
Research Journal of Applied Sciences, Engineering and Technology 10(3): 274-287, 2015

DOI: 10.19026/rjaset.10.2488

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015, Maxwell Scientific Publication Corp.

Submitted: December 14, 2014 Accepted: January 27, 2015 Published: May 30, 2015

Corresponding Author: N. Janani, Department of Computer Science and Engineering, Amrita School of Engineering, Amrita

Vishwa Vidyapeetham, Coimbatore, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

274

Research Article

Optimization of Virtual Machine Placement in Cloud Environment Using
Genetic Algorithm

N. Janani, R.D. Shiva Jegan and P. Prakash

Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Coimbatore, India

Abstract: The current trend in the computing era is cloud computing, which helps in providing seamless service to
the user, but optimizing the utilization of the available resources and an efficient placement of the virtual machines
are not so significant in the existing phenomena. Virtual machines are software computers that act as the key feature
in providing services to the existing physical machine. VM placement is the process of mapping the virtual machine
requests or images to the physical machines, according to the availability of resources in these hosts. Hence in this
study, we have studied on various methods in which the placement are being done and have proposed an idea which,
treats the available pool of physical resources as each knapsacks, which are solved using genetic algorithm, to get an
optimal placement. Starting with this aspect, we enhanced the solution by considering multiple and
multidimensional parameters in the virtual machine request, so that the migration of the virtual machines will be
reduced and hence power-saving.

Keywords: Bin packing, cloud computing, crossover, genetic algorithm, knapsack problem, migration, mutation,

virtual machine placement, VM placement algorithms

INTRODUCTION

Cloud is the most prominent technology that drives

the industry now-a-days. Cloud is the back bone of
most of the technically advanced organizations because
it provides ample services to its users. Cloud can
provide any type of services, depending upon the
requirement. It is an on-demand self-service that allows
a variety of users to access a wide range of service. It is
a pay-as-you-go type of a technology that charges users
according to the amount of service consumed. Cloud
has taken a firm place in this short span of time because
of its scalability, that is, it can easily add up or shrink
down the services depending upon the customer
necessities.

The cloud service consumers or the clients may be
heterogeneous, in the sense; they can be thick or thin
clients. All that they want is service, from the cloud.
The service may be usage of resources for a particular
time, for which they will be metered, monitored and
charged for. These resources are a pool of physical and
virtual resources which are available anywhere,
anytime on cloud. Everything in cloud happens
dynamically. Not that a single machine is allotted with
a particular resource for ever, as in traditional client
server models. Any system can access any virtual
machine, which is randomly allotted by the cloud and
access service.

Hence it is obvious that to access cloud services,

we need a virtual machine and to get a VM mapped into

a physical host or a node, there must be a proper VM

placement algorithm to ensure that the available

resources are not wasted and are allocated and

distributed across the hosts in an optimized manner,

such that the migration will be reduced, there will be

less overhead and also there is an decent amount of

contribution to minimize the power utilization. So, we

try to deploy the concepts genetic algorithm and

multiple multidimensional problem over our placement

problem and thereby improvise the placement of the

virtual machines.

Services provided by cloud: All the service provided
by cloud is completely virtualized, as discussed by Mell
and Grance (2011). The cloud service consumer can
only access a resource, use it and store data in his
desired format, but can’t own any of the resource. No
one will know, from which virtual machine which user
has accessed which virtual resource, or where it has
been stored. The detailed categories of the services
provided by cloud are discussed below.

SAAS: Software as a Service is one of the service

provided by cloud. A typical example to understand

SAAS is, a user has setup Windows operating system in

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

275

his personal device and he is forced to work with

Ubuntu just for a day. He need not reconfigure his

operating system or setup a new virtual operating

system on the top of the existing one. He can access

cloud and enjoy his work in Ubuntu, without disturbing

the existing environment.

PAAS: Platform as a Service is yet another service
provided by cloud. Consider a scenario where in the
user is working on a windows operating system but
needs an entirely new platform to build up his project
just for a week, which costs more for setup and
installment. Cloud can help this user by providing the
platform that he wants, just for a week, on a rent basis.
Since it provides PAAS.

