
Research Journal of Applied Sciences, Engineering and Technology 10(5): 562-569, 2015

DOI:10.19026/rjaset.10.2464

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: November 27, 2014 Accepted: January 8, 2015 Published: June 15, 2015

Corresponding Author: A. Gnanasekar, Department of Computer Science and Engineering, R.M.D. Engineering College, Anna

University, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

562

Research Article
Rule Based Fine Tuned Web Service Discovery using JESS

1
A. Gnanasekar and

2
R.M. Suresh

1
Department of Computer Science and Engineering, R.M.D. Engineering College,
2
Sri Muthukumaran Institute of Technology, Anna University, Chennai, India

Abstract: The aim of this study is to present a novel approach which uses Java Expert System Shell (JESS) to
intelligently infer the best and most relevant Web service. Since the Web Service has developed as a service
provider in all areas, the Service discovery has become indispensable as Web Service discovery algorithms return
more than one Web Service with same functionalities. Generally, the functional properties of the Web Services, such
as Input, Output, Precondition, Effects (IOPE) are considered in the composition phase whereas the non-functional
properties, namely Quality of Service (QoS) parameters are used in selecting the most appropriate Web Service.
User Rule-based searching is accomplished along with users’ preferences which map the rules of the user profile
into JESS script to discover the desired Web Service. As a result of our research we support developers to combine
and implement the Web Service description and discovery approaches that will ensure best and most relevant
service and performance of service oriented architecture.

Keywords: Java expert system shell, quality of service parameters, service oriented architecture, web service

discovery

INTRODUCTION

Service discovery is part of the service-oriented

architecture and the current approaches for Web
Services discovery is by providing semantic layer on
Web Service standard components such as WSDL (Erik
et al., 2001) and UDDI registry (Luc et al., 2004),
which only supported keyword search. Web Service
discovery becomes semantic search which alleviates the
limitations in keyword search values in UDDI. For
Semantic Web Service annotation, OWL-S coalition
has promoted Ontology Web Languages for Services
(OWL-S) (David et al., 2004), with rich semantic
annotations. There are many works which have been
proposed towards the Semantic web Service discovery.
In this study the rule based inference engine namely
JESS (Friedman-Hill, 2007) is effectively used along
with the user profile of the customer for service
discovery. A large number of rule engines are available
as open source software. Some of the most popular
engines include JESS, Algernon, Sweet Rules and
Bossam. We chose JESS a forward-chaining rule
engine, as the rule engine for the service discovery
based on the QoS. JESS works seamlessly with Java
and is very easy to use and configure. Each Jess rule
engine holds a collection of knowledge nuggets called
facts. Every fact has a template. The template has a
name and a set of slots and each fact gets these things
from its template (Friedman-Hill, 2007).

LITERATURE REVIEW

Recently, QoS-aware Web service Discovery is an
active research issue both in industry and academia that
attracts a lot of researchers. Many studies have been
carried out and several approaches have been proposed
for this problem. Yang et al. (2008) proposed Java
Expert System Shell (JESS)-enabled context elicitation
system featuring an ontology-based context model that
formally describes and acquires contextual information
pertaining to service requesters and Web services.
Based on the context elicitation system, we present a
context-aware services-oriented architecture for
providing context-aware Web service request,
publication and discovery. Gunasri and Kanagaraj
(2014) proposed a Semantic web service discovery
framework for finding semantic web services by
making use of natural language processing techniques
and clustering method. By make use of natural
language processing used keyword matching with
context of service description. It has accurate matching
because Word net gives an exact sense for a particular
web service domain and cluster Terms we can improve
the optimization and eliminating irrelevant services and
gives accurate service discovery. Aklouf and Rezig
(2009) proposed approach exploits expert systems that
aim at adding new functionalities to Web services
according to their rule-base defined by the knowledge
engineer or the system administrator using an ontology.

