
Research Journal of Applied Sciences, Engineering and Technology 10(6): 663-671, 2015

DOI:10.19026/rjaset.10.2475

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: January 8, 2015 Accepted: February 13, 2015 Published: June 20, 2015

Corresponding Author: P. Muthulakshmi, Department of Computer Science, SRM University, Chennai, Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

663

Research Article

Effective Scheduling Based on Task Duplication for Scheduling Parallel Applications in
Grid Environment

1
D.I. George Amalarethinam and

2
P. Muthulakshmi

1
Department of CS, Jamal Mohamed College, Trichy,

2
Department of Computer Science, SRM University, Chennai, Tamil Nadu, India

Abstract: This study addresses a duplication based scheduling algorithm called Effective Scheduling based on Task
Duplication (ESTD) for grid computing environment. Duplications are made based on task dependencies. The
algorithm ensures beneficial duplications and avoids unnecessary duplications. Idle time slots between task
execution times are effectively used. The algorithm aims to avoid the communication contention, which will happen
when there is frequent transportation of large sets of data. The performance of the algorithm is scaled by comparing
it with the algorithms of its kind. The results show minimized make span and effective resource utilization with
balanced loads across resources in grid.

Keywords: Active scheduling, duplication mechanism, forward directive, include directive, load balancing, passive

scheduling, work flow

INTRODUCTION

Grid computing distinguishes itself from other

parallel and distributed systems through its unique
features which may include heterogeneity of computing
resources and their dynamic participation, varied
administrative domains of resources and networks,
dynamic accessibility of resources by the users and so
on. High speed networks and resources, low cost super
computing power and high end technologies have taken
the grid computing technology to be realized as the next
generation computing solution. Generally, grids are
formed out of dedicated resources that form a parallel
computer; also use the computing power of personally
owned computers that are available on the internet.
Later category of resources let their computing cycles
to be used whenever they are connected over internet
and also necessarily their CPU cycles are found idle.
These resources are identified as non dedicated
resources.

Grid computing emphasizes on proper resource
utilization and shortest makespan in executing the tasks.
In such environments, the resources cannot be kept idle
as it could lead to maximum completion time of tasks.
Scheduling is the process of assigning and executing
tasks on available resources. An optimized scheduling
algorithm can improve the resource utilization through
proper selection of resources for tasks to execute. Grid
schedulers map the tasks on to the available resources
in a competent mode. The dedicated grid computing
resources can run for a long time and the grid
schedulers efficiently allocate tasks to these resources

by using the scheduling algorithms to complete task
execution in shorter makespan. Makespan is the
difference between the start time and finish time of a
sequence of tasks. A proper Resource Management
System (RMS) ensures the efficiency of any computing
system as it is closely associated with scheduling. RMS
sets the permissions for grid users to use the grid
resources and tracks the resource utilization, which
would be used for billing purpose The Grid Resource
Broker System (GRBS) is an interface between grid
service providers and grid users; it helps to use the
available grid resources. The resources are owned by
service providers and are traded for their CPU time.
Sometimes the resource itself may be identified as
service provider. The grid users use the resources to
execute their applications in a parallel fashion;
therefore the overall execution time of the application is
reduced. An application is a group of tasks which may
have interdependencies among them.

A task is the smallest unit of work to be executed
on a computing resource. A sequential or random
procedure to be executed is known as workflow. The
tasks and their dependencies are shown through the
workflow (Prodan and Marek, 2010). Workflow
includes scheduling, submitting data, transferring
contents for execution across resources, fault tolerance
management and so on. Among the above said,
scheduling is a significant component as it does
resource discovery, resource filtering, resource
selection, mapping resources and tasks. A best effort
work flow scheduling concentrates on minimum
execution time.

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

664

The deterministic workflows are parallel

applications whose inter dependencies are known in

advance. These applications can be represented through

task graph or Directed Acyclic Graph (DAG). DAG is a

collection of set of nodes and set of edges. A node

represents a task, which is a set of codes to be executed

and hence it has a need for computational power known

as weight. The dependencies are followed through

edges that connect a pair of nodes. An edge helps in

fulfilling the communication need. A task system

contains a set of tasks with a precedence relation

determined only by data dependencies (Kai and Faye,

1985). The precedence constraint is said to be obeyed

when the dependent task (successor/child) starts its

execution only after receiving the necessary

information from all its predecessors (parents). The

dependency can also be represented as parent-child

relationship.

