout bee phase, abandoned solution is replaced
with a new generated solution by using (10). Finally,
the algorithm memorizes the best solution found so-far
and moves to the next iteration.

Improved artificial bee colony algorithm: Karaboga
and Akay (2012) presented a modified ABC algorithm
for constrained optimization problems. To recognize
this algorithm through this study the abbreviation
MABC is used to refer to this algorithm. In this
algorithm, similar to constrained ABC (Karaboga and
Basturk, 2007b) the solution search equations used in
employed bee and onlooker bee phases are generated
using Eq. (5). Furthermore, the scout bee phase
generates a random solution using Eq. (2). In addition,
the Deb's rules applied to be used as constraint handling
method. However, the main difference between these
two algorithms is related with the probability selection
mechanism. Based on suggested probability method
several infeasible solutions in the population are
allowed to enhance diversity. Probability values of
infeasible solutions are introduced inversely
proportional to their constraint violations. The
probability selection mechanism is defined as in
follows:

2
 = h0.5 + 0.5 j 3!4�kll56 3!4�kll7897:; m .�n�%��n�! = 0
0.5 j1 − o!pN"4!p�56 o!pN"4!p�5897:; m ?�ℎ@$A�	@ ≥ 0B (11)

where, .�n�%��n�! is the value of the violation
function corresponding to the solution �!. The
violation is defined using Eq. (7) and ����@		! is the
fitness value of the solution �! which is determined
by:
 ����@		! = R1 1 + �!T , �� �! ≥ 01 + L�!L, �� �! < 0 B (12)

Furthermore, a statistical parameter analysis is

handled and the appropriate value for each control
parameters is obtained.

Modified artificial bee colony algorithm: A Modified
ABC algorithm (M-ABC) was introduced by presenting
some modifications to the selection mechanism, the
equality and boundary constraints and scout bee
operators presented (Mezura-Montes and Cetina-
Domínguez, 2012). The mechanisms to handle equality
and boundary constraints are enhanced to direct the
search towards a more appropriate region. A dynamic
parameter control mechanism is proposed as described
by:
 F�� + 1� = F��� &@ST (13)

where, � is current cycle number &@S is the decreasing
rate value of each cycle and &@S should be greater than
one. The control mechanism works to satisfy equality
constraints at the beginning of the process and then
with the progresses of algorithm through the cycles.
This tolerance is reduced so that the constraint violation
of the generated solutions is lower than those of the
solutions obtained in the first cycles. In addition, in
contrast with original ABC, in this algorithm the
information translation process is done using
tournament selection mechanism and Deb's rules were
applied as selection principle in the tournament.
Consequently, no modified fitness values or
probabilities must be computed as in the original
constrained ABC. As suitable attractors in a constrained
search space, the smart flight operator was suggested to
enhance the location of solution. This technique is
employed in the scout bee instead of the uniform
random generation of solutions employed by general
ABC while the new solution .! is generated using
Eq. (6). Finally, to prevent the generation of values
outside the boundary of search space a mechanism is
introduced to the employed, onlooker and scout bees
phases by:
 .!,
 = R 2� !�,
 − .!,
 , �� .!,
 < � !�,
2� "#,
 − .!,
 , �� .!,
 > � "#,
 B (14)

Scout behavior modified artificial bee colony

algorithm: Scout behavior Modified Artificial Bee
Colony (SM-ABC) algorithm introduced as a powerful
algorithm for problem with high dimensionality and

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

541

when the best solution lies in the boundaries of the
feasible region of search space. In this algorithm the
behavior of the scout bee is improved in order to get the
ability to exploit the vicinity of the current best solution
using Eq. (7). In addition, the way to control the
tolerance for equality constraints is revised (Mezura-
Montes and Cetina-Domínguez, 2009).

