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Abstract: This study is aimed to evaluate, analyze and compare the performances of available constrained Artificial 
Bee Colony (ABC) algorithms in the literature. In recent decades, many different variants of the ABC algorithms 
have been suggested to solve Constrained Optimization Problems (COPs). However, to the best of the authors' 
knowledge, there rarely are comparative studies on the numerical performance of those algorithms. This study is 
considering a set of well-known benchmark problems from test problems of Congress of Evolutionary Computation 
2006 (CEC2006). 
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INTRODUCTION 

 
Population-based optimization algorithms are 

nature-inspired algorithms that can generate near-
optimal solutions for hard optimization problems. A 
general characteristic of all population-based 
algorithms is that the population of possible solutions is 
improved iteratively by applying some search operators 
on the individuals depending on the quality of their 
fitness. As a result, the population is steered towards 
more promising region of the search space. Population-
based optimization algorithms can be classified in two 
main categories, Evolutionary Computation (EC) and 
Swarm Intelligence (SI). 

Genetic Algorithm (GA) (Tang et al., 1996), 
Evolution Strategy (ES) (Rechenberg, 1978), Genetic 
Programming (GP) (Koza, 1992), Differential 
Evolution (DE) (Storn and Kenneth, 1997) and 
Evolutionary Programming (EP) (Fogel et al., 1966) 
have been at the core of recent advancements on EC 
class. 

Swarm intelligence has also captured attention of 
many researchers in recent years. The most prominent 
SI algorithms proposed in the literatures are as follow. 
Ant Colony Optimization (ACO) (Dorigo and Stützle, 
2010), Particle Swarm Optimization (PSO) (Kennedy, 
2010), Bee Swarm Optimization (BSO) (Drias et al., 
2005), Bacterial Foraging Optimization (BFOA) 
(Passino, 2002), Biogeography-Based Optimization 
(BBO) (Simon, 2008), Artificial Immune Systems 
(AIS) (Farmer et al., 1986) and Artificial Bee Colony 
(ABC) (Karaboga, 2005) and so on. 

ABC is one of the most successful SI algorithm 
inspired from the foraging behavior of honey bee 

swarm and was firstly suggested by Karaboga (2005) in 
2005 to solve unconstrained optimization problems. 
Numerical studies show that this algorithm is 
competitive to other population-based algorithms with 
an advantage of simplicity and employing fewer control 
parameters (Karaboga and Basturk, 2007a, 2008; 
Karaboga and Akay, 2009). This method was then 
extended to solve Constrained Nonlinear Optimization 
Problems (CNOPs) which can be formulated as in 
Problem: 

 ��� ����                                                            	. �   �
��� ≤ 0    � = 1,2, ⋯ , �                          ℎ
��� = 0    � = � + 1, � + 2, ⋯ , �         (1) 

 
where, � = [��, ��, ⋯ , ��] ∈ �� is n-dimensional 
decision vector and each �� is bounded by lower and 
upper bounds as � !� ≤ �! ≤ � "# . The objective 
function ���� is defined on 	 an n-dimensional search 
space in ��. 

This study presents a comprehensive comparative 
study on the performances of available constrained ABC 
algorithms. 
 
Artificial bee colony: ABC is a recently proposed 
population-based algorithms by Karaboga (2005) being 
inspired by foraging behavior and waggle dance of 
honey bee colonies. This algorithm has been widely 
used to solve optimization problems (Gao et al., 2014; 
Aydina et al., 2014; Xiang and An, 2013; Li et al., 
2012). ABC algorithm simulates the cooperative 
intelligence in foraging behavior of a honey bee swarm. 
In this algorithm, the position of food source denotes a 
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possible solution to the optimization problem and the 
nectar amount of food source represents fitness value of 
the associated solution. In ABC algorithm, half of the 
colony includes employed bee and the other half consist 
of onlooker bees. The number of employed bees is equal 
to the Number of Solutions (SN) in the population. At 
initialization step, ABC generates a randomly 
distributed initial population of SN solutions using 
following Equation: 
 �!,
 = � !�,
 + $%�&�0,1�'� "#,
 − � !�,
)       (2) 
 
where, each solution �! , � = 1,2, ⋯ , *+ is d-dimensional 
vector for � = {1,2, ⋯ , &} , � !�,
 and � "#,
 are the 
lower and upper bounds for the dimension j, 
respectively. After initialization, the fitness value of 
associated solutions are evaluated and saved. Then, the 
population of the solutions is subjected to predetermined 
number of cycles called Maximum Cycle Number 
(MCN) of the search processes of the employed bees, 
the onlooker bees and the scout bees' phases.  