In static scheduling, advanced reservation of

resources is encouraged and it requires a maximum

limit of reserving resources and is (at most) the

maximum number of tasks that a level contains in

DAG. In DAG, tasks are distributed in levels. In order

to show this pictorially, DAG can have the parents in

the top level and children are placed in the next

successive levels towards the bottom. The child is the

dependent of parent(s). There cannot be dependencies

between tasks of same level. A child can have parents

in any of the levels previous to the level where it is

present.

The method of duplication involves the execution

of particular tasks in more than one computing

resources and thereby making the results locally

available for more descendants. Therefore the cost of

message passing becomes zero and also the

communication between the resources is overlooked.

The idle time of a resource can be used to execute a

replicated task. Generally, it is observed from

researches, that duplication mechanism results in earlier

completion time of DAG and avoids communication

contention between resources. As the idle slots are used

effectively, wait time is avoided and the resource

performance is highly appreciated.

Many algorithms have proven themselves for

producing quality results in homogeneous computing

systems. However, it is a complicated problem to

schedule tasks on to resources in heterogeneous

environment due to varying nature of resources, speeds

and network bandwidths. List scheduling is a proven

solution for heterogeneous environments as they result

in quality schedules with low complexity.

Heterogeneous Earliest Finish Time (HEFT)

(Topcuoglu et al., 2002) algorithm is found to be most

popular DAG scheduling algorithm that schedules tasks

on resources with earliest finish time and it uses

insertion policy, but task duplication is not supported.

In this study, we propose a novel task duplication

algorithm for grid computing environment called

Effective Scheduling based on Task Duplication

(ESTD). Several duplication algorithms have been

proposed and were found to allow unnecessary

duplications. The algorithm uses greedy technique to

find and reserve the resources. The algorithm does not

encourage prolonged idle time of the resources. The

support of more resources may be required at the initial

stage of the workflow. Resources mapped for a

particular application to execute certain initial level

tasks need not wait until all the tasks to get over. Hence

the resources are encouraged to relinquish themselves

after executing the specified tasks. This helps the GRB

to make use of the resources effectively for other

applications. The algorithm can prove its efficiency in

distributed environments by minimizing the makespan.

Generally, duplication heuristics are very effective on

tasks graphs of high value communication links and

such graphs may result in high Communication

Computation Ratio (CCR) value. CCR is defined as the

ratio between the average communication cost and

average computation cost on a computing system.

LITERATURE REVIEW

Task duplication is the heuristic based static task

scheduling technique. The problem of minimizing the

completion time of task graph has been studied by

various researches and is found that most of the

algorithms are addressing homogeneous resources.

Task duplication is adopted in algorithms proposed in

papers (Sandnes and Meson, 2001; Li et al., 2003;

George Amalarethinam and Malai Selvi, 2012; Ahmad

and Yu-Kwong, 1994; Menglan and Bharadwaj, 2012;

Oliver et al., 2011; Chan-Ik and Tae-Young, 2001;

Koichi et al., 2006; Amit and Padam, 2010; Savina

et al., 2005; Ranaweera and Agarwal, 2000; Bozdag

et al., 2006).

Task duplication is to avoid/reduce the inter

process communication cost between the resources

(Ahmad and Yu-Kwong, 1994). In study (Menglan and

Bharadwaj, 2012), the authors proposed task

duplication algorithm called Prudent Algorithm with

Replication (PAR), which capture the processing

requirements for applications, based on that the

applications are executed in very certain applicable

resources. Task duplication based scheduling algorithm

presented in Oliver et al. (2011) uses clusters, uniform

communication cost and duplication is applied until the

last task in the graph is executed. Another Task

Duplication Algorithm referred in Chan-Ik and Tae-

Young (2001) uses less restricted optimality condition

and is found that many parent tasks of a child task to be

extended in the same resources.

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

665

Also, there are task duplication based scheduling

algorithms that discuss on:

• Avoiding useless duplication (Koichi et al., 2006)

• Avoiding the increase in scheduling cost due to the

duplicated tasks overhead (Amit and Padam, 2010)

• Limited number of duplication (Savina et al., 2005)

Task duplication-based scheduling Algorithm for

Network of Heterogeneous system (TANH) decides the

schedule based on availability of resources in

comparison with resources actually needed (Ranaweera

and Agarwal, 2000).

