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Research Article 
Speed Control of a DC Motor for the Orientation of a Heliostat in a Solar Tower Power 

Plant using Artificial Intelligence Systems (FLC and NC) 
 

Abdelfettah Zeghoudi and Ali Chermitti 
URMER Research Unit, Faculty of Sciences, University of Abou-bekr Belkaid, Tlemcen, Algeria 

 

Abstract: Recent research in the field of motor controls is becoming more interesting especially with the 
developments of new control methods. This study shows a comparative study between two artificial intelligence 
methods namely neural networks and fuzzy logic for the speed control of a DC motor for the orientation of a 
heliostat in a solar tower power plant. The speed controller of DC motor is performed using two Fuzzy Logic 
Configuration (FLC1 and FLC2) and neural controller in MATLAB environment. The simulation results are used to 
make sure the real possibility of using artificial intelligence systems to identify and control this type of installation. 
The performance of the Fuzzy Logic Controller and Neural control are compared using different errors metrics. The 
results show that Fuzzy logic method is more efficient compared with neural controller method. 
 
Keywords: Artificial intelligence, DC motor, fuzzy logic, heliostat, neural controller, solar tower power plant, speed 

control 

 
INTRODUCTION 

 
DC motors have been popular in the control 

industry area for a long time, because they have many 
good characteristics. In addition, high reliability, 
flexibility and low cost of DC motors lead to use them 
in different applications such as robot manipulators, 
tracking systems and home appliances… etc. However, 
all control systems of DC motors suffer from problems 
related to undesirable overshoot, longer settling times, 
vibrations and stability when switching from state to 
another. In addition, control of DC motors is known as 
big challenge because of the nonlinearity presented in 
the concept of these motors. Hence, several studies 
have been carried out in this problem where they 
proposed new methods to control the speed and the 
rotation of DC motors based on artificial intelligence 
methods such as fuzzy logic, neural network and hybrid 
fuzzy-neural methods. Rigatos (2009), an adaptive 
fuzzy control of DC motors using state and output 
feedback is showed. Michele and Bartolomeo (2014), a 
PID fuzzy logic controller is applied for the control of a 
distillation column. However, single models are 
limited. Hence, hybrid models are proposed in 
literature. Premkumar and Manikandan (2014), it 
presented a fuzzy neural network IP controller for 
robust position control of induction motor drive. Besir 
(2009), Speed control of permanent magnet excitation 
transverse flux linear motor by using adaptive neuro-
fuzzy controller is shown. Hasanien et al. (2010), 
adaptive Neuro-Fuzzy Inference System based speed 
controller for brushless DC motor is studied.  

In addition, knowing the non-linearity in the motor 
helps to use an adaptive tracking control methods with 
the technique of input-output linearization (Ibbini and 
Zakaria, 1996; Kim et al., 1997). However, when these 
nonlinearities or disturbances are unknown, neural or 
fuzzy control is more suitable for succeeding 
satisfactory performance of the closed-loop system 
(Rahma and Hoque, 1998; Rubaai et al., 2002). 
Moreover, no one of the previous mentioned papers 
shows the best and robust artificial method is the best 
for such problems. For that, we proposed in this study, 
a comparative study of a controller of a separately 
excited DC motor for the orientation of a heliostat in a 
solar tower power plant modeling developed by 
employing it in MATLAB software. First, two Fuzzy 
Logic Controllers (FLC1 and FLC2) are tested. FLC1 
are differ from FLC2 in the number of rules and inputs. 
In FLC1, we used two inputs (error and derivate of the 
error) and five rules. Where, in FLC2, we only used one 
input (the error) with three rules. Second, different 
neural network architectures and configuration is tested 
in the speed control. Finally a comparative study 
between neural, FLC1 and FLC2 controllers is 
discussed to choose the best technique for controlling 
the speed of DC motor for the orientation of a heliostat. 
 

SYSTEM DISCRETION 

 

The solar field consisting of a large number of 

tracking mirrors called heliostats. One heliostat 

comprises a set of mirrors, a tracking system, a frame, a 
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Fig. 1: Basic concept of heliostat 

 

 
 

Fig. 2: Separately excited DC motor model 

Va, Vf: The armature and field are voltage (V); Ia, If: 

The armature and field are current (A); La, Lf: The 

armature and field are inductance (H); Ra, Rf: The 

armature and field are resistance (Ω); Tm: The 

mechanical is torque developed (Nm); ϴ: The rotor is 

speed (rad/sec); Jm: Is moment of inertia (Kg.m2); Bm: 

Is friction coefficient of the motor (Nm/ (rad/sec)) 

 

base of the structure and the control system. The single 

heliostat basic design is illustrated in Fig. 1. 