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

563

Kritikos and Plexousakis (2009) present a QoS in the
context of WSs. Its main contribution is the analysis of
the requirements for a semantically rich QoS-based
WSDM and an accurate, effective QoS-based WS
Discovery (WSDi) process. In addition, a road map of
extending current WS standard technologies for
realizing semantic, functional and QoS-based WSDi.
Finding an appropriate and best service from a group of
services with the same functionality is a service
selection challenge (Liangzhao et al., 2004; Maximilien
and Singh, 2004; Mukhopadhyay and Chougule, 2012;
Nair and Gopalakrishna, 2010). Therefore, besides the
functionalities of web services, nonfunctional attributes
(QoS) are also important in service discovery. In order
to meet users’ functional and non-functional
requirements in service discovery, many QoS-based
methods have been proposed (Harshavardhanan et al.,
2012; Torres et al., 2011).

Gouscos et al. (2003) classifies QoS attributes as a

static and a dynamic group. For example, price,

promised response time and probability of failure are

static attributes stored in UDDI. On the other hand,

actual response time and failure rate are stored in

WSDL, or provided by an information broker. This

method is quite easy and straightforward, but cannot

solve the problem caused by obsolete and out-of-date

QoS information. Ran (2003) proposes an extended

UDDI model which involves a new role, namely a web

service QoS Certifier, in a traditional SOA model. It

consists of three roles (service providers, service

requesters and UDDI registry). This verifies whether

the quality of a service is the same as the service

provider promised before registering the service in

UDDI. Thus, a service consumer can first issue a query

to the web service QoS Certifier to verify the QoS of a

target service. However, this does not provide a reliable

algorithm to validate the credibility of claimed QoS. It

is unable to assure the correctness of real QoS when

web services are changed or updated in the future.

Huang et al. (2009) proposes a three-stage service

selection scheme based on different types of QoS such

as functional matchmaking, text-based QOS

matchmaking and numeric-based QoS matchmaking. In

a text-based QoS matchmaking stage, keyword search

and service category search are provided by UDDI.

There are two scenarios in a stage of numeric-based

QoS matchmaking: single QoS-based service discovery,

which selects the service with the best QoS attributes

for users and QoS-based Optimization, which selects

the service with the best performance in an entire

workflow. Al-Masri and Mahmoud (2007) proposed a

Web Service Repository Builder (WSRB) framework.

In this framework, a Web Service Crawler Engine

(WSCE) sends multiple queries to several UDDI

registry centers, according to users’ requests and then

gets all the QoS results. The QoS of services with the

same functionality will be stored in a matrix and all

QoS attributes are then normalized. The ranking scores

for each service will be computed by a weighted sum of

the value of QoS attributes, where the weighting for

each attribute is determined by a user according to

his/her preferences. Lin et al. (2014) proposed a

trustworthy two-phase service discovery algorithm

based on collaborative filtering and QoS in order to

recommend good services from the same functional

service group to users. The recommendation process,

can verify the correctness of QoS for web services.

Therefore, the recommended services not only meet

users’ functional requirements, but also have correct

QoS information. Liu et al. (2012) proposed Branch

and Bound for Execution Plan Selection (BB4EPS)

algorithm that creates a plan for service composition

using the aggregated affect of the QoS attributes. The

aggregation is studied for services connected in

different structures/patterns. Both availability,

reliability is studied separately and their combined

effect is not evaluated. Liu et al. (2013) proposed a

model the QoS-aware service composition problem as a

conventional combinatorial optimization problem, we

transform this problem to be a local optimization

problem by decomposing global QoS constraints into a

set of local constraints and design a new global QoS

constraints decomposition model that used to find the

optimal local QoS constraints combination for each

service. In this study proposes a new service discovery

approach based on Web service QoS knowledge using

java expert.