It is observed that load balancing among the

resources is not considered by the algorithms stated

above. In the proposed algorithm, we employed the task

duplication mechanism and we concentrated on load

balance across resources. We made the comparative

study on schedule length and speedup of the proposed

algorithm with Triplet Bin Task Grouping and

Prioritizing (TBTGP) (George Amalarethinam and

Muthulakshmi, 2014), Economical Duplication

Scheduling in Grid (EDS-G) (Amit and Padam, 2010),

Duplication and Insertion Based Scheduling (DIBS)

(Lijun et al., 2013).

METHODOLOGY

Research problem and description: In the study it is

found that most algorithms use homogeneous

computing resources and uniform communication cost

and is not the actual scenario of the grid computing

environment. It is observed that some algorithms

support needless executions, resource requirement is

not examined. The superfluous reservation of resources

may also result in inefficiency as the resources remain

unused for most of the time. To overcome the issues,

we proposed an algorithm called ESTD algorithm.

ESTD algorithm uses a limited number of resources. It

is a static scheduling algorithm follows greedy method.

Decision making in mapping a task and resource results

in optimal solution. However the algorithms may result

in suboptimal solution in very rare cases. It uses the list

scheduling and cluster scheduling techniques. The tasks

of a particular level is sorted and grouped with respect

to their dependent counts. The most prioritized task will

be allowed for duplication. The algorithm could finalize

the busy time of a resource and it not necessary for

resources to wait until the last resource to finish its

execution.

Therefore, if a resource finds itself not getting any

more tasks for execution after executing some tasks in

the initial level then that resource may be relieved from

the current application and can be made available for

other task graphs. The proposed algorithm allows

duplication of tasks up to certain level of the DAG. The

algorithm could decide which task to be duplicated

from a particular level. Also it fixes the number of

duplications to be made by a selected task.

ESTD is a heterogeneous algorithm and it

completely avoids needless duplication of tasks. The

algorithm is devised to evade unnecessary

communication time utilized in passing messages

between data interdependent tasks. Therefore overall

execution time of the application is considerably

reduced. Task duplication is done based on the rank

value of each task. The rank value is evaluated based on

number of dependents, level in which the dependents

are present, communication cost, computation cost. We

study the impact of duplications on makespan and the

algorithm is optimized to accept only the beneficial

duplications. Cost and time are interchangeably used in

this study.

Mathematical elements of ESTD algorithm:

Approximate computation cost of a task on each

processor: Approximate COMPutation Cost (ACOMP

Cost) is computed for each task with respect to speed of

each resource is given by:

for i = 1 to last task do

for j = 1 to last processor do

ApCOMPCost (ti, rj) = COMPCost (ti) /speed (rj) (1)

Preferred resource of each task: The resource is

preferred for its minimum execution time to execute a

particular task:

for i = 1 to last task do

for j = 1 to last resource do:

PrefRes (ti) = min (ApCOMPCost (ti, rj)) (2)

Average computation cost of a task on available

resources: Average COMPutation Cost

AvCOMPCost) of each task is determined as follows:

for i = 1 to last task do

AvCOMPCost (ti) =

last resource

= ΣApCOMP Cost (ti, pj) /total resources available

j = 1 (3)

Average computation cost of the DAG: The ratio

between the summation of average computation cost of

tasks and the number of tasks in the task graph:

AvGCOMPCost(G)

lasttask

=ΣAvCOMPCost (ti)/numberofTasks(G)

i = 1 (4)

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

666

Average communication cost of the DAG: The ratio

between the summation of communication cost of all

edges and the number of edges of the task graph:

AvGCOMMCost(G) =

lastedge

ΣCOMPCost (ei)/ /numberofedges (G) (5)

i = 1

Execution time of tasks: Time of Initiation (ToI),

Time of Completion (ToC), Finish Time (FT): ToI is

given as the time when a resource starts executing a

particular task. TOI is zero for all tasks in the first level:

ToI (ti, pj) = 0; 1≤ti≤lasttask and ti ∈ initial level,

1≤pj≤total resources available (6)

ToC is given as:

ToC (ti, pj) = APCompCost (ti, pj) (7)

Finish Time is defined as the time that a particular

resource completes the execution of a particular task:

FT (ti, pj) = ToI (ti, pj) + ToC (ti, pj) (8)

For tasks in other levels, the recursive computation

of ToI, ToC is done through the following arithmetic.