IAAS: Infrastructure as a Service is where in cloud

provides an infrastructure itself as a service to the user.

For example, on the date of conducting exams where

about more than 5000 candidates participate, the exam

board may expect a higher bandwidth of network than

the usual. During those times cloud can provide IAAS.

Not only data centers can be said an infrastructure;

having a normal personal digital assistant one can work

with super computers too, with the help of cloud.

Without cloud computing, all these cases would

have met unwise solutions either to waste the resources

or reconfigure the whole environment for a short time

show. But cloud comforts with all these services which

are purely dedicated for the users, they may feel that

they own the service, or the system or the application or

the platform, or the infrastructure. But in real, these

services are just given to the users based on their

request and they cannot own any, says Shiva Jegan

et al. (2014). The fact is all these are virtualized!

Virtual machines: A virtual machine is a self-

contained operating environment, which acts like a

separate computer; that allows running any operating

system or application with the existing system. To

understand easy, a virtual machine can be said a

software computer. Cloud, to serve the users with

varying requests needs VM’s aid. These VMs are

placed based on various distribution methods, which

help in granting the user requests with a good quality of

service. Virtual machines are so dynamic since cloud is

highly scalable; it needs to be so quick and smart. As

discussed by Creasy (1981), the objectives that are to be

carried for an efficient virtual machine distribution are:

• To avoid congested links between the virtual
machine residing system and the request raising
system.

• Communication time between the VM residing

system and the node must be reduced whereas data

exchange should be maximized. That is more data

must be transferred properly within short span of

time.

• An integrated solution is needed to reduce
transmission overhead and allow easy VM image
update, in case of there are any updates in the VM
image distribution.

MATERIALS AND METHODS

Virtual machine placement methods: The process of
mapping virtual machines to physical machines is
called as virtual machine placement by ensuring to
improve power efficiency and resource utilization.
Virtual machines must be distributed in an efficient way
such that no system or a request starves for the response
from cloud. Each system on the cloud network will be
distributed with a VM image. The primary goals in
placing a virtual machine are:

• Maximize the usage of the available resources.

• Save power by shutting down servers.

If VMs are allowed to migrate from one physical
machine to another, then it shows that it is a dynamic
placement. If no migration between systems, then it is
said to be a static placement of VM.

In our case, we address dynamic placement of the
virtual machines. Some of the virtual machine
placement algorithms are being discussed below,
followed by the drawbacks in using them, as said by
Pisinger (1995). Followed by those implementation
issues, the solution to this problem is drawn below.

First fit algorithm: This algorithm is an optimal
algorithm which can be used locally to place virtual
machines. This algorithm works in a greedy manner to
optimize the placement process. When a virtual
machine request is triggered, then this algorithm
responds by allocating the first physical machine
available in the queue, provided that the first machine is
fully loaded with required resources. Also this
algorithm does not waste time in scanning the partially
loaded physical machines, as discussed in Gottlieb
(2000). Hence reduces the time complexity. Consider
the example where in each box is a VM request and the
numbers inside them are the resource required for each
virtual machine request.

In the scenario dealt in Fig. 1, there are six physical
machines that hold maximum ten resources each.
According to this algorithm, the first VM request that
comes will get place in the first physical machine. This
will be followed by the second VM request which first
checks the host 1, if it can give place for execution. If
not it goes to the second host. This procedure follows
for the entire queue. And finally we can see that, the
last two hosts are left free.

First fit decreasing algorithm: This algorithm works
similar to the first fit algorithm except the fact that, the
virtual machines will be sorted in decreasing order of
resources. Once when a VM request arrives, then the
first fit algorithm will be applied. This method is more

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

276

Fig. 1: Mapping VMs to PMs using first fit algorithm

Fig. 2: Mapping VMs to PMs using first fit decreasing algorithm

efficient compared to first fit algorithm since it

optimizes the memory allocation. Consider the same

example to be solved using first fit decreasing

algorithm.