SEMANTIC WEB SERVICE DISCOVERY

USING JESS

However, in this study we propose a novel method
which utilizes the potentiality of forward inference of
the JESS. The process of the proposed method is
depicted in Fig. 1. In one of our previous works
(Gnanasekar and Suresh, 2014), we have used a
discovery algorithm, which is applied to the OWL-S
service retrieval test collection, OWL-S TC (version
4.0). For any particular query, this algorithm has
returned more than one service with same functionality.
For example, when the user wants to know the price of
a book, the user had entered “Book” as input and
“Price” as output. The algorithm has returned seven
services with the same functionality which the user is
desired.

However, it is obvious that the user may not be

interested in all the seven Web Services, instead may be

interested in one service with good QoS. It would be

better to incorporate, the discovery algorithm with a

fine tuned search engine to extract the relevant service

the user expects. Hence, a user profile is created with

the user’s preferences. The user profile is converted

into JESS facts, which are the rules for the JESS

inference engine.

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

564

Fig. 1: Architecture of rule based service discovery based on user profile

Rule based inference engine: This module first

converts the preferences in the user profile into JESS

rules (Liangzhao et al., 2004). A JESS rule is

something like an if... then statement in a procedural

language, but it is not used in a procedural way. In the

simplest terms, this means that JESS purpose it to

continuously apply a set of rules to a set of data. We

can define the rules that make up our own

particular rule-based system. Jess rules look something

like this:

(

" "

({ 31})

(int " , !"))

defrule welcome toddlers

Give a special greeting to young children

person age

pr out t Hello little one crlf

−

<

=>

This rule has two parts, separated by the "=>"

symbol. The first part consists of the LHS pattern

(person {age<3}). The second part consists of the RHS

action. Each Jess rule engine holds a collection of

knowledge nuggets called facts. Every fact has a

template. The template has a name and a set of slots and

each fact gets these things from its template.

Based on this hypothesis, the user profile

preferences are converted into the JESS rules. The

excerpts of one of such rules are shown in Fig. 2. For

the fine tuned Web Service discovery, the JESS

inference engine compare the user’s rules drawn from

the user profile registry and selects only the appropriate

service information.

Fig. 2: Excerpts of rules of the preferences of the user profile

IMPLEMENTATION AND

EXPERIMENTAL RESULTS

In this study, we use JESS 7.1 as the rules engine,

because it can be integrated into Eclipse 3.5 as a plug-in

with no extra development effort. We have used a

computer with a 1.73 GHz Pentium Dual CPU and 1.50

GB of RAM was running Windows 7 OS, Java SDK

1.4.1 and JESS 7.1. For the implementation we have

taken seven Web Services and eight QoS parameters

such as Cost, Response, Security, Latency, Throughput,

Process Time, Performance and Availability. The user

profile is updated with these QoS preferences. This

users profile with their preferences is first translated

into JESS knowledge base. This knowledge base is then

converted into JESS rules as shown in Fig. 3.

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

565

Fig. 3: Screen shot for the JESS which inferred probabilities of user given QoS options for book purchase example

Table 1: JESS which inferred probabilities of different services for book purchase service here, H = high, L = low and M = medium

Test case Cost Response Security Latency Throughput Process time Performance Availability