Task Arrival Time on resources (TAT), Finish Time

(FT):

for i = 1 to last task do

for k = 1 to last resource do:

PrefRes (task) = Resource (min (ApCOMPCost (ti,

rj))) (9)

If (PrefRes (ti) = PrefRes (tp(ti)) then

COMMCost (parent, child) = 0 (10)

else

for i = 1 to last task do

for j = 1 to parents (tc(i)) do

for k = 1 to lastresource do:

TAT (tp(i), rk) = FT (ti, rk) + COMMCost (tp(i), tc(j))}

 (11)

Task Execution Time (TET), Resource Gear-up

Time (RGT): If resource of child is not same as the

resource of parent:

If (PrefRes (task is free)

waittime (task) = 0 (12)

else:

waittime (task) = FT (current task, PrefRes (task))-

TAT (task, PrefRes (task)) (13)

for i = 1 to last task

for j = 1 to last processor:

RGT (pj) =TAT (task, ores) + wait time (14)

ToI (tc (i), pj) = RGT (pj) (15)

ToC (tc (i), pj) = ApCOMPCost (ti, pj) +

ToI (tc (i), pj) (16)

Relation Matrix (RM):

for i = 1 to last task

for j = 1 to last task

if (task (tj) is the parent (ti)):

rv [i][j] = 1 (17)

where,

tp = Parent task

tc = Child task

tp (tc) = Parent of child task

rv = Relation value

Resource List (RL):

for (i = 1to max level)

lmaxtasks = max (number of tasks of level (li)) (18)

 RL = (lmaxtasks/2) +1 (19)

THE PROPOSED ESTD ALGORITHM

Algorithm 1, Algorithm 2 give the pseudocode for

ESTD.

Algorithm 1:

1. Algorithm ESTD (DAG G, ResouceList RL)

2. {

3. //number of resources is expected to be the

maximum of tasks contained in levels minus one of

the DAG

4. G = (V,E);

5. V = (vi, COMPCost (vi)); 1≤i≤nv

6. E = ei ((vi, vj), COMMCost (vi, vj)); 1≤vi≤nv,

1≤vj≤nv, 1≤ej≤ne i ≠ j

7. RL = (ri, processing speed (ri)); 1≤i≤np

8. if (AvCOMMCost (G) >AvCOMPCost (G))

9. Duplication (G) //Duplication is highly effective

10. }

Algorithm 2:

1. Algorithm Duplication (G)

2. {

3. Find all paths that connect the entry and exit tasks

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

667

4. Find the number of dependents for each task in the

paths

5. Find the count of dependents for each task from all

paths

6. Group the tasks with respect to the level of their

presence

7. priority-list: A non increasing order level-

wise//internal sorting is done with respect to the

count of dependents of each task in a particular

level

8. level = 1

9. while (level< = maxlevel) //while1

10. {

11. priority-list (level) = sorted tasks (level)

//3≤maxtasksinPriority-list≤6, no of tasks

recommended for duplication is one

//6 (n - 1) +1<maxtasksinPriority-list≤6n, n number

of tasks are duplicated

12. Task Duplication Factor (TDF): Duplication is

supported for high order tasks of priority-list and is

done from level = 1 to level/2

13. while (resource available && tasks remain

unassigned in the priority-list) //while2

14. {

15. if (level = 1&& task count of level = 1)

16. Task is scheduled on all available resources

17. else

18. {

19. Task Selection Factor (TSF): Task from priority-

list that has minimum execution time on the

resource

20. Tasks MFT = find Min Finish Time Tasks

(resource-id) //tasks having

//min APCOMPCost on the available resource

21. If (TasksMFT>1)

22. Task MFT = find Max Comm Cost Task (task-id)

//task having maximum

//communication cost of all Tasks MFT to connect

its descendent

23. check for parents in the relation matrix

24. while (parents)

25. {

26. check Finished Task Table for resource-id of

parents

27. Resource Priority List = sorted list of count of

resource-id of parents

//Priority is given to high order resource-id

28. if (available resource-id = resource-id of parents)