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

277

Consider each host can accommodate till 10 units
as in Fig. 2. While the placement was by first fit, only
one node was fully utilized, but by this method three
nodes are fully utilized so that if any new request comes
it can occupy the next. Thus it optimizes the allocation.
The overall result, in optimizing the resource allocation
may seem the same; but the ways in which the VMs are
mapped to the hosts vary widely.

Next fit algorithm: Next fit algorithm follows a
technique by providing an easier way to allocate
resources by making use of a variable called “NEXT”
which is initially assigned to null. When a virtual

machine request is placed, the search begins from the
first node, if the physical machine contains the
requirements of the virtual machine; it will be allotted
else a new PM will be started. The variable NEXT will
go to the next position in the queue, once when a VM is
mapped into any of the available PM. This algorithm
keeps count on how many PMs are used. Also this
algorithm does not look into an already allotted PM.
That is the variable NEXT will never go in reverse.

Consider the example in Fig. 3, the maximum
capacity that each host can accommodate is 10 units. In
first fit method, even after allocating some VM to the
host, for the next VM request the already

Fig. 3: Mapping VMs to PMs using next fit algorithm

Fig. 4: Mapping VMs to PMs using random fit algorithm

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

278

allocated node will also be checked for availability. But

in this method, resources once allocated will not be

checked again. This optimizes time, but kills memory

since all the five hosts that are assigned to VM are

underutilized.

Random fit algorithm: Random fit algorithm, as the

name indicates this algorithm randomly allocates virtual

machine requests to physical machines just by ensuring

the resource availability in the physical machine. This

algorithm cannot be so successful in all scenarios, since

both VMs and PMs are picked at a random, so no

proper logic or trace over can be given.

Consider each node can handle 10 units of requests

in Fig. 4. Even in this scenario, two physical machines

are neither loaded and the placements in the working

hosts are also to the maximum. But one cannot judge

how the placement is done. Also, it is not always

possible to predict or assure that it will give an

optimum result. This algorithm can work in the reverse

fashion too; making use of all the six physical machines

available.

Most full algorithm: This algorithm works on a pretty

simple logic that all the physical machines which

already allow some VM requests to run on it, will be

sorted in ascending order. After this sorting first fit

algorithm will take place. Most full algorithm is just an

improved version of first fit algorithm.

Initially the available PMs are giving place for

some VMs. To apply this algorithm, these physical

machines must be sorted in descending order. After that

the VMs should be sorted in ascending order, after that

mapping the VMs to the PMs will take place. In this

example, the black color will specify the previous

existing physical availability and the colored represent

the new sorted VMs which is placed in the existing

PMs. Consider each node can handle 10 requests each.

Figure 5a is the example scenario in which most

full algorithm is going to be deployed. Available

physical machines are sorted in descending in the

Fig. 5b, the placement is shown in Fig. 5c.

The drawbacks in placing a virtual machine: The

VM images are allocated to systems based on any of the

criteria depending upon the scenario. The loop hole

here is that, what if any of the allotted VM is under-

utilized or over utilized. If a VM is idle for a reasonable

amount of time then it must be migrated to another

system which actually needs it. Also certain VMs get

more and more request that its’ handling capacity. Here

some idle VMs must be transferred and deployed. This

process is called virtual machine migration. VM

migration helps in improving the efficiency of the

cloud, by maintaining proper load balance, discussed by

Mohamadi et al. (2011).

But the point to be noted here is, VM migration

involves extra data involve. For an instance, if a VM

image is handling only one request at a system and it

needs till ten units of time to complete. Meanwhile

another VM is fully overloaded and needs an under-

loaded VM to help it. So this former VM is migrated

while its process is at the fifth time unit of execution.

Here, this migrated VM must keep track of the service

it is providing and also take care of the new upcoming

process. After migrating if the VM performs to its

fullest, then it is valid. But for performing a two time

unit job if the VM is migrated on keeping track of the

pending five unit request, then it is memory and

resource kill, which should be addressed.

This proves that placing a virtual machine must

ensure that the placement made is so efficient so that

(a)

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

279

(b)

(c)

Fig. 5: Working of most full algorithm

the resources will be utilized to its maximum.
Maximum utilization of resource here means, there is
no waste of resource, that is, limited power is
consumed, as discussed by Fidanova (2005).