1 L - H L - H H -
2 L H H L H H H M

3 M H M L H M H H

4 L H - M - - - M
5 - - - - H H H H

6 - H H - - L H -

7 L - - - - M M H
8 L - - L H - H H

9 - - H L - - H H

10 M M - M H - M -

Test case Book price

Book_price_

service

Book_cheapest

price_service

Book_reviewprice

_service

Book_taxed

price_service

Book person_

price_service

Book_recommended

price_service

1 6.23 21.5 18.20 16.4 7.32 9.23 13.3

2 8.19 20.2 17.60 19.2 6.32 10.20 12.4
3 5.78 21.1 16.60 17.9 4.55 11.40 18.6

4 8.76 17.3 14.20 20.1 9.13 11.20 17.2
5 8.82 19.4 17.40 16.3 5.24 12.60 18.2

6 11.20 17.6 11.30 17.2 7.28 13.90 16.9

7 12.20 16.4 17.20 14.6 8.33 15.30 13.2
8 5.83 20.6 18.30 16.6 5.23 9.81 18.7

9 7.10 18.8 16.80 17.3 7.73 10.40 17.2

10 10.20 18.4 8.89 17.5 14.30 13.70 16.8

Suppose a user wants to select a best service with

high security, performance and processing time and low
latency and cost. In this case, the probability of
book_price_service is 21.5% followed by the
probability achieved by book_cheapestprice_service
with 18.2%. That is based on the probability
distribution of various dependency convergences; the
inference engine of JESS inferred that for the given
preference book_price_service is a better choice than
any other services. Here the user has ignored or is not
interested in the remaining QoS such as response,
availability and throughput. The use of the JESS has

reduced processing time and facilitated the Web
Service discovery based on the customer satisfaction.
The powerful inference engine of JESS infers the facts
based on the rules and produced the outputs as show in
Table 1.

Semantic web service discovery using belief

network:
Belief network: A belief network is also called
Bayesian network, is a graphical representation of a
probabilistic dependency model. It consists of a set of
nodes, where each node represents stochastic variables

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

566

Fig. 4: A compiled belief net shows the probabilities of user given QoS options for book purchase example

and interconnecting arcs represent the causal influences

between these variables. It is the use of Bayesian

calculus to determine the state probabilities of each

node from the predetermined conditional and prior

probabilities that distinguishes Bayesian belief

networks from other probabilistic dependency models.

Implementation and experimental results: Each node

in the belief net must have a relation stored at each

node, which expresses the value of that node in terms of

its parents (or as a constant if the node has no parents).

The node may be deterministic or probabilistic. If the

node is probabilistic, then the relation must provide a

probability for each state of the child, for each possible

configuration of parent values.

In book purchase example, there are seven services

from OWL-S TC, such as Book Price,

book_price_service, book_cheapestprice_service,

book_reviewprice_service, book_taxedprice_service,

bookperson_price_service, book_recommendedprice_

service. Based on this hypothesis, a belief net for the

QoS parameters such as availability, cost, response

time, security, latency, throughput, process time and

performance is constructed for the Book Purchase

example. However, the user may be in trouble selecting

the best service among these services. Suppose a user

wants to select a best service with high security,

performance and processing time and low latency and

cost. The probabilities of the services are inferred by

the Belief Net is as shown in Fig. 4. In this case, the

probability of book_price_service is 23.5% followed by

the probability achieved by book_reviewprice_service

with 20.6%. That is based on the probability

distribution of various dependency convergences; the

belief net inferred that for the given preference

book_price_service is a better choice than any other

services. Here the user has ignored or is not interested

in the remaining QoS such as response, availability and

throughput. The various possible probabilities of the

Book Purchase example are given in Table 2.

DISCUSSION

In Belief network is to be noticed that, for each

different requirement, the probability of the services

differ according to the probability distribution given to

the QoS parameters. For the Book Purchase example

book_price_service is having a highest probability than

any other services except test case numbers 6, 7 and

10. In the test cases 6 and 7, book_

recommendedprice_service is having the probability of

18.9 and 20.5%, respectively, whereas in test case

number 10, it is book_reviewprice_service which

attained the probability of 21.5%. It is to be noticed that

in JESS, book_price_service is having a highest

probability than any other services except test case

numbers 4 and 7. In the test cases 4 and 7, book_

reviewprice_service is having the probability of 20.1%

and book_cheapestprice_service is having the

probability of 17.2%. From the Table 1 and 2, it is

found that book_price_service which would be better

choice than any other service. Figure 5 shows the

performance of Belief Network and JESS. From the

experimental result, it is found that belief network to

intelligently infer the best and most relevant service

compare to the JESS.