The heliostat return on the field is a function of the 

optical efficiency. Cosine effect, shading effect, 

blocking effect, the reflectivity of the mirror, 

atmospheric attenuation and receiver spill are the main 

factors affecting optical performance of heliostats 

(Solangi et al., 2011). 

It is well known that half of the total investment 

cost and 40% of total energy losses are attributed to the 

heliostat field. It is essential to optimize the design to 

reduce the cost of capital and improve the overall 

efficiency of the plant (Kadir et al., 2010; Solangi et al., 

2011). 

The heliostat tracking the sun can be classified as 

either open loop system or the closed loop system 

(Chen et al., 2004). The open loop system is based on 

astronomical formulas concerning the position of the 

sun to the geometry of the system. This system is 

reliable, low cost and is recommended for larger solar 

field because the heliostat is under the control of the 

computer. On the other hand, the closed loop system 

uses the probe to follow the sun. This system is so 

precise and very useful for small fields of heliostats. 

Because of wind, own weight and mechanical error 

heliostats, concentrates sunlight will deviate from their 

pre-selected path when heliostat operation, which also 

affects the distribution of the final heat flow in 

absorber. As the tracking error increases, the light spot 

on the focal plane array of heliostats field is expanded 

and the loss increases. Thus, there will be less of solar 

rays entering the receiver and absorbed by the absorber. 

And that means that when the error increases, the 

average annual field efficiency of the plant decreases 

(He et al., 2013). 

We will present in this study a basic configuration 

for optimal DC motor control using artificial 

intelligence  methods.  The  used  motor  is  shown  in 

Fig. 2. 

For the DC motor, the parameters given are the 

following: 

 

Armature resistance (Ra) 0.5 Ω 

Armature inductance (La) 0.02 H 

Armature voltage (Va) 200 V 

Mechanical inertia (jm) 0.1 Kg.m
2
 

Friction coefficient (Bm) 0.008 N.m/rad/sec 

Back emf constant (k) 1.25 V/rad/sec 

Motor torque constant (k) 0.5 N.m/A 

 

THE TRAJECTORIES OF A HELIOSTAT IN A 

SOLAR TOWER 

 

Numerical experiments were performed for 

specific day of the year: 1
st
 January (J1-an average day 

of winter) (Fig. 3), between 09:00 and 10:00 (Fig. 4). It 

was  considered  a  typical  heliostat  located  opposite  

the central tower receiver has a square shape (L = 3 m, 

D = 100 m). 

For the calculation of theoretical positions 

heliostats, it was assumed that the heliostat and tower 

were located in Toulouse, France. The case of Central 

THEMIS. The two paths are shown in the following 

figures. 

On most plants, heliostats do not pursue the Sun a 

continuous basis. They perform corrections on each 

axis every few seconds or every minute. 

That is to say, when the sun has shifted his 

thoughtful work on the receiver has also shifted the 

heliostat if not corrected. This correction is performed 

on the central THEMIS whenever the azimuth (or 

elevation) shows an error reaching 0.15 mrad. This is a 

fixed angular correction and not the impact on the  
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Fig. 3: Heliostat’s movements (azimuth and elevation)-day 01 

 

 
 
Fig. 4: Heliostat’s movements (azimuth and elevation)-day 01 between 09:00 and 10:00 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Discretization references 

 

receiver error. Thus it reaches angular threshold, an 
absolute correction 0.3 mrad is performed in the 
opposite direction of movement to the task. The 
azimuth is always fixed in the same direction as the 
azimuth is growing over a day. For elevation, the 
correction can be performed in either direction since the 
Sun rises initially and down after solar noon. The 
correction of 0.3 mrad. 

The azimuth and elevation angles are discretized 
every 0.3 mrad during the day. This principle leads to a 
temporary lead of 0.15 mrad (Fig. 5). 
 

FUZZY AND NEURAL CONTROLLER 
DESCRIPTION AND DESIGN 

 
In this section, we will present a detailed 

description, conception and configurations used in the 
simulation part for both fuzzy and neural controllers. 
 