An employed bee produces a modification on the 
solution �! defined as: 
 .!,
 = �!,
 + ∅!,
'�!,
 − �0,
)                (3) 
 
where, 1 ∈ {1,2, ⋯ , *+} and � ∈ {1,2, ⋯ , &} are 
randomly chosen indexes, 1 has to be different from �, ∅!,
 is a random number in the range [−1, 1]. After 
each .! is calculated the fitness value of this solution is 
evaluated and a greedy selection mechanism is applied 
comparing �! and .!.  

If the fitness value of the new solution is higher 
than the current solution the bee is replaced with the 
new solution, otherwise the current solution remains. 
After the employed bee phase, the solution information 
is transferred to the onlooker bee phase. Onlooker bees 
choose a solution depending on the probability value 2!  
associated with that solution calculated using following 
equation: 
 2! = 3!456 3!47897:;                                (4) 

 
where, ���! is the fitness value of solution i. Once the 
onlooker has selected solution �! a modification is done 
on the solution using Eq. (3). Then fitness values of 
generated solutions are evaluated and similar to 
employed bees phase, greedy selection mechanism is 
employed. If new solution has better fitness value than 
current solution, the new solution remains in population 
and the old solution is removed. In the scout bee phase, 
if solution �! cannot be improved further through a 
predetermined number of trails (limit), then that 
solution is abandoned and replaced with a new solution 
generated randomly in scout phase. This process 
employs Eq. (2).  

The ABC algorithm consists of three control 
parameters, the Number of Solutions (SN), the total 

Number of Cycles (MCN) as well as the number of 
cycles that a non-improving solution will be kept before 
being abandoned and replaced by a new solution 
generated by the scout bee mechanism (limit). In ABC 
algorithm the employed and onlooker bees are 
responsible for exploitation processes and scout bees 
control the exploitation process. In recent years the vast 
majority of unconstrained ABC algorithm have been 
presented and applied for practical problems (Akay and 
Karaboga, 2012; Gao et al., 2013; Banitalebi et al., 
2015; Karaboga and Gorkemli, 2014; Kiran et al., 
2015). 
 

METHODOLOGY 
 
Constrained artificial bee colony: ABC algorithm has 
been originally proposed to deal with unconstrained 
optimization problems (Karaboga, 2005). The ABC 
algorithm is then adapted to tackle constrained 
optimization problems. The presence of various 
constraints and interferences between constraints makes 
COPs more difficult to tackle than unconstrained 
optimization problems. In this section, several 
constrained ABC algorithm are concisely reviewed to 
facilitate experimental studies, analysis and 
comparison. 
 
Original constrained artificial bee colony: ABC 
algorithm for the first time was adapted by Karaboga 
and Basturk (2007b) to solve constrained optimization 
problems. In this algorithm (Deb, 2000) mechanism is 
employed to cope with constraints, due to its simplicity, 
computational cost and fine tuning requirement over 
other constraint handling methods. Deb's method 
applies a tournament selection operator, comparing two 
solutions at a time with assumption that any feasible 
solution is preferable than any infeasible solution. 
Therefore, based on Deb's method the following criteria 
are always enforced: 
 
• Any feasible solution is preferred to any infeasible 

solution 
• Among two feasible solutions, the one having 

better fitness value is preferred 
• If both solutions are infeasible the one having 

lowest constraint violation is preferred 
 

As initialization with feasible solutions is very time 
consuming mechanism and in some situation, 
impossible to generate a feasible solution randomly, the 
constrained ABC algorithm does not consider the initial 
population to be feasible. Alternatively, Deb's rules 
were employed instead of greedy selection to direct the 
solutions to feasible region of search space. In addition, 
scout bee phase of the algorithm provides a diversity 
mechanism that allows new and probably infeasible 
individuals to be in the population. 

In order to produce a candidate solution from the 
current solution in memory, the constrained ABC 
algorithm uses following equation: 
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.!
 = <�!,
 + ∅!,
'�!,
 − �0,
)   �
 < >��!
 ,                                ?�ℎ@$A�	@ B             (5) 

 
where, 1 ∈ {1,2, ⋯ , *+} is randomly chosen index 
which has to be different from i, �
 is randomly chosen 
real number in the range �0, 1� and � ∈ {1,2, ⋯ , &}. >�, is parameter that controls the probability of 
modification of the coefficient of the new solution. 