Services

BookPrice
book_price_service
book_Cheapestprice_servi...
book_reviewprice_service
book_taxedprice_service
bookperson_price_service
book_recommendedprice_...

5.69
23.5
18.8
20.6
8.66
8.68
14.1

Availability

High
Medium
Low

60.0
30.0
10.0

Cost

High
Medium
Low

 0
 0

 100

Performance

High
Medium
Low

 100
 0
 0

ProcessTime

High
Medium
Low

 100
 0
 0

Latency

High
Medium
Low

 0
 0

 100

Security

High
Medium
Low

 100
 0
 0

Response

High
Medium
Low

60.0
30.0
10.0

Throughput

High
Medium
Low

60.0
30.0
10.0

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

567

Table 2: Probabilities of different services for book purchase service

Test case Cost Response Security Latency Throughput Process time Performance Availability

1 L - H L - H H -
2 L H H L H H H M
3 M H M L H M H H
4 L H - M - - - M
5 - - - - H H H H

6 - H H - - L H -

7 L - - - - M M H
8 L - - L H - H H

9 - - H L - - H H

10 M M - M H - M -

Test case Book price

Book_price_

service

Book_cheapest

price_service

Book_review

price_service

book_taxed

price_ service

Book person

price service

Book_ recommended

price_service

1 5.69 23.5 18.80 20.6 8.66 8.68 14.1

2 7.89 23.7 18.40 21.1 5.26 10.50 13.2

3 5.41 24.3 18.90 16.2 2.70 10.80 21.6

4 9.88 21.4 15.10 16.1 8.23 10.60 18.7

5 7.80 22.9 17.50 16.7 3.64 11.60 19.9

6 12.20 17.6 12.20 17.1 8.58 13.40 18.9

7 14.00 16.3 10.90 15.7 8.30 14.20 20.5

8 5.92 24.2 18.80 17.2 3.23 10.80 19.9

9 7.13 22.8 17.40 17.8 6.93 10.00 17.9

10 11.00 12.0 7.89 21.5 15.90 13.50 18.3

 (a) (b)

 (c) (d)

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

568

 (e) (f)

 (g) (h)

(i) (j)

Fig. 5: The performance of belief network and JESS, a graphical representation of experimental results of (a) case 1, (b) case 2,

(c) case 3, (c) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8, (i) case 9, (j) case 10

Res. J. Appl. Sci. Eng. Technol., 10(5): 562-569, 2015

569

CONCLUSION

In this study Web service discovery using JESS
inference engine has been proposed. The experimental
result shows that the JESS inference engine infers the
potential web service which the service requestor
wanted to use. The profile of the user is updated once
with the user’s preferences and can be used to make a
fine tune search on the services of similar functionality.
The profile is to be updated whenever the user wants to
change the preference list; otherwise the same profile is
used for several times and avoids each time entry into
the system. The experimental results demonstrate the
feasibility of our approach.

REFERENCES

Aklouf, Y. and E.K. Rezig, 2009. An ontological

approach for dynamic functionality-based web
services discovery using expert systems.
Proceeding of the 2nd International Conference on
the Applications of Digital Information and Web
Technologies, (ICADIWT '09), pp: 187-192.

Al-Masri., E. and Q.H. Mahmoud, 2007. QoS-based
discovery and ranking of web services.
Proceedings of the 16th International Conference
on Computer Communications and Networks
(ICCCN’07), pp: 529-534.

David, M., B. Mark, H. Jerry, L. Ora, M. Drew,
M. Sheila, N. Srini, P. Massimo, P. Bijan, P. Terry,
S. Evren, S. Naveen and S. Katia, 2004. OWL-S:
Semantic Markup for Web Services. Retrieved
from: http://www.w3.1org/submission/owl-s/
(Accessed on: May 2, 2013).