29. Commute the results from other parents and

schedule the task on resource

30. else

31. Task is scheduled on resource-id of next Min

Finish Time//if required

//commute results from parents executed on other

resources-id

32. }

33. }//else

34. while (task is executed && resource is free)

//while3

35. {

36. update Prioritized Resource Available List

(resource-id)

37. update Finished Task Table (task-id, resource-id,

Finish Time)

38. if (task-id is not higher order task)

39. Remove task from the priority-list

40. if (task-id is high order task and duplication>

(number of dependents/2) +1)

//Finish Task Table is used to find the number of

times a task is executed

41. Remove task from the priority-list

42. }//while3 ends

43. }//while2ends

44. level = level+1

45. }//while1 ends

46. }//Algorithm ends here

During the initial stage itself the algorithm decides

the need for duplication. Task Duplication Factor

(TDF) is to finalize which task must be duplicated. The

process of deciding the task to be duplicated is called

include directive. Task Selection Factor (TSF) is

responsible for finalizing the task to be executed on

available resources while process of execution is called

forward directive. The priority-list is loaded with tasks

belong to a particular level that are arranged in non-

increasing order with respect to the count of

descendents of each task from all paths. The position of

each task in the priority-list is the static task rank of the

particular task. The relation matrix helps to trace the

dependencies between tasks. Tasks to be duplicated and

the number of duplications to be made are restricted.

The levels are also restricted to allow their tasks for

duplication.

The Finish Task Table is updated with completed

tasks along with the information of resource utilized to

execute the task and finish time of task on the resource.

As soon as the resource completes its execution, its

availability is updated in the Prioritized Resource

Availability List. The task having the minimum

execution time on the available resource is preferred to

execute on the resource. If the task could not get the

resource that is preferred, then the resource supporting

next minimum execution time is preferred.

Unnecessary duplications may exceed the schedule

length and the resources would be kept needlessly busy.

If the resource is no longer needed until the completion

of DAG, the resource may be relieved for other works

after sending the results to other resources that require

it. ESTD algorithm ensures that every task is executed

on a resource that supports minimum execution time.

Tasks can be easily duplicated for execution only

when the number of tasks ready to be executed is lesser

than the available resources. Alternatively when the

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

668

number of tasks are more than available processors,

then based on the dependency in the next successive

levels, the task(s) will be duplicated. The number of

tasks in the initial (first) level may be one or many. The

execution of the first level tasks begins at once since

they are not dependents of other tasks. The mapping

can be done:

• When it is one task at the first level, then it would

be executed in all the available processors.

• When it is multiple tasks at the first level, then

based on the dependency population of the task, it

would be executed in more processors (i.e., when

the dependency population is more; the task is

duplicated with respect to availability of resources

and the population of dependency).

Experiments: A sample DAG is shown in Fig. 1,

marked edge values represent communication costs.

The task pointed by the arrow head is the child of the

task which is to the other end of the arrow. The

computation costs of the tasks on available

heterogeneous resources (R1, R2 and R3) are shown in

Table 1. The mapping of task and resource is done by

the algorithm. Table 1 to 5 is associated with DAG

shown in Fig. 1.

Fig. 1: Sample DAG with communication cost

Table 1: Computation cost of tasks on resources

Computation cost on resources
--
Tasks R1 R2 R3

T1 14 16 9
T2 13 19 18
T3 11 13 19
T4 13 8 17
T5 12 13 10
T6 13 16 9
T7 7 15 11
T8 5 11 14
T9 18 12 20
T10 21 7 16

AvGCOMPCost (G) = 13; AvGCOMMCost (G) = 16

Paths and Dependents of Task in Path (DTP) are

shown in Table 2. Table 3 lists the count of dependents

of each task from all paths, the level-wise sorting of

task is shown in Table 4 (Prioritized tasks to be

duplicated are shown in bold).

Table 5 presents the execution sequence of the

DAG shown in Fig. 1 and the makespan is found to

be 71.

RESULTS AND DISCUSSION

Significant performance improvement is observed

when assessing the proposed algorithm with TBTGP,
EDS-G and DIBS. To assess the performance of
algorithms the following factors are measured:

• Makespan

• Schedule length ratio

• Speed-up ratio

• Load balancing

When considering the compared algorithms, the result

consistencies on makespan is remarkable for ESTD.