Improved artificial bee colony algorithm using
genetic operators: GI-ABC is a genetically inspired
ABC algorithm presented in Bacanin and Tuba (2012).
The modifications have been made by adopting genetic
algorithm in the process of replacement of abandoned
solutions. In this algorithm uniform crossover and
mutation operators from genetic algorithms applied to
improve the exploitation ability of ABC algorithm
(Karaboga and Basturk, 2007a) Based on the proposed
method, after certain number of iterations called break
point, the randomly generated solution in scout bee
phase is replaced with directed search towards the best
solution where exhaustive exploitation is performed
around the best-so-far solution using uniform crossover
operator. Then, to prevent each variable to be fixed,
mutation operator is applied and each solution
parameter is mutated using following Eq. (15):

 .!,
 = �!,
 + s!,
'�0,
 − .!,
) (15)

where � = 1, 2, ⋯ , *+, �0,
 is randomly generated
solution, .0,
 is a new generated solution with best
fitness value, s!,
 is random number in �−1, 1�. Based
on above description the scout bee phase works as
follows:

• If ��@$%��n� < tu generate a new random solution

using equation (2).
• If ��@$%��n� < tu < *tu and if �ucondition is

satisfied, using Eq. (15) otherwise use Eq. (2).
• If *tu < ��@$%��n� and if �u condition is

satisfied, then select two solutions with best fitness
value otherwise, use Eq. (2).

where, tu is break point *tu is the second break point
and it is iteration and Replacement Rate �u is
parameter.

Modified constrained artificial bee colony using

smart bee: Smart Bee ABC (SB-ABC) algorithm is
another modification to the original constrained ABC
which applies its historical memories to improve the
quality of solutions (Stanarevic et al., 2011). The
motivation of present smart bee ABC algorithm come
from the fact that, ABC algorithm does not consider the
initial population to be feasible, therefore a smart bee
mechanism is proposed to ABC algorithm to exploit its
historical memories to enhance fitness value of
solutions. This mechanism is applied instead of Deb's

rules in the selection process. In SB-ABC algorithm,
the position of the best-so-far solution and its fitness
value is memorized and is replaced with the new
randomly generated solution in two cases:

• If the new solution is infeasible solution
• If the new solution is feasible solution but it does

not have better fitness value

EXPERIMENTAL RESULTS

This section is to evaluate, analyze and compare
the performance of the aforementioned eight
constrained ABC algorithms. At this aim several
constrained benchmark functions are considered form
CEC 2006 (Liang et al., 2006). Table 1 describes
various kinds of these test functions (linear, nonlinear,
polynomial, quadratic and cubic) with different
numbers of decision variables, different kinds (linear
inequalities, linear equalities, nonlinear inequalities and
nonlinear equalities) and numbers of constraints. In this
table v is the estimated ratio between the feasible
region and the search space, LI is the number of linear
inequality constraints, NI is the number of nonlinear
inequality constraints, LE is the number of linear
equality constraints, NE is the number of nonlinear
equality constraints, % is the number of constraints
active at the optimal solution and � is the number of
variables of the problem. In addition, the value of
parameters used in each algorithm is given in Table 2.

DISCUSSION AND CONCLUSION

Experimental results: In this study the performances
of several constrained ABC algorithms are evaluated
and compared. In Experiment (1) each test function was
repeated 30 times for each algorithm and then the best,
worst, mean solution as well as standard deviation is
recorded and the results are listed in Table 3. From the
results in this table, ABC, MABC, M-ABC, Mo-ABC,
SM-ABC, GI-ABC algorithm have found optimal
minima for the seven test functions g01, g03, g04, g06,
g08, g11, g12. SF-ABC can generate near optimal
solutions for two functions g06, g01 while produce
optimal solutions for five functions g03, g04, g08, g11,
g12.

The SB-ABC can find near optimal solution for
one function g06 and for six functions can find the
optimal solution g01, g03, g04, g08, g11, g12. As can
be seen from Table 3 on function g02, GI-ABC, M-
ABC and SM-ABC performed better than other
algorithms while SF-ABC is not successful on this
function. SF-ABC and GI-ABC can provide better
result for function g05 where SB-ABC cannot perform
well. GI-ABC, SM-ABC outstands in solving function
g07 compare to other algorithms. The M-ABC
algorithm is more successful than MABC on this