Erik, C., C. Francisco, M. Greg and W. Sanjiva, 2001.
WSDL Web Services Description Language.
Retrieved from: http://www.w3.org/TR/2001/
NOTE-wsdl-20010315 (Accessed on: January 6,
2013).

Friedman-Hill, E.J., 2007. Jess-the Rule Engine for
Java Platform. Retrieved from:
http://herzberg.ca.sandia.gov/jess (Accessed on:
May 6, 2014).

Gnanasekar, A. and R.M. Suresh, 2014. Content-based
semantic web service discovery, an empirical
analysis with implementation. J. Theor. Appl.
Inform. Technol., 64(3): 635-640.

Gouscos, D., M. Kalikakis and P. Georgiadis, 2003. An

approach to modeling Web service QoS and

provision price. Proceeding of the 4th International

Conference on Web Information Systems

Engineering Workshops. Roma, Italy, pp: 121-130.

Gunasri, R. and R. Kanagaraj, 2014. Natural language

processing and clustering based service discovery.

Int. J. Sci. Technol. Res., 3(4): 28-31.

Harshavardhanan, P., J. Akilandeswari and

R. Sarathkumar, 2012. Dynamic Web services

discovery and selection using QoS-broker

architecture. Proceeding of International

Conference on Computer Communication and

Informatics (ICCCI, 2012). Coimbatore, pp: 1-5.

Huang, A.F.M., C.W. Lan and S.J.H. Yang, 2009. An

optimal QoS-based web service selection scheme.

Inform. Sciences, 179(9): 3309-3322.

Kritikos, K. and D. Plexousakis, 2009. Requirements

for Qos-based web service description and

discovery. IEEE T. Serv. Comput., 2(4): 320-337.

Liangzhao, Z., B. Benatallah, A.H.H. Ngu, M. Dumas,

J. Kalagnanam and H. Chang, 2004. QoS-aware

middleware for web services composition. IEEE

T. Software Eng., 30(5): 311-327.

Lin, S.Y., C.H. Lai, C.H. Wu and C.C. Lo, 2014. A

trustworthy QoS-based collaborative filtering

approach for web service discovery. J. Syst.

Software, 93: 217-228.

Liu, M., M. Wang, W. Shen, N. Luo and J. Yan, 2012.

A quality of service (QoS)-aware execution plan

selection approach for a service composition

process. Future Gener. Comp. Sy., 28(7):

1080-1089.

Liu, Z.Z., X. Xue, J.Q. Shen and W.R. Li, 2013. Web

service dynamic composition based on

decomposition of global QoS constraints. Int.

J. Adv. Manuf. Tech., 69: 2247-2260.

Luc, C., H. Andrew, R. Claus and R. Tony, 2004.

Universal Description Discovery and Integration

(UDDI) Version 3.0.2. Retrieved from:

http://www.uddi.org/ pubs/ uddi-v3.0.2-

20041019.htm (Accessed on: May 5, 2013).

Maximilien, E.M. and M.P. Singh, 2004. A framework

and ontology for dynamic Web services selection.

IEEE Internet Comput., 8(5): 84-93.

Mukhopadhyay, D. and A. Chougule, 2012. A survey

on web service discovery approaches. Adv.

Comput. Sci. Eng. Appl., 166: 1001-1012.

Nair, M.K and V. Gopalakrishna, 2010. Look before

you leap: A survey of web service discovery. Int.

J. Comput. Appl., 7(5): 22-30.

Ran, S., 2003. A model for web services discovery with

QoS. ACM SIGecom Exchanges, 4(1): 1-10.

Torres, R., H. Astudillo and R. Salas, 2011. Self-

adaptive fuzzy QoS-driven web service discovery.

Proceeding of IEEE International Conference on

Services Computing (SCC), pp: 64-71.

Yang, S.J.H., J. Zhang and I.Y.L. Chen, 2008. A JESS-

enabled context elicitation system for providing

context-aware Web services. Expert Syst. Appl.,

34(4): 2254-2266.