Also all the algorithms discussed above just
address a solution only in a single dimension. For
placing a virtual machine, the parameters that take
predominant roles are the physical machine capacity,
the processing speed, RAM size, maximum number of
resources that it can accommodate and most
importantly how long it will be kept on. All these
details play an important role for succeeding in the
mission mentioned above. For which an
implementation idea comes below.

Knapsack problem: Knapsack problem is a NP Hard
problem which demands an optimized solution in

dealing with resources. It is a type of the bin packing
problem where in the choice is left with a variety of
items and a constant volume of container, in which the
container must be filled full also ensuring that it
provides optimum profit. The items to be filled inside
the container must be selected in such a manner that the
output is the maximum out of all combinations.

Types of knapsack problem: There are two major
types of knapsack problem, as discussed by Song et al.
(2008), such as.

0/1 knapsack: This is a type of knapsack which
obviously focuses on optimizing the profit, yet does not
compromise in selecting a part of the item. For
example, if there is an item of capacity 5 units and
value 15 units and a container of volume 3 units. This

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

280

type of knapsack will not allow in selecting this item,
because 0/1 knapsack either selects the item as a whole
(1) or drops it (0), detailed by Vasquez and Hao (2001).

Fractional knapsack: Fractional knapsack is a bit
flexible also a complex method which does anything to
maximize profit. Consider the same example; there is
an item of capacity 5 units and value 15 units and a
container of volume 3 units. This type of knapsack will
take just take 3 units of the item ensuring a profit of 9
units.

In the 0/1 knapsack, for the same example the
profit is nil, but in the other method it is 9 units. And
from this, obviously, 0/1 is less complex, but fractional
needs more computations in choosing the optimal profit
yielding item if n number of items is present.

In our case to map VM requests, obviously, it is
not possible to split a request into fragments and then
allot them to physical machines. Doing so, just
increases the complexity of the placement process since
there must be dedicated units to split the resources
before sending to a host and another one to merge and
consolidate them, as said by Singh et al. (2008). Hence
we go for the 0/1 knapsack problem, where if we find a
host with available resources, we utilize it, or go in
search of a next host.

Solving a knapsack problem: Knapsack problem is a
standard np-hard problem that can be implemented in
various fields. Now the solution to this will be using
any of the following methods, as by Fréville and Hanafi
(2005).

Greedy method: In greedy method, the overall profit
will be focused and to achieve that the sequence or the
pattern that gives higher gain will be selected. This
method blindly calculates all possible patterns that are
feasible and chooses the best out of it.

Divide and conquer: As far as this method is
concerned, the given problem will be divided into
smaller sub problems, will be consolidated and the
result will be found. The sub problems which are
divided have no relation to each other. Output of one
sub problem does not affect the output of the other.

Dynamic programming: While choosing to solve
using dynamic programming, the given problem must
be divided into smaller sub problems, whose result will
be stored and retrieved for calculating the value of the
next sub problem. All the sub problems are inter-
related, in a way that outcome of a sub problem
depends on the output of the previous sub problem.

There are still more many traditional ways in
which a knapsack problem can be solved, but in our
case, we choose genetic algorithm to solve, since it
gives a more optimal output.

Implementing knapsack problem to solve the
virtual machine placement problem, considers the
physical machines as bins and virtual machines as

objects to be filled in. And follows the steps given
below:

• Formulate the patterns of the past demands of VMs
at the particular environment.

• Anticipate future demands based on the past details
that are obtained from the previous step.

• Map or remap virtual machine to physical
machines.

Do repeat this process for quite a regular time

interval. The main rule is measure-forecast-remap the
placement procedure.

0/1 knapsack demerits: We do get a better result in
implementing the knapsack problem in distributing the
virtual machines over available hosts, yet what if
multiple VMs come into play. Also, since many virtual
machines are dealt with we go for implementing
multiple knapsack problem, which literally says that
one or more bins are involved, as discussed by Vasquez
and Vimont (2005).