Scout Production Period (SPP) is another 
parameter that controls the non-improving solution. If a 
solution cannot be improved further after certain trials 
new solution is generated randomly by scout bees. 
According to what is described above, the Original 
ABC algorithm (Karaboga and Basturk, 2007a) is 
explained as Algorithm 1. 
 
Algorithm 1: Original Constrained ABC 
Initialize the population of solution 
Evaluate the initial population 
cycle = 1 
Repeat 

Employed bee phase 
Apply selection process based on Deb's method 
Calculate the probability values for each 

solution 
Onlooker bee phase 
Scout bee phase 
Memorize the best solution achieved so far 
cycle = cycle+1  

   until cycle = maximum cycle number 
 
Smart flight artificial bee colony algorithm: In scout 
bee phase, there is no guarantee a solution generated 
using uniform random search attracted towards a 
promising region of search space. Then, to overcome 
this difficulty, Flight ABC (SF-ABC) algorithm 
(Mezura-Montes et al., 2010) was introduced which 
employ smart flight operator in scout bee phase to 
direct the search towards the best-so-far solution. Based 
on this algorithm the new the features of this method of 
authentication can be listed as follows (Abhishek et al., 
2013): 
 
• Easy to implement 
• Requires no special equipment 
• Easy to lost or forget 
• Vulnerable to shoulder surfing 
• Security based on password strength 
• Cost of support increases 
• Familiar with a lot of users  

 
solution search equation for scout bee is generated 
using following Eq. (6): 
 .!,
 = �!,
 + ∅!,
'�!,
 − �0,
) +'1 − C!
)'�D,
E�!
)                                           (6) 

where, 1 ∈ {1,2, ⋯ , *+} and � ∈ {1,2, ⋯ , &}, �0
  is a 
randomly chosen solution that has to be different 
form �!,
 and �D
 where �D,
 is the best-so-far 
solution. The C!,
  is a random number in �−1, 1�. 

If the best solution �D
 is infeasible, the trial 
solution has a chance to be located near the boundaries 
of the feasible region of search space. Even if the best 
solution is feasible, the smart flight will generate a 
solution in promising region of search space. In 
addition, two dynamic tolerances F-constrained method 
and tolerance for equality constraints are applied into 
SF-ABC as constrained handling mechanism. In this 
algorithm instead of using Deb's rules applied in Deb 
(2000) F-constrained method is employed to transform 
the original CNOP into unconstrained optimization 
problem and use the sum of constraint violation defined 
using following equation: 
 Φ��0� = 6 max'0, �! �K�) + 6 max �0, Lℎ!���L − M�N
O P� !O�      (7) 
 

A tolerance F is used for comparison between two 
solutions �! and �
 based on their objective function 
values and their constraint violations. Based on this 
method �! is preferred to �
 if and only if any of the 
following conditions are satisfied: 

 
• If constraint violations of solutions �! and �
 are 

less than the tolerance value and ���� < ����. 
• If constraint violations of both solutions are the 

same and ���� < ����. 
• If constraint violation of �! is less than constraint 

violation of �
. 
 

This process allows some infeasible solutions 
located in the boundary of feasible region to be 
considered to improve the preservation of solutions 
placed in the promising areas in the boundaries of the 
feasible region. The F value varies by: 

 F �c� = R Φ��D��1 − S S�T �UV, if g < Z+0,                                         Otherwise B             (8) 

 
where, S is the cycle number and S� is the cycle 
number where, the F value will become zero and S2 is a 
parameter to control the speed of reducing the tolerance 
value. The initial value for F corresponds to the sum of 
constrain violations of the best solution in the initial 
population. The other dynamic tolerance has been 
designed for equality constraints based on a tolerance 
value M. In this mechanism equality constraints are 
transformed into inequality constraint and the value of M reduces with increasing time until a value @b is 
reached where M is defined by: 
 M�S + 1� = M�S� &@ST                 (9) 
 
Modification on artificial bee colony algorithm with 
multiple onlookers: Subotic (2011) proposed a 
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Modified Constrained ABC (MO-ABC) which applies 
multiple onlooker bees to improve original constrained 
ABC. In this algorithm after initialization by means of 
Eq. (2) and the corresponding function evaluation, the 
main loop contains employed bee, onlooker bee and 
scout bee phases. Solution search equations for 
employed bees are generated using Eq. (3) and 
evaluated. Deb's rules are then employed to choose 
better solution among current and trial solution. 
Probability for each solution is also calculated using 
Eq. (4) and onlooker bees generates new solution using 
equation below: 
 

.!,
 =
cde
df �!,
 + %�C!,
'�!,
 − �0,
)  +%�C!,
'�!,
 − �0E�,
)  +%gC!,
'�!,
 − �0E�,
),  �
 < >��!,
 ,  ?�ℎ@$A�	@