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

542

Table 1: The main characteristics of the test problems
Problem Type n ρ LI NI LE NE α
g01 Quadratic 13 0.0111 9 0 0 0 6
g02 Nonlinear 20 99.9971 1 1 0 0 1
g03 Polynomial 10 0.0000 0 0 0 1 1
g04 Quadratic 5 52.1230 0 6 0 0 2
g05 Cubic 4 0.0000 2 2 0 3 3
g06 Cubic 2 0.0066 0 5 0 0 2
g07 Quadratic 10 0.0003 3 2 0 0 6
g08 Nonlinear 2 0.8560 0 4 0 0 0
g09 Polynomial 7 0.5121 0 3 0 0 2
g10 Linear 8 0.0010 3 0 0 0 3
g11 Polynomial 2 0.0000 0 1 0 1 1
g12 Quadratic 3 4.7713 0 1 0 0 0
g13 Quadratic 5 0.0000 0 0 0 3 3

Table 2: Parameters setting

Table 3: Comparisons based on best, mean, worst and standard deviation
Problem ABC MABC M -ABC SM-ABC GI-ABC SF-ABC MO-ABC SB-ABC
g01 Best -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
 Mean -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -14.163000 -15.000000 -15.000000
 Worst -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -12.525000 -15.000000 -15.000000
 Std. dev 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.923000 0.000000 0.000000
g02 Best 0.8035989 0.8035995 0.803614 -0.803617 -0.803617 -0.708944 -0.803610 -0.803500
 Mean -0.7935470 -0.7935120 -0.799450 -0.799421 -0.800213 -0.471249 -0.793510 -0.792980
 Worst -0.7496490 -0.7498960 -0.778176 -0.805767 -0.796850 -0.319535 -0.744580 -0.748990
 Std. dev 0.0141230 -0.0122300 -0.006440 0.006840 0.003400 0.010800 0.016000 0.025000
g03 Best -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Mean -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Worst -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Std. dev -0.0000000 0.0000000 0.000000 0.000000 -0.000000 0.000000 0.000000 0.000000
g04 Best -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000
 Mean -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000
 Worst -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000
 Std. dev 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
g05 Best 5126.4890000 5126.4900000 5126.734000 5126.678000 5126.502000 5126.506000 5126.657000 5126.532000
 Mean 5158.6220000 5182.6790000 5178.178000 5178.392000 5264.654000 5126.527000 5162.506000 5185.752000
 Worst 5438.1830000 5324.3570000 5317.183000 5120.885000 5126.345000 5126.859000 5229.119000 5438.423000
 Std. dev 75.3370000 68.3490000 56.000000 56.100000 38.275000 0.079300 47.820000 75.367000
g06 Best -6961.8140000 -6961.8140000 -6961.814000 -6961.814000 -6961.814000 -6961.814000 -6961.814000 -6961.814000
 Mean -6961.8140000 -6961.8130000 -6961.814000 -6961.814000 -6961.814000 -6961.813000 -6961.813000 -6961.816000
 Worst -6961.7940000 -6961.8050000 -6961.814000 -6961.814000 -6961.814000 -6961.805000 -6961.804000 -6961.813000
 Std. dev 0.0050000 0.0002000 0.000000 0.000000 0.000000 0.000200 0.000100 0.000700
g07 Best 24.3286100 24.3250000 24.312000 24.317000 24.303000 24.164500 24.323000 24.326000
 Mean 24.4698800 24.4690000 24.416000 24.415000 24.376000 24.658000 24.456000 24.485000
 Worst 25.1875400 24.6100000 24.794000 24.289000 24.343000 25.551000 24.929000 25.227000
 Std. dev 0.1854900 0.1175000 0.127000 0.124000 0.033000 0.326000 0.135000 0.195000
g08 Best -0.0958250 -0.0958250 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
 Mean -0.0958250 -0.0958250 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
 Worst -0.0958200 -0.0958250 -0.095825 -0.095825 -0.095820 -0.095825 -0.095825 -0.095825
 Std. dev 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
g09 Best 680.6329710 680.6300000 680.633000 680.631000 680.630500 680.632000 680.631000 680.643000
 Mean 680.6401260 680.6360000 680.647000 680.656000 680.630000 680.645000 680.635000 680.685000
 Worst 680.6498300 680.6570000 680.676000 680.632000 680.559000 680.858000 680.636000 680.678000
 Std. dev 0.0039981 0.0038700 0.0543000 0.015500 0.060900 0.041200 0.004000 0.014000
g10 Best 7053.129000 7058.8430000 7051.775000 7051.694000 7049.279000 7049.516600 7053.320000 7053.958000
 Mean 7224.547000 7220.3950000 7233.810000 7233.646000 7192.423000 7116.823600 7167.801000 7224.425000
 Worst 7389.195000 7362.7406000 7604.129000 7121.456000 7389.195000 7362.740600 7418.334000 7604.239000
 Std. dev 132.9420000 122.6700000 1013.000000 112.000000 81.859000 82.124000 83.008000 133.937000
g11 Best 0.7500000 0.7500000 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
 Mean 0.7500000 0.7500000 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
 Worst 0.7500000 0.7500000 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
 Std. dev 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
g12 Best -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Mean -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Worst -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
 Std. dev 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
g13 Best 0.7594810 0.7587400 0.053890 0.053967 0.053950 0.053986 0.454000 0.767900
 Mean 0.9679549 0.9679500 0.157791 0.158489 0.248700 0.263854 0.456000 0.972000
 Worst 1.0000000 1.0000000 0.441978 0.104522 0.058850 1.000000 0.489000 1.000000
 Std. dev 0.0549543 0.0568900 0.017200 0.172760 0.203000 0.216000 0.021000 0.056900