Fuzzy logic controller: There are specific components 
characteristic of a fuzzy controller to support a design 
procedure. Figure 6 shows the controller between the 
preprocessing block and post processing block (Vadher, 
2014). 
 
Preprocessing: The physical inputs of some measuring 
equipment are often hard or crisp compared to linguistic 
inputs. Hence, a preprocessing of inputs is needed, as 
illustrated in the first block in Fig. 6, which shows the 
measurement conditions before enter the controller 
(Vadher, 2014). 
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Fig. 6: Structure of fuzzy logic controller 

 

Fuzzification: The first block inside the controller is 
fuzzification, which converts each piece of input data to 
membership by a lookup in one or several membership 
functions. The fuzzification block matches the input data 
with the conditions of the rules to be determined. There 
is a degree of membership for each linguistic term that 
applies to the input variable (Vadher, 2014). 

 
Rule base: The collection of rules is called a rule base. 
The rules are in “If-Then” format and formally the ‘If’ 
side is called the conditions and the ‘Then’ side is called 
the conclusion. The computer is able to execute the rules 
and compute a control signal depending on the 
measured inputs error (e) and change in error (de). In a 
rule based controller the control strategy is stored in a 
more or less natural language. A rule base controller is 
easy to understand and to maintain for a non-specialist 
end user and an equivalent controller could be 
implemented using conventional techniques (Vadher, 
2014). 

 
Defuzzification: Defuzzification is when all the actions 
that have been activated are combined and converted 
into a single non-fuzzy output signal, which is the 
control signal of the system. The output levels depend 
on the rules of the systems .The positions depend on the 
non-linearities existing to the systems. To achieve the 
result, develop the control curve of the system 
representing the input/output relation of the systems and 
based on the information; define the output degree of the 
membership function with the aim to minimize the 
effect of the non-linearity (Vadher, 2014). 

 
Postprocessing: The post processing block often 
contains an output gain that can be tuned and also 
become as an integrator (Vadher, 2014). 

 

Mamdani fuzzy inference: The most commonly used 

fuzzy inference technique is the Mamdani method 

(Mamdani and Assilian, 1975). They attempt to control 

a steam engine and boiler combination by synthesizing a 

set of linguistic control rules obtained from experienced 

human operators. 

It uses the error e (k) and the variable error d (k) to 

produce changes in function of the output driver (may 

be µ (k) or Dµ (k)): 

• ���� = ���� − ���� 

• 	���� = ���� − ��� − 1� 

• ���� = ������. 	�����0 

• 	���� = ������. 	����� 

 

e (k) is defined as the point minus the output: 

 

• �� ���� > 0 �ℎ�� ���� > ���� 

• �� 	���� > 0 �ℎ�� ���� > ���� 
 

FLC1 and FLC2 configurations: To design the Fuzzy 

Controller two different approaches (FLC1 and FLC2) 

are taken into account. Two rules with different sets 

have been defined to show that these controllers can be 

done in several ways and solutions that may be better 

than each other. 

 
First approach: The following linguistic variables are 
shown in Fig.7 to 9: 
 

• Error inputs: Strong Negative (Nfo), small 
Negative (Nfai), Null (Nu), strong Positive (Pfo), 
small Positive (Pfai). 

• Variation of error: Strong Negative (Nfo), strong 
Positive (Pfo). 

• Output: Decreasemuch (Dbcp), Not decreasemuch 
(Ndbcp), Set (T), increase much (Abcp), Not 
increase much (Nabcp).  

• Rules : The rules are defined as follows: 
o If the error is Pfai then control is Abcp. 
o If the error is Nfo then control is Dbcp. 

o If the error is Pfo then control is Nabcp. 
o If the error is Nfai then control is Ndbcp. 

o If the error is Nu then control is T. 

o If the error is null and the variance is Pfo then the 

control is Dbcp.  

o If the error is null and variable is Nfo then control is 

Abcp. 

 

The fuzzy controller SIMULINK diagram used in 

our simulation is shown in Fig. 10. 

 

Second approach: In the second approach, we only 

used the error as an input. The configurations used in 

FLC2 are presented in Fig. 11 and 12:  
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Fig. 7: Fuzzy logic 1 first input variable, error 

 

 
 

Fig. 8: Fuzzy logic 1 second input variable, change of error 

 

 
 

Fig. 9: Fuzzy logic 1 output variable, control 

 

 
 

Fig. 10: Closed loop system using FLC 1 
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Fig. 11: Fuzzy logic 2 first input variable, error 

 

 
 

Fig. 12: Fuzzy logic 2 output variable, control 
 

 
 

Fig. 13: Closed loop system using FLC 2 

 

• Inputs (error): Negative (N), Null (Nu), Positive 
(P). 