B        (10) 

 
where, .!,
 is new solution, �0,
 , �0P�,
 and �0P�,
 are 
uniformly random solutions, �
 is randomly chosen 
parameter in the range of �0, 1� and %�, %�, %gare 
quotients which show that how much every particular 
individuals partitioned in new solution. >� is control 
parameter that controls the probability of the 
modification on the parameters of the new solution. 
After evaluation of solutions generated by onlooker 
bees, in scout bee phase, abandoned solution is replaced 
with a new generated solution by using (10). Finally, 
the algorithm memorizes the best solution found so-far 
and moves to the next iteration. 
 
Improved artificial bee colony algorithm: Karaboga 
and Akay  (2012) presented a modified ABC algorithm 
for constrained optimization problems. To recognize 
this algorithm through this study the abbreviation 
MABC is used to refer to this algorithm. In this 
algorithm, similar to constrained ABC (Karaboga and 
Basturk, 2007b) the solution search equations used in 
employed bee and onlooker bee phases are generated 
using Eq. (5). Furthermore, the scout bee phase 
generates a random solution using Eq. (2). In addition, 
the Deb's rules applied to be used as constraint handling 
method. However, the main difference between these 
two algorithms is related with the probability selection 
mechanism. Based on suggested probability method 
several infeasible solutions in the population are 
allowed to enhance diversity. Probability values of 
infeasible solutions are introduced inversely 
proportional to their constraint violations. The 
probability selection mechanism is defined as in 
follows: 
 

2
 = h0.5 + 0.5 j 3!4�kll56 3!4�kll7897:; m .�n�%��n�! = 0
0.5 j1 − o!pN"4!p�56 o!pN"4!p�5897:; m  ?�ℎ@$A�	@ ≥ 0B      (11) 

where, .�n�%��n�!  is the value of the violation 
function corresponding to the solution �!. The 
violation is defined using Eq. (7) and ����@		!  is the 
fitness value of the solution �! which is determined 
by: 
 ����@		! = R1 1 + �!T , �� �! ≥ 01 + L�!L, �� �! < 0 B           (12) 

 
Furthermore, a statistical parameter analysis is 

handled and the appropriate value for each control 
parameters is obtained. 
 
Modified artificial bee colony algorithm: A Modified 
ABC algorithm (M-ABC) was introduced by presenting 
some modifications to the selection mechanism, the 
equality and boundary constraints and scout bee 
operators presented (Mezura-Montes and Cetina-
Domínguez, 2012). The mechanisms to handle equality 
and boundary constraints are enhanced to direct the 
search towards a more appropriate region. A dynamic 
parameter control mechanism is proposed as described 
by: 
 F�� + 1� = F��� &@ST               (13) 
 
where, � is current cycle number &@S is the decreasing 
rate value of each cycle and &@S should be greater than 
one. The control mechanism works to satisfy equality 
constraints at the beginning of the process and then 
with the progresses of algorithm through the cycles. 
This tolerance is reduced so that the constraint violation 
of the generated solutions is lower than those of the 
solutions obtained in the first cycles. In addition, in 
contrast with original ABC, in this algorithm the 
information translation process is done using 
tournament selection mechanism and Deb's rules were 
applied as selection principle in the tournament. 
Consequently, no modified fitness values or 
probabilities must be computed as in the original 
constrained ABC. As suitable attractors in a constrained 
search space, the smart flight operator was suggested to 
enhance the location of solution. This technique is 
employed in the scout bee instead of the uniform 
random generation of solutions employed by general 
ABC while the new solution  .!  is  generated  using  
Eq. (6). Finally, to prevent the generation of values 
outside the boundary of search space a mechanism is 
introduced to the employed, onlooker and scout bees 
phases by: 
 .!,
 = R 2� !�,
 − .!,
 , �� .!,
 < � !�,
2� "#,
 − .!,
 , �� .!,
 > � "#,
 B           (14) 

 

Scout behavior modified artificial bee colony 

algorithm: Scout behavior Modified Artificial Bee 
Colony (SM-ABC) algorithm introduced as a powerful 
algorithm for problem with high dimensionality and 
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when the best solution lies in the boundaries of the 
feasible region of search space. In this algorithm the 
behavior of the scout bee is improved in order to get the 
ability to exploit the vicinity of the current best solution 
using Eq. (7). In addition, the way to control the 
tolerance for equality constraints is revised (Mezura-
Montes and Cetina-Domínguez, 2009). 
 