Algorithm Parameters Reference
ABC NP = 40; SN = 20; MCN = 6000; limit = SN×d; MR = 0.8; SPP = SN ×d; ε = 0.0001 Karaboga and Basturk (2007a)
MABC NP = 40; SN = 20; MCN = 6000; limit = 0.5 ×SN ×d; e = 0.0001; MR = 0.8; SPP = 0.5 × SN ×d Karaboga and Akay (2012)
M-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; MR = 0.8; ε = 0.0001 Mezura-Montes and Cetina-

Domínguez (2012)
SM-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; MR = 0.8; ε = 0.0001; dec = 1.002 Mezura-Montes and Cetina-

Domínguez (2009)
MO-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; a2 = 0.4; a3 = 0.3; MR = 0.8; ε = 0.0001; a1= 0.3 Subotic (2011)
SB-ABC NP = 40; SN = 20; MCN = 6000; limit = SN × d; MR = 0.8; SPP = SN × d; ε = 0.0001 Stanarevic et al. (2011)
GI-ABC NP = 40; SN = 20; MCN = 6000; limit = 150; MR = 0.923; ε = 0.0001 Bacanin and Tuba (2012)
SF-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; dec = 1.002; PC = 46; gc = 1160; δ = 1:0; MR =

0.923; ε = 0.0001
Mezura-Montes et al. (2010)

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

543

Table 4: Comparison by means of gap based on mean solution
Problems ABC MABC M-ABC SM-ABC MO-ABC GI-ABC SF-ABC SB-ABC
g01 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 5.58300 0.0000
g02 1.25330 1.25768 0.518778 0.52239 1.25790 0.4238 41.35900 1.3238
g03 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000
g04 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000
g05 0.62662 1.09590 1.012270 1.01227 1.5605e-04 2.6949 5.656e-04 1.1558
g06 0.00000 1.436e-06 0.000000 0.00000 0.00000 0.0000 1.436e-5 2.873e-05
g07 0.67420 1.346e-06 0.000000 0.00000 0.00000 0.2879 1.44820 0.7364
g08 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000
g09 1.488e-03 8.815e0-4 2.498e0-3 3.8199e-03 7.346e-04 0.0000 2.20e-03 8.0807e-03
g10 2.48670 2.42780 2.618150 2.61580 1.68175 2.0310 0.95859 2.4850
g11 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000
g12 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000
g13 1694.17030 1694.16170 192.476300 193.77010 745.22710 360.9823 389.07130 1701.6682