Also as far as value and volume are considered,
normal knapsack itself can work well. But placing a
VM deals with various factors like, processing power,
memory, storage, network bandwidth, etc., each one
contributes a unique dimension. Hence multiple multi-
dimensional knapsack problems can be implemented to
get more optimized results.

Proposed solution: We are trying to optimize the

resource allocation by implementing multiple

multidimensional knapsack algorithm so that the

chances of migration will be less also, the resources

will be utilized to the maximum, as said by Gottlieb

(2000). Consider the following example. Its working is

detailed as follows, Fig. 6:

• Initially a user tries to access the cloud, where the
actual VM request is triggered.

• Likewise, many VM requests will be initiated,
which get gathered in a VM queue.

• VM queue, which accommodates the incoming
VM requests, must be highly scalable.

• The next step is to have a clear idea about the
available physical machines. Though it is dynamic,
at least to a reasonable extent, the scenario must be
known.

• Then, each VM request is considered a knapsack
problem. We name it multiple since, many VM
requests are to be addressed at a while.

• These VM requests are with respect to various
dimensions like, processing speed, storage,
memory, network, etc., hence we name it
multidimensional.

• To solve this problem, we apply genetic algorithm,
which is one of the evolutionary algorithms that
can handle any type of data and give an optimal
result.

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

281

Fig. 6: Mapping VM to PM by implementing multiple multidimensional knapsack algorithm

• Once when we get the optimal output, or the

maximum number of times is reached, we iterate

this algorithm, to get the best solution.

• This algorithm may take a considerable time in

doing these calculations, but provides the optimum

placement which minimizes the chances of

migration.

• According to the result suggested by this

algorithm, the VM image distribution will take

place.

• This process does not end up here. This algorithm

along with the scheduler keeps a constant study of

the status of the PMs and VMs.

• Thus the current requirements of the cloud network

will be read clearly, every now and then, so that

resources can be dynamically granted, wasting

nothing.

By this, there will be continuous updates about the

virtual machine requirements and the existing available

resources pool. These resources, since it takes more

than one dimensions, the placement will be optimal.

Genetic algorithm: Genetic algorithms are efficient

methods deployed, where a searching or an

optimization problem exists. This algorithm will work

fine even if there a huge data as inputs and to be

handled fast, as said (Khan, 2013). This algorithm

comes to aid when there has no solution for a given

problem, or the existing solution must be enhanced for

optimal result. In our case, Genetic algorithms help to

optimize the benefit of a group of objects in a knapsack,

considering its capacity constraint, as discussed by

Koza (1992). The working of this algorithm is

explained as follows, see Fig. 7.

Initially the inputs to the problem are considered as

the primitive population. This primitive population is

initialized by either of the two ways, random

initialization or induced initialization. In random

initialization, the populations are created by mining at

random, without any rules. Induced initialization, on the

other hand gets constant information relating to the

given values and background information, to construct

the primitive population, as explained by Hinterding

(1994).

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

282

Fig. 7: Working of genetic algorithm

After this, with the help of the individuals in the

existing population, this algorithm gives birth to the

next generation of population to create new sequence of

new populations. Creation of new generations of

offspring continues until the algorithm meets with the

stopping condition. The creation of new generations

is done as follows, as discussed by Khuri et al.

(1994).

Each element is scored by a fitness value, which

helps to find the optimal solution. According to the

nearness of the fitness value, the elements are classified

into groups of different ranges. If the fitness value of an

element is reasonably good, then it will be qualified to

be a parent. The elements that have best fitness will be

automatically moved to next generation.

Then parents give birth to their children in either of

the ways.

Mutation: In this way of giving birth to a child, only a

single parent is involved. By changing the vector

entries of a single parent, randomly, gives birth to a

child.

Cross over: In this method, to create a child, two

parents are involved. Combining the vector entries of

two different elements to form a child.

Once when a new generation is formed, it replaces

the existing generation. If the new generation contains

an optimal solution, the problem is solved, else this

algorithm continues by creating a new generation from

the existing generation, as discussed by Sun and Wang

(1994).

Genetic algorithm to solve a knapsack problem: To

solve the knapsack problem, the fitness function can be

defined by calculating the sum of benefits of an item

that can be included in the knapsack, ensuring that the

maximum capacity of the knapsack is not exceeded.