Improved artificial bee colony algorithm using 
genetic operators: GI-ABC is a genetically inspired 
ABC algorithm presented in Bacanin and Tuba (2012). 
The modifications have been made by adopting genetic 
algorithm in the process of replacement of abandoned 
solutions. In this algorithm uniform crossover and 
mutation operators from genetic algorithms applied to 
improve the exploitation ability of ABC algorithm 
(Karaboga and Basturk, 2007a) Based on the proposed 
method, after certain number of iterations called break 
point, the randomly generated solution in scout bee 
phase is replaced with directed search towards the best 
solution where exhaustive exploitation is performed 
around the best-so-far solution using uniform crossover 
operator. Then, to prevent each variable to be fixed, 
mutation operator is applied and each solution 
parameter is mutated using following Eq. (15): 
  

 .!,
 = �!,
 + s!,
'�0,
 − .!,
)              (15) 
 
where � = 1, 2, ⋯ , *+, �0,
 is randomly generated 
solution, .0,
 is a new generated solution with best 
fitness value, s!,
 is random number in �−1, 1�. Based 
on above description the scout bee phase works as 
follows: 
 
• If ��@$%��n� < tu generate a new random solution 

using equation (2). 
• If ��@$%��n� < tu < *tu and if �ucondition is 

satisfied, using Eq. (15) otherwise use Eq. (2). 
• If *tu < ��@$%��n� and if �u condition is 

satisfied, then select two solutions with best fitness 
value otherwise, use Eq. (2). 

 
where, tu is break point *tu is the second break point 
and it is iteration and Replacement Rate �u is 
parameter. 
 
Modified constrained artificial bee colony using 

smart bee: Smart Bee ABC (SB-ABC) algorithm is 
another modification to the original constrained ABC 
which applies its historical memories to improve the 
quality of solutions (Stanarevic et al., 2011). The 
motivation of present smart bee ABC algorithm come 
from the fact that, ABC algorithm does not consider the 
initial population to be feasible, therefore a smart bee 
mechanism is proposed to ABC algorithm to exploit its 
historical memories to enhance fitness value of 
solutions. This mechanism is applied instead of Deb's 

rules in the selection process. In SB-ABC algorithm, 
the position of the best-so-far solution and its fitness 
value is memorized and is replaced with the new 
randomly generated solution in two cases: 
 
• If the new solution is infeasible solution 
• If the new solution is feasible solution but it does 

not have better fitness value 
 

EXPERIMENTAL RESULTS 

 

This section is to evaluate, analyze and compare 
the performance of the aforementioned eight 
constrained ABC algorithms. At this aim several 
constrained benchmark functions are considered form 
CEC 2006 (Liang et al., 2006). Table 1 describes 
various kinds of these test functions (linear, nonlinear, 
polynomial, quadratic and cubic) with different 
numbers of decision variables, different kinds (linear 
inequalities, linear equalities, nonlinear inequalities and 
nonlinear equalities) and numbers of constraints. In this 
table v is the estimated ratio between the feasible 
region and the search space, LI is the number of linear 
inequality constraints, NI is the number of nonlinear 
inequality constraints, LE is the number of linear 
equality constraints, NE is the number of nonlinear 
equality constraints, % is the number of constraints 
active at the optimal solution and � is the number of 
variables of the problem. In addition, the value of 
parameters used in each algorithm is given in Table 2. 
 

DISCUSSION AND CONCLUSION 

 

Experimental results: In this study the performances 
of several constrained ABC algorithms are evaluated 
and compared. In Experiment (1) each test function was 
repeated 30 times for each algorithm and then the best, 
worst, mean solution as well as standard deviation is 
recorded and the results are listed in Table 3. From the 
results in this table, ABC, MABC, M-ABC, Mo-ABC, 
SM-ABC, GI-ABC algorithm have found optimal 
minima for the seven test functions g01, g03, g04, g06, 
g08, g11, g12. SF-ABC can generate near optimal 
solutions for two functions g06, g01 while produce 
optimal solutions for five functions g03, g04, g08, g11, 
g12.  