The results are assessed using many DAGs of different

sizes. Graphs generated for simulations are fully

connected. Random Task Graphs are generated using

Table 2: Paths and dependencies

Path Tasks between entry and exit tasks

P1 1 2 8 10

DTP1 5 2 1 0

P2 1 2 9 10

DTP2 5 2 1 0

P3 1 3 7 10

DTP3 5 1 1 0

P4 1 4 8 10

DTP4 5 2 1 0

P5 1 4 9 10

DTP5 5 2 1 0

P6 1 5 9 10

DTP6 5 1 1 0

P7 1 6 8 10

DTP7 5 1 1 0

Table 3: Count of dependents of tasks from all paths

Task Count of dependents

1 35

2 4

3 1

4 4

5 1

6 1

7 1

8 3

9 3

10 0

Table 4: Internal sorting based on count of dependents

Level Sorted tasks

L1 1

L2 4, 2, 5, 6, 3
L3 9, 8, 7

L4 10

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

669

Table 5: Resource consumption of tasks

Time/cost

Resource utilization by tasks in cost/time

R1 R2 R3 Time/cost R1 R2 R3

1 T1 T1 T1 37

2 38 T7

3 39

4 40

5 41 T8

6 42

7 43

8 44

9 45

10 T6 46

11 47

12 48

13 49

14 50

15 T2 51

16 52

17 T4 53 T9

18 54

19 T5 55

20 56

21 57

22 58

23 59

24 60

25 T3 61

26 62

27 63

28 T4 64

29 65 T10

30 66

31 67

32 68

33 69

34 70

35 71

36

Fig. 2: DAG generated using random DAG generator

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

670

Fig. 3: Comparison of make span of algorithms

Fig. 4: Speedup ratio of algorithms with different DAG sizes

Table 6: Schedule length of algorithms

Algorithms Schedule length

ESTD 71

DIBS 74

EDS-G 76

TBTGP 78

Table 7: Algorithms and make span

Tasks in

Algorithms and schedule length (6 resources used)

--

DAG ESTD DIBS EDS-G TBTGP

50 111 122 127 136

75 127 136 139 142

100 202 217 221 236

125 236 243 247 251

a task graph generator, which was developed as part of

our work (George Amalarethinam and Muthulakshmi,

2012). Figure 2 shows the DAG generated by task

graph generator. It could generate DAGs of various

sizes and wide range of attribute values. Consistent load

balance is observed in most of the executions. The

performance is scaled for a large range of CCR values.

The results of experiments show that ESTD surpasses

the other compared algorithms.

Schedule length ratio of DAG is defined as the

ratio between the schedule length and the summation of

minimum computation cost of tasks. Low value is

achieved on schedule length ratio in almost all

executions that uses randomly generated graphs.

Speedup ratio of DAG is the ratio between

minimum computation cost obtained by executing all

the tasks of DAG in one resource and the schedule

length. Most of the speedup ratio values are found to be

more than one.

Table 6 presents the schedule length obtained after

executing the sample DAG shown in Fig. 1. Table 7

gives the comparison of schedule length of algorithms

for various sizes of DAG. Executions of needlessly

duplicated tasks are observed in the other two

duplication algorithms. The usage of communication

links to commute results from parents to child is more

in DIBS and EDS-G.

Figure 3 expresses the performance of algorithms

in terms of makespan, Fig. 4 shows the speedup ratio of

algorithms.

Time complexity: The time complexity of ESTD

algorithm is given as O (2 np), where ‘n’ is number of

tasks in DAG and ‘p’ represents the resources reserved

for executing the DAG.

CONCLUSION

In this study, a duplication based DAG scheduling

algorithm called ESTD algorithm is proposed. Many

algorithms of its kind are implemented using Java and it

encourages using Java for the implementation of

algorithms for comparison and analysis. It adopts list

and cluster scheduling for task prioritization. Greedy

method is employed to find the resource that minimizes

task execution time. Tasks are grouped based on level

of their presence and are ranked based on their

dependents. The prioritized tasks in the group are

chosen for duplication. The algorithm limits the number

of duplications. The number of resources to be

employed is fixed and is held back only when they are

expected to be busy; otherwise the resources would be

relinquished to be used by other applications. As it is a

static algorithm the plan of execution is already known

and it is obvious that the busy time of the employed

resources must be known. Hence the resources are

released as soon as the mapped tasks are executed and

found no longer needed. The message passing across

resources is considerably reduced and therefore

contention free execution is supported. It is found that

most of the tasks are executed in resources that support

minimum execution time. The results demonstrate the

performance of ESTD algorithm in comparison with

algorithms of its kind.