Table 5: Holm-bonferroni procedure for the 8 algorithms over the 13 test problems under consideration
 j Algorithm R} p} α} SED Significant

7 SB-ABC 77e+00 0.000 7.1429e-03 -0.1733e+02 Reject
6 SF-ABC 93e+00 0.5000e+00 8.33e-03 0.0000 Accept
5 ABC 94e+00 0.8607e+00 1.000e-02 0.10833e+01 Accept
4 SM-ABC 96e+00 0.9999e+00 1.250e-02 0.32500e+01 Accept
3 M-ABC 98e+00 1.0000e+00 1.667e-02 0.54167e+01 Accept
2 MO-ABC 101e+00 1.0000e+00 2.500e-02 0.86667e+01 Accept
1 GI-ABC 105e+00 1.0000e+00 5.000e-02 0.13000e+02 Accept
 MABC 93e+00

problem while SF-ABC cannot provide satisfactory
results. It is obvious from the table MO-ABC and
MABC outperformed on problem g09. GI-ABC, SF-
ABC and MO-ABC achieved superior results on
problem g10 while SB-ABC generates poor results in
this problem. GI-ABC, MO-ABC and M-ABC
algorithms outperformed the other considered
algorithms on the solution of the problem g13 while
SB-ABC has shown the poorest performance.

Comparison based on error: In this section the
solution quality is measured by the gap between the
optimal solution and the best solution where gap is
defined as:
 ���@	� 	n����n� − n2���%� 	n����n��n2���%� 	n����n� � × 100

Table 4 demonstrated that in all algorithms the big

gap between the optimal solution and the best solution
is for problem g13. In GI-ABC the best gap is obtained
by g01, g03, g04, g06, g08, g09, g11, g12 problems is
zero. However, for ABC the gap for g01, g02, g03, g04,
g06, g08, g11, g12 problem is zero. MABC algorithm
approximately behaves like ABC algorithm. SM-ABC,
M-ABC and MO-ABC algorithms generate zero-gap
for g01, g03, g04, g06, g07, g08 and g11 and g12
problems. SF-ABC algorithm has zero-gap for
problems g03, g04, g08, g11, g12. Algorithm has zero-
gap for problems g03, g04, g08, g11 and g12. SB-ABC
obtain zero- gap for problems g01, g03, g04, g08, g11,
g12.

Ranking by means of holm-bonferroni method: A
statistical study on the performance of the considered
algorithms regarding the performance of MABC

algorithm (Karaboga and Akay, 2012) carried out by
employing the Holm-Bonferroni mechanism (Liang
et al., 2006; Holm, 1979). The results of using Holm-
Bonferroni method is tabulated in Table 5. In this
method, the 8 algorithms under analysis have been
ranked based on their average performance calculated
over 13 problems. Then, a score �
 has been assigned to
each algorithm for � = 1, 2, ⋯ , +� where +� is the
number of algorithms under consideration. The score is
calculated as follows. In this mechanism first the
performance of each algorithm for each function is
ranked from one to eight.

A score of eight is assigned to the problem with the
best performance, 7 is assigned to the second best and
so on. While the algorithm presenting the worst
performance scores is marked as 1. Then, after
obtaining score for each algorithm, they are summed up
and then based on the obtained results the score are
sorted. The SED shows the standard error of difference.
Using the values of SED, the corresponding cumulative
normal distribution values 2
 have been calculated.
These 2
 then compared with the corresponding value
of � = 0.05 �T . If 2 < � then a test is reported as
significant otherwise results are reported as
insignificant. From Table 5 it is obvious that reference
algorithm MABC significantly outperforms SB-ABC
algorithm and is comparative with other algorithms.

Convergence analysis: This subsection shows the
comparison of the convergence speed (Iterations) in
term of number of iterations between the original
constrained ABC, MABC, M-ABC, SM-ABC, GI-
ABC, SF-ABC, MO-ABC and SB-ABC for problems
g02, g05, g10 and g13. It can be observed that in Fig. 1.
The SF-ABC has lowest convergence comparing to the

Res. J. Appl. S

Fig. 1: Iterations to convergence for problem g02

Fig. 2: Iterations to convergence for problem g13

other algorithms under consideration. Figure 2
ABC obtains smallest convergence speed and ABC
algorithm stands in the second place.