The SB-ABC can find near optimal solution for 
one function g06 and for six functions can find the 
optimal solution g01, g03, g04, g08, g11, g12. As can 
be seen from Table 3 on function g02, GI-ABC, M-
ABC and SM-ABC performed better than other 
algorithms while SF-ABC is not successful on this 
function. SF-ABC and GI-ABC can provide better 
result for function g05 where SB-ABC cannot perform 
well. GI-ABC, SM-ABC outstands in solving function 
g07 compare to other algorithms. The M-ABC 
algorithm is more successful than MABC on this 
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Table 1: The main characteristics of the test problems 
Problem Type n ρ LI NI LE NE α 
g01 Quadratic 13 0.0111 9 0 0 0 6 
g02 Nonlinear 20 99.9971 1 1 0 0 1 
g03 Polynomial 10 0.0000 0 0 0 1 1 
g04 Quadratic 5 52.1230 0 6 0 0 2 
g05 Cubic 4 0.0000 2 2 0 3 3 
g06 Cubic 2 0.0066 0 5 0 0 2 
g07 Quadratic 10 0.0003 3 2 0 0 6 
g08 Nonlinear 2 0.8560 0 4 0 0 0 
g09 Polynomial 7 0.5121 0 3 0 0 2 
g10 Linear 8 0.0010 3 0 0 0 3 
g11 Polynomial 2 0.0000 0 1 0 1 1 
g12 Quadratic 3 4.7713 0 1 0 0 0 
g13 Quadratic 5 0.0000 0 0 0 3 3 
 
Table 2: Parameters setting 

 
Table 3: Comparisons based on best, mean, worst and standard deviation 
Problem   ABC   MABC   M -ABC  SM-ABC  GI-ABC   SF-ABC  MO-ABC  SB-ABC 
g01    Best -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 
  Mean -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -14.163000 -15.000000 -15.000000 
  Worst -15.0000000 -15.0000000 -15.000000 -15.000000 -15.000000 -12.525000 -15.000000 -15.000000 
  Std. dev  0.0000000  0.0000000  0.000000  0.000000  0.000000  0.923000  0.000000  0.000000 
g02       Best  0.8035989  0.8035995  0.803614 -0.803617 -0.803617 -0.708944 -0.803610 -0.803500 
  Mean -0.7935470 -0.7935120 -0.799450 -0.799421 -0.800213 -0.471249 -0.793510 -0.792980 
  Worst -0.7496490 -0.7498960 -0.778176 -0.805767 -0.796850 -0.319535 -0.744580 -0.748990 
  Std. dev  0.0141230 -0.0122300 -0.006440  0.006840  0.003400  0.010800  0.016000  0.025000 
g03   Best -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Mean -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Worst -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Std. dev -0.0000000  0.0000000  0.000000  0.000000 -0.000000  0.000000  0.000000  0.000000 
g04    Best -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 
  Mean -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 
  Worst -30665.539000 -30665.5390000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 -30665.539000 
  Std. dev  0.0000000  0.0000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
g05   Best  5126.4890000  5126.4900000  5126.734000  5126.678000  5126.502000  5126.506000  5126.657000  5126.532000 
  Mean  5158.6220000  5182.6790000  5178.178000  5178.392000  5264.654000  5126.527000  5162.506000  5185.752000 
  Worst  5438.1830000  5324.3570000  5317.183000  5120.885000  5126.345000  5126.859000  5229.119000  5438.423000 
  Std. dev  75.3370000  68.3490000  56.000000  56.100000  38.275000  0.079300  47.820000  75.367000 
g06   Best -6961.8140000 -6961.8140000 -6961.814000 -6961.814000 -6961.814000 -6961.814000 -6961.814000 -6961.814000 
  Mean -6961.8140000 -6961.8130000 -6961.814000 -6961.814000 -6961.814000 -6961.813000 -6961.813000 -6961.816000 
  Worst -6961.7940000 -6961.8050000 -6961.814000 -6961.814000 -6961.814000 -6961.805000 -6961.804000 -6961.813000 
  Std. dev  0.0050000  0.0002000  0.000000  0.000000  0.000000  0.000200  0.000100  0.000700 
g07    Best  24.3286100  24.3250000  24.312000  24.317000  24.303000  24.164500  24.323000  24.326000 
   Mean  24.4698800  24.4690000  24.416000  24.415000  24.376000  24.658000  24.456000  24.485000 
   Worst  25.1875400  24.6100000  24.794000  24.289000  24.343000  25.551000  24.929000  25.227000 
   Std. dev  0.1854900  0.1175000  0.127000  0.124000  0.033000  0.326000  0.135000  0.195000 
g08   Best -0.0958250 -0.0958250 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 
   Mean -0.0958250 -0.0958250 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 
   Worst -0.0958200 -0.0958250 -0.095825 -0.095825 -0.095820 -0.095825 -0.095825 -0.095825 
   Std. dev  0.0000000  0.0000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
g09    Best  680.6329710  680.6300000  680.633000  680.631000  680.630500  680.632000  680.631000  680.643000 
  Mean  680.6401260  680.6360000  680.647000  680.656000  680.630000  680.645000  680.635000  680.685000 
  Worst  680.6498300  680.6570000  680.676000  680.632000  680.559000  680.858000  680.636000  680.678000 
  Std. dev  0.0039981  0.0038700  0.0543000  0.015500  0.060900  0.041200  0.004000  0.014000 
g10       Best  7053.129000  7058.8430000  7051.775000  7051.694000  7049.279000  7049.516600  7053.320000  7053.958000 
  Mean  7224.547000  7220.3950000  7233.810000  7233.646000  7192.423000  7116.823600  7167.801000  7224.425000 
  Worst  7389.195000  7362.7406000  7604.129000  7121.456000  7389.195000  7362.740600  7418.334000  7604.239000 
  Std. dev  132.9420000  122.6700000  1013.000000  112.000000  81.859000  82.124000  83.008000  133.937000 
g11    Best  0.7500000  0.7500000  0.750000  0.750000  0.750000  0.750000  0.750000  0.750000 
     Mean  0.7500000  0.7500000  0.750000  0.750000  0.750000  0.750000  0.750000  0.750000 
   Worst  0.7500000  0.7500000  0.750000  0.750000  0.750000  0.750000  0.750000  0.750000 
  Std. dev  0.0000000  0.0000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
g12    Best -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Mean -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Worst -1.0000000 -1.0000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
  Std. dev  0.0000000  0.0000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
g13   Best  0.7594810  0.7587400  0.053890  0.053967  0.053950  0.053986  0.454000  0.767900 
  Mean  0.9679549  0.9679500  0.157791  0.158489  0.248700  0.263854  0.456000  0.972000 
  Worst  1.0000000  1.0000000  0.441978  0.104522  0.058850  1.000000  0.489000  1.000000 
  Std. dev  0.0549543  0.0568900  0.017200  0.172760  0.203000  0.216000  0.021000  0.056900 