REFERENCES

Ahmad, I. and K. Yu-Kwong, 1994. A new approach to

scheduling parallel programs using task

duplication. Proceedings of the International

Conference on Parallel Processing, pp: 47-51.

Res. J. App. Sci. Eng. Technol., 10(6): 663-671, 2015

671

Amit, A. and K. Padam, 2010. Economical task
scheduling algorithm for grid computing systems.
Global J. Comput. Sci. Technol., 10: 48-53.

Bozdag, D., U. Catalyurek and F. Ozguner, 2006. A
task duplication based bottom-up scheduling
algorithm for heterogeneous environments.
Proceeding of the 20th International Parallel and
Distributed Processing Symposium.

Chan-Ik, P. and C. Tae-Young, 2001. An optimal
scheduling algorithm based on task duplication.
Proceeding of the 8thInternational Conference on
Parallel and Distributed Systems, pp: 9-14.

George Amalarethinam, D.I. and F.K. Malai Selvi,
2012. A task duplication based efficient multi-
objective grid workflow scheduling algorithm. Int.
J. Adv. Res. Comput. Sci., 3: 87-92.

George Amalarethinam, D.I. and P. Muthulakshmi,
2012. DAGitizer-a tool to generate directed acyclic
graph through randomizer to model scheduling in
grid computing. In: Wyld, D.C. et al. (Eds.),
Advances in Computer Science, Engineering and
Application. AISC 167, Springer-Verlag, Berlin,
Heidelberg, pp: 969-978.

George Amalarethinam, D.I. and P. Muthulakshmi,
2014. A proficient low complexity algorithm for
preeminent task scheduling intended for
heterogeneous environment. J. Theor. Appl.
Inform. Technol., 67: 1-11.

Kai, H. and A.B. Faye, 1985. Parallel Architecture and

Parallel Processing. McGraw Hill International

Editions, NY.

Koichi, A., S. Bing and W. Toyohide, 2006. A task

duplication based scheduling algorithm for

avoiding useless duplication. Proceedings of the

International Conference on Parallel and

Distributed Processing Techniques and

Applications and Conference on Real-time

Computing Systems and Applications.

Li, G.D., D.X. Chen, D.M. Wang and D.F. Zhan, 2003.

Task clustering and scheduling to multiprocessors

with duplication. Proceedings of the International

Parallel and Distributed Processing Symposium.

Lijun, C., L. Xiyin, H.G. Torkel and Z. Zhongping,

2013. Task scheduling algorithm in grid

environment based on duplication and insertion.

J. Softw., 10: 2447-2454.

Menglan, H. and V. Bharadwaj, 2012. Requirement-

aware scheduling of bag-of-tasks applications on

grids with dynamic resilience. IEEE T. Comput.,

62: 2108-2114.

Oliver, S., T. Andrea and K. Manpreet, 2011.

Contention-aware scheduling with task duplication.

J. Parallel Distr. Com., 71: 77-86.

Prodan, R. and W. Marek, 2010. Bi-criteria scheduling

of scientific workflows. IEEE T. Autom. Sci. Eng.,

7: 364-376.

Ranaweera, S. and D.P. Agarwal, 2000. A task

duplication based scheduling algorithm for

heterogeneous system. Proceeding of the 14th

International Parallel and Distributed Processing

Symposium.

Sandnes, F.E. and G.M. Meson, 2001. An evolutionary

approach to static task graph scheduling with task

duplication for minimized interprocess or traffic.

Proceeding of the International Conference on

Parallel and Distributed Computing, Applications

and Technologies.

Savina, B., K. Padam and S. Kuldip, 2005. Dealing

with heterogeneity through limited duplication for

scheduling. J. Parallel Distr. Comp., 65: 479-491.

Topcuoglu, H., S. Hariri and W. Min-You, 2002.

Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE

T. Parall. Distr., 13: 260-274.