Thus with the first generation population, the fitness of

each element is found. It is then categorized into groups

of different ranges after sorting the fitness value

ascending. Since we follow random selection of

parents, from each group an element is chosen at

random. The more fitness an element had, the more

likely is the chances for it to qualify as a parent. Then

parent(s) give birth to new generation either by

mutation or cross-over. There are cases where in the

first generation itself there is an element found with a

high fitness value. These elements are called as elite

and they are passed on to the next generation without

any changes, with reference to the discussion by

Mahajan and Chopra (2012).

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

283

The algorithm:

1. Select first generation from K={s1, s2, s3…sn}
2. Calculate the fitness value ∀K
3. Sort these elements in the ascending order of their

fitness value.
4. Set Count to 0.
5. No_change_count set to 0.
6. Do;
7. Hi_fit = most fit element in the current

generation
8. Find the top two fittest elements and consider

 them elite; pass them to next generation
 without any change.

9. Do;
10. Set position to 0.
11. Random_val = Random (0, 1)
12. Select parentA from the groups in the

current generation using Random_val.
13. Random_val = Random (0, 1)
14. Select parentB from the groups in the

current generation using Random_val.
15. Perform cross-over between ParentA and

ParentB
16. Position = position + 2
17. Pass the created children to the next

generation
18. Until position = (size/2) -2
19. Count = Count + 1
20. Replace current generation with the newly

created generation.
21. Sort the current generation and perform

mutation.
22. New_fit = most fittest element in the current

generation.
23. If New-fit < = Hi_fit then
24. No_change_count = No_change_count + 1
25. Else
26. No_change_count = 0;
27. End if
28. If (No_change_count>max_number_of_times)

then
29. Break
30. Until Count = max_number_of_generations

Evaluation method: Virtual machine placement
demands for some constraints to be satisfied. It must
ensure that the resources are properly matched, so that
the above said goal is met, as said by Volgenant and
Zoon (1990). The virtual machine placement problem
can be represented in the mathematical formulation as
follows:
Let,

P = {p1, ..., pu} : a set of u physical machines
V = {v1, ..., vy}: a set of y virtual machines
C = {c1, ..., cz} : a set of z constrains

• Tr: The arrival time of vr∈V such that ∀ vq,vr: q<r

⇔Tq<Tr

• Dr, s: The demand of vr∈V in constraints S

• Mq, s (Tr): The free capacity of constrains S in Pq∈P
at Tr

• Nq, s: The total capacity of pq∈P in constrains S

• xq, r ∈{0, 1}, 1≤q≤u, 1≤r≤y

• xq, r = 1⇔ vr∈V is placed in Pr∈P

• xq, r = 1⇔Xs, r = 0, ∀ S ≠ q

Maximize:

 � � ��,�
�
��	

��	

Subject to:

• � � � ��,� . ��,
 ≤
�

�	 ��,�

�
��	

��	

• ∀vr∈V, ∃A⊆P, A≠ ∅ | ∀pq∈A, ∀cs∈C, Mq,s(Tr)≥

dr,s⇒xt, r = 1, pt ∈A

The evaluation method is used to know how the

virtual machines get fitted into the physical machine

and check if they are placed to the optima, by analyzing

the behavior of various algorithms. Each request has a

unique dimension, so do the physical machines have.

These dimensions vary from resource to resource.

The perfect scenario is a scenario in which, all

available physical machines, perfectly accommodate

the incoming requests. That is, each virtual machine is

flawlessly mapped to the host nodes, without any

compromise in the resource requirement. For example,

consider a host which can accommodate ten resources.

Now a VM request comes and it is directly mapped to

the prior said host; instead of splitting it into many

chunks and redirecting it to many hosts.