Algorithm  Parameters  Reference 
ABC NP = 40; SN = 20; MCN = 6000; limit = SN×d; MR = 0.8; SPP = SN ×d; ε = 0.0001 Karaboga and Basturk (2007a) 
MABC NP = 40; SN = 20; MCN = 6000; limit = 0.5 ×SN ×d; e = 0.0001; MR = 0.8; SPP = 0.5 × SN ×d Karaboga and Akay (2012) 
M-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; MR = 0.8;  ε = 0.0001 Mezura-Montes and Cetina-

Domínguez (2012) 
SM-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; MR = 0.8;  ε = 0.0001; dec = 1.002 Mezura-Montes and Cetina-

Domínguez (2009) 
MO-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; a2 = 0.4; a3 = 0.3; MR = 0.8;  ε = 0.0001; a1= 0.3 Subotic (2011) 
SB-ABC NP = 40; SN = 20; MCN = 6000; limit = SN × d; MR = 0.8; SPP = SN × d;  ε = 0.0001 Stanarevic et al. (2011) 
GI-ABC NP = 40; SN = 20; MCN = 6000; limit = 150; MR = 0.923; ε = 0.0001 Bacanin and Tuba (2012) 
SF-ABC NP = 40; SN = 20; MCN = 6000; limit = 145; dec = 1.002; PC = 46; gc = 1160; δ = 1:0; MR = 

0.923; ε = 0.0001 
Mezura-Montes et al. (2010) 
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Table 4: Comparison by means of gap based on mean solution 
Problems ABC MABC M-ABC SM-ABC MO-ABC GI-ABC SF-ABC SB-ABC 
g01 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 5.58300 0.0000 
g02 1.25330 1.25768 0.518778 0.52239 1.25790 0.4238 41.35900 1.3238 
g03 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000 
g04 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000 
g05 0.62662 1.09590 1.012270 1.01227 1.5605e-04 2.6949 5.656e-04 1.1558 
g06 0.00000 1.436e-06 0.000000 0.00000 0.00000 0.0000 1.436e-5 2.873e-05 
g07 0.67420 1.346e-06 0.000000 0.00000 0.00000 0.2879 1.44820 0.7364 
g08 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000 
g09 1.488e-03 8.815e0-4 2.498e0-3 3.8199e-03 7.346e-04 0.0000 2.20e-03 8.0807e-03 
g10 2.48670 2.42780 2.618150 2.61580 1.68175 2.0310 0.95859 2.4850 
g11 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000 
g12 0.00000 0.00000 0.000000 0.00000 0.00000 0.0000 0.00000 0.0000 
g13 1694.17030 1694.16170 192.476300 193.77010 745.22710 360.9823 389.07130 1701.6682 
 