• Output: Decrease (D), constant (S), Increase (I).  

• Rules : The rules are defined as follows:  
o If the error is N then control is D. 
o If the error is Nu then control is S. 
o If the error is P then control is I. 
 
In SIMULINK, FLC2 diagramm is shown in Fig. 13.  
 
Neural controller: Neural networks have been applied 
very successfully in the identification and control of 
dynamic systems. The universal approximation 
capabilities of the multilayer perceptron make it a 
popular  choice  for  modeling nonlinear systems and for  

 
 

Fig. 14: Reference model controller 

 

implementing general-purpose nonlinear controllers 

(Hagan and Demuth,  1999).  There  are  various  neural 
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control strategies. Neural Networks Toolbox of 
MATLAB 7.1 offers three of these strategies: Model 
Reference Controller, NARMA-L2 controller type and 
Predictive Neural Network (NN Predictive) 
2004). Here, we will utilize the NARMA
the first step in using feedback linearization (or 
NARMA-L2 control) is to identify the system to be 
controlled. We train a neural network to represent the 
forward dynamics of the system. The first step is to 
choose a model structure to use it (Cosme, 2004)
neural controller NARMA-L2 in the SIMULINK 
is shows in Fig. 14. 

The neural controller described in this section is 

referred to by two different names: feedback 

linearization control and NARMA-L2 control. It is

referred to as feedback linearization when

model has a particular form (companion form). It is 

referred to as NARMA-L2 control when the plant 

model can be approximated by the same form. The 

central   idea   of  this  type  of  control 

 

Fig. 15: Plant identification input data 
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control strategies. Neural Networks Toolbox of 
7.1 offers three of these strategies: Model 

L2 controller type and 
Predictive Neural Network (NN Predictive) (Cosme, 

. Here, we will utilize the NARMA-L2 controller; 
the first step in using feedback linearization (or 

L2 control) is to identify the system to be 
controlled. We train a neural network to represent the 
forward dynamics of the system. The first step is to 

(Cosme, 2004). The 
SIMULINK model 

The neural controller described in this section is 

referred to by two different names: feedback 

L2 control. It is 

referred to as feedback linearization when the plant 

(companion form). It is 

L2 control when the plant 

model can be approximated by the same form. The 

control  is  to  transform 

nonlinear system dynamics into linear dynamics by 

canceling the nonlinearities (Howard and Mark, 2000). 

It is very important to note the necessity of identifying 

the plant, first, before proceeding with the neural 

controller training. 

Controller requires the reference model output as 

an input in order to establish the behavior the plant has 

to develop. A good description of the plant we want to 

control is needed as input of the neural controller, in 

order to compare the desired output with the actual one 

(Cosme, 2004). 

It is necessary to set up parameters like hidden 

neurons number of the neural network that will identify 

the plant. In addition, the sampling time T, minimum 

and maximum time for taking samples during training 

and the minimum and maximum plant input signal 

values in order to establish the inputs range for 

controller. Figure 15 shows the input data used to 

identify the plant. 

 

nonlinear system dynamics into linear dynamics by 

nonlinearities (Howard and Mark, 2000). 

It is very important to note the necessity of identifying 

the plant, first, before proceeding with the neural 

Controller requires the reference model output as 

behavior the plant has 

to develop. A good description of the plant we want to 

control is needed as input of the neural controller, in 

order to compare the desired output with the actual one 

It is necessary to set up parameters like hidden 

urons number of the neural network that will identify 

the plant. In addition, the sampling time T, minimum 

and maximum time for taking samples during training 

and the minimum and maximum plant input signal 

values in order to establish the inputs range for the 

controller. Figure 15 shows the input data used to 
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Fig. 16: Training data for NN NARMA L2 

 

 
 

Fig. 17: Testing data for NN NARMA L2 
 

 
 

Fig. 18: Validation data for NN NARMA L2 
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Fig. 19: Simulation diagram for SIMULINK 

 

 
 

Fig. 20: Comparison between regulators NC, FLC1 and FLC2 

 

 
 

Fig. 21: Errors of three controllers 

 
Training, Testing and validation data of the plant 

are shown in Fig. 16 to 18. 
After the end of the training process controllers, the 

results must be recorded and the control block is 
applied to the "real" plant as shown in Fig. 19. 