Here the number of virtual machine requests and

nodes (hosts) are assumed as homogeneous which

means the number of machines and hosts are identified

randomly and set into their limits. After the perfect

scenario the user can introducing some variants in their

dimensions of both machines and hosts. For the

heterogeneity scenario, the dimension of a set of

machines may vary within the range. The range has

maximum, minimum and median values. The

proportional difference of the dimensional with respect

to median is called as dimensional amplitude with

respect to the machines.
The dimensional amplitude for the dimensional D

for a set of H hosts, the dimensional amplitude D with
respect to H and it is denoted in (1):

DAH,D = 1000 (max - median) /median (1)

where,
Max = Maximum dimension range
Median = Median of the dimension

In a set of H of hosts where each host machine has
m dimensions that are labeled from 1 to m, then the

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

284

dimensional amplitudes denoted for all the dimension is
referred as (2):

DA* H, D = � ���
	 H, i (2)

Consider VM is set of virtual machines needs to be

placed and PM is set of machines placed after applying

the algorithm, h is the number of machines in VM and

pm is the number of machines in PM. The equivalent

VM placement ratio (α) is defined as (3):

α = pm/h (3)

If the hosts and machines are homogeneous, then

the value of α becomes 1. On the other hand the ratio

may vary which means either no resource left in host or

data center.

RESULTS AND DISCUSSION

Experimental results: All the algorithms, which are

taken under consideration for this study, were

experimented to know the comparative results to find

which algorithm suits the best to do the optimized

placement of the virtual machines on to the physical

machines. This is done with the help of the evaluation

method that is described above. This experiment was

done by simulating in CloudSim and the results were

obvious that the existing methods showed poor

performance while the algorithm which we wrote

showed comparatively better results.

Figure 8, the scenario is that, keeping the host

amplitude fixed, we studied the impact on virtual

machines amplitude variation. Thus by increasing

virtual machine amplitude evenly we studied that our

Fig. 8: Increasing VM amplitude variation evenly

Fig. 9: Increasing VM amplitude variation unevenly

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

285

Fig. 10: Increasing host amplitude variation uniformly

Fig. 11: Increasing VM density in a small range

Fig. 12: Increasing VM density in a small range

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

286

algorithm achieved the best placement ratio which is 2

to 10% better than the other algorithms.

In Figure 9, we keep the host amplitude fixed and

increase virtual machine amplitude unevenly we see

that our algorithm achieved the best placement ratio

which is 20 to 10 % better than the other algorithms.

In Figure 10, we increase the host amplitude

variation to see the impact on placement ratio. Even in

this scenario our algorithm shows better performance

from 6 to 19% in spite of increasing the host amplitude

uniformly or non-uniformly.

In Figure 11, we traced the impact of VM density

by fixing the physical machine and virtual machine

amplitude. Once again here too, our algorithm was the

best performer showing 3-12% higher placement ratio

compared to the other algorithms.

In Figure 12, here too we fix the physical and

virtual machine amplitudes to see its impact on VM

density. And for the results, our algorithm shows the

better performance from 6 to 9%, which is more

efficient than first fit and other algorithms.

As we see, comparing all the methods, our

algorithm which solves the multiple multidimensional

knapsack problems using genetic algorithm gives the

optimal result in placing the virtual machines. Other

algorithms do not contribute so much, in efficiently

placing the virtual machines. With our algorithm, the

chances of migrating a virtual machine from one host to

another will be very minimum, but when using other

algorithms it is not the case. It is obvious that they show

poor placement.

CONCLUSION

Cloud computing which created such hype in the

technology, deals with major problems like, security

issues, power consumption and resource utilization. Of

which, the resource utilization is taken under major

consideration in this study. To optimize the resource

allocation or technically to say, Distribute VMs to

physical hosts, the already existing placement processes

are learnt, analyzed and a new implementation idea is

given. Though knapsack is not a new idea that is

invented, implementing multiple multidimensional

knapsack algorithm and solving it using genetic

algorithms to map virtual machines to physical

machines, serves the purpose. Also we are trying to

extend our current work to be implemented in a real

time cloud environment in near future.

ACKNOWLEDGMENT

We are so thankful to the Computer Science

Department of Amrita School Of Engineering, Amrita

Vishwa Vidyapeetham for providing us with immense

support, motivation and suggestions, for making us

work on this title and successfully complete this study.

We also take immense pleasure in thanking our guide,

Mr. Prakash, who was the backbone of this study.