Table 5: Holm-bonferroni procedure for the 8 algorithms over the 13 test problems under consideration 
 j Algorithm R} p} α}  SED Significant 

7 SB-ABC 77e+00 0.000 7.1429e-03 -0.1733e+02 Reject 
6 SF-ABC 93e+00 0.5000e+00 8.33e-03  0.0000 Accept 
5 ABC 94e+00  0.8607e+00 1.000e-02  0.10833e+01 Accept 
4 SM-ABC 96e+00  0.9999e+00 1.250e-02  0.32500e+01 Accept 
3 M-ABC 98e+00  1.0000e+00 1.667e-02  0.54167e+01 Accept 
2 MO-ABC 101e+00  1.0000e+00 2.500e-02  0.86667e+01 Accept 
1 GI-ABC 105e+00  1.0000e+00 5.000e-02  0.13000e+02 Accept 
 MABC 93e+00     

 
problem while SF-ABC cannot provide satisfactory 
results. It is obvious from the table MO-ABC and 
MABC outperformed on problem g09. GI-ABC, SF-
ABC and MO-ABC achieved superior results on 
problem g10 while SB-ABC generates poor results in 
this problem. GI-ABC, MO-ABC and M-ABC 
algorithms outperformed the other considered 
algorithms on the solution of the problem g13 while 
SB-ABC has shown the poorest performance. 
 
Comparison based on error: In this section the 
solution quality is measured by the gap between the 
optimal solution and the best solution where gap is 
defined as: 
 ���@	� 	n����n� − n2���%� 	n����n��n2���%� 	n����n� � × 100 

 
Table 4 demonstrated that in all algorithms the big 

gap between the optimal solution and the best solution 
is for problem g13. In GI-ABC the best gap is obtained 
by g01, g03, g04, g06, g08, g09, g11, g12 problems is 
zero. However, for ABC the gap for g01, g02, g03, g04, 
g06, g08, g11, g12 problem is zero. MABC algorithm 
approximately behaves like ABC algorithm. SM-ABC, 
M-ABC and MO-ABC algorithms generate zero-gap 
for g01, g03, g04, g06, g07, g08 and g11 and g12 
problems. SF-ABC algorithm has zero-gap for 
problems g03, g04, g08, g11, g12. Algorithm has zero-
gap for problems g03, g04, g08, g11 and g12. SB-ABC 
obtain zero- gap for problems g01, g03, g04, g08, g11, 
g12. 
 

Ranking by means of holm-bonferroni method: A 
statistical study on the performance of the considered 
algorithms regarding the performance of MABC 

algorithm (Karaboga and Akay, 2012) carried out by 
employing  the  Holm-Bonferroni  mechanism  (Liang  
et al., 2006; Holm, 1979).  The results of using Holm-
Bonferroni method is tabulated in Table 5. In this 
method, the 8 algorithms under analysis have been 
ranked based on their average performance calculated 
over 13 problems. Then, a score �
 has been assigned to 
each algorithm for � = 1, 2, ⋯ , +� where +� is the 
number of algorithms under consideration. The score is 
calculated as follows. In this mechanism first the 
performance of each algorithm for each function is 
ranked from one to eight. 

A score of eight is assigned to the problem with the 
best performance, 7 is assigned to the second best and 
so on. While the algorithm presenting the worst 
performance scores is marked as 1. Then, after 
obtaining score for each algorithm, they are summed up 
and then based on the obtained results the score are 
sorted. The SED shows the standard error of difference. 
Using the values of SED, the corresponding cumulative 
normal distribution values 2
 have been calculated. 
These 2
 then compared with the corresponding value 
of � = 0.05 �T . If  2 < � then a test is reported as 
significant otherwise results are reported as 
insignificant. From Table 5 it is obvious that reference 
algorithm MABC significantly outperforms SB-ABC 
algorithm and is comparative with other algorithms. 
 

Convergence analysis: This subsection shows the 
comparison of the convergence speed (Iterations) in 
term of number of iterations between the original 
constrained ABC, MABC, M-ABC, SM-ABC, GI-
ABC, SF-ABC, MO-ABC and SB-ABC for problems 
g02, g05, g10 and g13. It can be observed that in Fig. 1. 
The SF-ABC has lowest convergence comparing to the
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Fig. 1: Iterations to convergence for problem g02
 

 
Fig. 2: Iterations to convergence for problem g13
 
other algorithms under consideration. Figure 2 
ABC obtains smallest convergence speed and ABC 
algorithm stands in the second place. 
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