ACKNOWLEDGMENT

The authors would like to thank Universiti

Teknologi Malaysia and the Ministry of Education,
Malaysia for the financial funding through RUG 08H47
grant.

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

544

Iterations to convergence for problem g02

Iterations to convergence for problem g13

other algorithms under consideration. Figure 2 the SB-
ABC obtains smallest convergence speed and ABC

ACKNOWLEDGMENT

The authors would like to thank Universiti
Teknologi Malaysia and the Ministry of Education,
Malaysia for the financial funding through RUG 08H47

REFERENCES

Akay, B. and D. Karaboga, 2012. A modified artificial

bee colony algorithm for real
optimization. Inform. Sciences, 192: 120

Aydina, D., S. Özyön, C. Yaşar and T. Liao, 2014.
Artificial bee colony algorithm with dynamic
population size to combine
emission dispatch problem. Int. J. Elec. Power., 45:
144-153.

S

Akay, B. and D. Karaboga, 2012. A modified artificial
bee colony algorithm for real-parameter

, 192: 120-142.
and T. Liao, 2014.

Artificial bee colony algorithm with dynamic
combine economic and

emission dispatch problem. Int. J. Elec. Power., 45:

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

545

Bacanin, N. and M. Tuba, 2012. Artificial Bee Colony
(ABC) algorithm for constrained optimization
improved with genetic operators. Stud. Inform.
Control, 21(2): 137-146.

Banitalebi, A., M.I.A. Aziz, A. Bahar and Z.A. Aziz,
2015. Enhanced compact artificial bee colony.
Inform. Sciences, 298(20): 491-511.

Deb, K., 2000. An efficient constraint handling method
for genetic algorithms. Comput. Method Appl.
M., 186(2-4): 311-338.

Dorigo, M. and T. Stützle, 2010. Ant Colony
Optimization: Overview and Recent Advances. In:
Gendreau, M. and J.Y. Potvin (Eds.), Handbook of
Metaheuristic. International Series in Operations
Research and Management Science, Springer US,
New York, pp: 227-263.

Drias, H., S. Souhila and S. Yahi, 2005. Cooperative
bees swarm for solving the maximum weighted
satisfiability problem. In: Cabestany, J., A. Prieto
and D.F. Sandoval (Eds.), IWANN 2005. LNCS
3512, Springer-Verlag, Berlin, Heidelberg, pp:
318-325.

Farmer, J.D., N.H. Packard and A.S. Perelson, 1986.
The immune system, adaptation and machine
learning. Physica D, 22(1): 187-204.

Fogel, L.J., A.J. Owens and M.J. Walsh, 1966.
Artificial intelligence through simulated
evolution. John Wiley, New York, pp: 227-296.

Gao, W.F., S.Y. Liu and L.L. Huang, 2013. A novel
artificial bee colony algorithm with Powell's
method. Appl. Soft Comput., 13(9): 3763-3775.

Gao, W.F., S.Y. Liu and L.L. Huang, 2014. Enhancing
artificial bee colony algorithm using more
information-based search equations. Inform.
Sciences, 270: 112-133.

Holm, S., 1979. A simple sequentially rejective
multiple test procedure. Scand. J. Stat., 2(6): 65-70.

Karaboga, D., 2005. An idea based on honey bee
swarm for numerical optimization. Technical
Report-TR06, Erciyes University, Engineering
Faculty, Computer Engineering Department, Vol.
200.

Karaboga, D. and B. Akay, 2009. A comparative study
of artificial bee colony algorithm. Appl. Math.
Comput., 214(1): 108-132.

Karaboga, D. and B. Basturk, 2007a. A powerful and
efficient algorithm for numerical function
optimization: Artificial Bee Colony (ABC)
algorithm. J. Global. Optim., 39(3): 459-471.