 

SIMULATION RESULTS 
 

In this part, we are interested to demonstrate the 
results through the design and simulation of a Neural 
and fuzzy logic Controller in order to learn a little more 
about the design of controllers and determine the main 
characteristics of intelligent control.  

The results of the analysis with a comparison of the 
three controllers are presented in Fig. 20 to 22. 

Figure 20 shows the comparaison result between 
the three controllers for a constant reference and Fig. 21 
shows the error between refrence and simulted data. 
From these figures we can note that FLC2 gives the 
best results compred to other methods. 
Figure 22 shows the results for a given scenario.  

From  this  figure,  it  is  clearly  shown  that  NC 
give good results. However, it presents some 
fluctuations that can be harmful for the DC motor. But, 
we can see that FLC2 give good results without 
fluctuations. 
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Fig. 22: Comparison between regulators NC, FLC1 and FLC2 at different stages 

 
Table 1: Performance indexes of fuzzy logic and neural controllers 

 NARM FLC1 FLC2 

ITAE 0.01676 0.005481 0.0010520 
IAE 0.05169 0.064260 0.0253000 
ISE 0.01658 0.039790 0.0169000 
ITSE 0.001101 0.001152 0.0001925 

 
Table 2: Comparison of response parameters for constant load 

condition 

 NARM FLC1 FLC2 

Rise time 0.0387 0.0445 0.1168 
Peak time 0.0461 0.0485 0.1200 
Peak value 1.1240 1.0280 1.0070 
Overshoot 0.1240 0.0280 0.0070 
Setting time 0.1134 0.0629 0.1439 

 
The following performance criterion was used for 

measuring the effectiveness of the controller in meeting 
the control objectives (Arrofiq and Saad, 2010). 
Different speed and load requirements are applied to the 
system and the performances are taken for analysis and 
comparisons. The error, e, presented in Fig. 21, which 
calculate the difference between reference and actual 
value, is commonly characterized into several 
quantities. Their formulas are presented as follow 
(Nordin and Arrofiq, 2012): 
 

• The Integral of Squared Error (ISE): 
 

��� = � �������∞

�                               (1) 

• The Integral of Absolute Error (IAE): 
 

��� = �  ���� ��∞

�                                             (2) 

 

• The Integral of Time multiply Squared Error 
(ITSE): 

 

�!�� = � ��������∞

�                                (3) 

 

• The Integral of Time multiply Absolute Error 
(ITAE): 

 

�!�� = � � ���� ��∞

�                               (4) 

 
The comparison of neural network controller and 

Fuzzy logic controller step response specifications are 
presented in Table 1. 

The important parameters such as rise and peak 
time overshoot, peak value and setting time has been 
compared for the above controllers and the results are 
presented in Table 2. 

From the simulation results of Table 2, it is 
concluded that setting time, peak value and overshoot 
has been improved greatly by using Fuzzy Logic 
Controller (FLC1 or FLC2). The neural controller is 
better for a good rise and peak time. Fuzzy logic 
controller results in less fluctuation at the control 
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system response. The proposed fuzzy logic controller 
has more advantages. 

Similarly, Table 1 shows the performance indexes 

of fuzzy and neural controllers. The calculated values 

of the IAE, ISE, ITAE and ITSE shown in Table 1 

confirm  the  simulation  results  and  values  of  the 

Table 2. 

 

CONCLUSION 

 

This study shows an application example of 

artificial intelligence controller based on the neural 

networks and fuzzy logic models. In the design of 

intelligent controllers, it is more important to know how 

the system works as it is evident in the dynamic case, a 

set of rules can be created in the case of fuzzy logic 

controller and learning neural network model to achieve 

the desired results. At first stage, simulation of different 

configurations of neural and fuzzy controllers has been 

tested. At second stage, a comparison phase is needed 

in order to get the appropriate model. 

Comparing the two controllers fuzzy with neural. 

We can note that the second method (FLC2), despite 

having fewer rules, it shows better response to step 

changes and very close to zero (Table 1). The neural 

controller is better according to the ISE and RISE 

TIME parameter. 

The results presented in this study are very 

encouraging because from the configuration model of 

neural network and a change in the rules of fuzzy logic; 

it will be possible to further increase system 

performance. 
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