Without his guidelines and support, this study would

have not been in shape. We also thank our friends, who

encouraged us to go ahead with this idea. Without

them, this process would have been very monotonous.

REFERENCES

Creasy, R.J., 1981. The origin of VM/370 time-sharing

system. IBM J. Res. Dev., 25(5): 483-490.

Fidanova, S., 2005. Heuristics for multiple knapsacks

problem. Proceeding of the IADIS International

Conference on Applied Computing. Algarve, pp:

225-260.

Fréville, A. and S. Hanafi, 2005. The multidimensional

0-1 knapsack problem bounds and computational

aspects. Ann. Oper. Res., 139: 195-227.

Gottlieb, J., 2000. On the effectivity of evolutionary

algorithms for the multidimensional knapsack

problem. In: Fonlupt, C. et al. (Eds.), AE’99.

LNCS 1829, Springer-Verlag, Berlin, Heidelberg,

pp: 23-37.

Hinterding, R., 1994. Mapping, order-independent

genes and the knapsack problem. Proceeding of the

1st IEEE International Conference on Evolutionary

Computation. Orlando, pp: 13-17.

Khan, M.H.A., 2013. An evolutionary algorithm with

masked mutation for 0/1 knapsack problem.

Proceeding of International Conference on

Informatics, Electronics and Vision (ICIEV,

2013), pp: 1-6.

Khuri, S., T. Bäck and J. Heitkötter, 1994. The zero/one

multiple knapsack problem and genetic algorithms.

Proceeding of the 1994 ACM Symposium on

Applied Computing, pp: 188-193.

Koza, J.R., 1992. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. The MIT Press, Cambridge, MA, USA,

Dec., ISBN: 0-262-11170-5.

Mahajan, R. and S. Chopra, 2012. Analysis of 0/1

knapsack problem using deterministic and

probabilistic techniques. Proceeding of 2nd

International Conference on Advanced Computing

and Communication Technologies (ACCT), pp:

150-155.

Mell, P. and T. Grance, 2011. The NIST Definition of

Cloud Computing. Technical Report, National

Institute of Technology Special Publication 800-

145, Gaithersburg.

Mohamadi, E., M. Karimi and S.R. Heikalabad, 2011.

A novel virtual placement in virtual computing.

Australian J. Basic Appl. Sci. Aust., 5(10):

1149-1555.

Pisinger, D., 1995. Algorithms for knapsack problems.

Ph.D. Thesis, Department of Computer Science of

University of Copenhagen, Copenhagen.

Res. J. Appl. Sci. Eng. Technol., 10(3): 274-287, 2015

287

Shiva Jegan, R.D., S.K. Vasudevan, K. Abarna,

P. Prakash, S. Srivathsan and V. Gangothri, 2014.

Cloud computing: A technical gawk. Int. J. Appl.

Eng. Res., 14: 2539-2554.

Singh, A., M. Korupolu and D. Mohapata, 2008.

Server-Storage Virtualization: Integration and

Load Balancing in Data Centers. Proceeding of

International Conference for High performance

Computing, Network, Storage and Analysis, pp:

1-12.

Song, Y., C. Zhang and Y. Fang, 2008. Multiple

multidimensional knapsack problem and it’s

applications in cognitive radio networks.

Proceeding of Military Communications

Conference. San Diego, pp: 1-7.

Sun, Y. and Z. Wang, 1994. The genetic algorithm for
0-1 programming with linear constraints.
Proceedings of the 1st IEEE Conference on
Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence
(ICEC’94), Orlando, pp: 559-564.

Vasquez, M. and J.K. Hao, 2001. A hybrid approach for
the 0-1 multidimensional knapsack problem.
Proceedings of the International Joint Conference
on Artificial Intelligence, pp: 328-333.

Vasquez, M. and Y. Vimont, 2005. Improved results on

the 0-1 multidimensional knapsack problem. Eur.

J. Oper. Res., 165: 70-81.

Volgenant, A. and J.A. Zoon, 1990. An improved

heuristic for multidimensional 0-1 knapsack

problems. J. Oper. Res. Soc., 41: 963-970.