Karaboga, D. and B. Basturk, 2007b. Artificial Bee
Colony (ABC) optimization algorithm for solving
constrained optimization problems. In: Melin,
P. et al. (Eds.), Foundations of Fuzzy Logic and
Soft Computing, IFSA, 2007. LNAI 4529,
Springer-Verlag, Berlin, Heidelberg, pp: 789-798.

Karaboga, D. and B. Basturk, 2008. On the
performance of Artificial Bee Colony (ABC)
algorithm. Appl. Soft Comput., 8(1): 687-697.

Karaboga, D. and B. Akay, 2012. A modified Artificial
Bee Colony (ABC) algorithm for constrained
optimization problems. Appl. Soft Comput., 11(3):
3021-3031.

Karaboga, D. and B. Gorkemli, 2014. A quick Artificial
Bee Colony (qABC) algorithm and its performance
on optimization problems. Appl. Soft Comput., 23:
227-238.

Kennedy, J., 2010. Particle Swarm Optimization. In:
Encyclopedia of Machine Learning. Springer, US,
pp: 760-766,

Kiran, M.S., H. Hakli, M. Gunduz and H. Uguz, 2015.
Artificial bee colony algorithm with variable
search strategy for continuous optimization.
Inform. Sciences, 300: 140-157.

Koza, J.R., 1992. Genetic programming: On the
programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA.

Li, G., N. Peifeng and X. Xiao, 2012. Development and
investigation of efficient artificial bee colony
algorithm for numerical function optimization.
Appl. Soft. Comput., 12(1): 320-332.

Liang, J.J., T.P. Runarsson, E. Mezura-Montes,
M. Clerc, P.N. Suganthan, C.A. Coello Coello and
K. Deb, 2006. Problem definitions and evaluation
criteria for the CEC 2006 special session on
constrained real-parameter optimization. Technical
Report 2006.

Mezura-Montes, E. and O. Cetina-Domínguez, 2009.
Exploring promising regions of the search space
with the scout bee in the artificial bee colony for
constrained optimization. Proceeding of the
Artificial Neural Networks in Enginnering
Conference (ANNIE'2009), ASME Press.

Mezura-Montes, E. and O. Cetina-Domínguez, 2012.
Empirical analysis of a modified artificial bee
colony for constrained numerical optimization.
Appl. Math. Comput., 218(22): 10943-10973.

Mezura-Montes, E., M. Damián-Araoz and O. Cetina-
Domingez, 2010. Smart flight and dynamic
tolerances in the artificial bee colony for
constrained optimization. Proceeding of IEEE
Congress on Evolutionary Computation (CEC), pp:
1-8.

Passino, K.M., 2002. Biomimicry of bacterial foraging
for distributed optimization and control. IEEE
Contr. Syst., 22(3): 52-67.

Rechenberg, I., 1978. Evolutionary Strategies. In:
Schneider, B. and U. Ranft (Eds.),
Simulationsmethoden in der Medizin und Biologie.
Springer-Verlag, Berlin, Heidelberg, pp: 83-114.

Simon, D., 2008. Biogeography-based optimization.
IEEE T. Evolut. Comput., 12(6): 702-713.

Stanarevic, N., M. Tuba and N. Bacanin, 2011.
Modified artificial bee colony algorithm for
constrained problems optimization. Int. J. Math.
Model. Method. Appl. Sci., 5(3): 644-651.

Res. J. Appl. Sci. Eng. Technol., 10(5): 537-546, 2015

546

Storn, R. and P. Kenneth, 1997. Differential evolution-a
simple and efficient heuristic for global
optimization over continuous spaces. J. Global
Optim., 11(4): 341-359,

Subotic, M., 2011. Artificial bee colony algorithm with
multiple onlookers for constrained optimization
problems. Proceeding of the European Computing
Conference, pp: 251-256.

Tang, K.S., K.F. Man, S. Kwong and Q. He, 1996.
Genetic algorithms and their applications. IEEE
Signal Proc. Mag., 13(6): 22-37.

Xiang, W.L. and M.Q. An, 2013. An efficient and
robust artificial bee colony algorithm for numerical
optimization. Comput. Oper. Res., 40(5):
1256-1265.

