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Abstract: The aim of the study is to propose an adaptive algorithm using convex combinational approach to have 
both fast convergence and less steady state error simultaneously. For this purpose, we have used two affine 
projection adaptive filters with complementary nature (both in step size and projection order) as the component 
filters. The first component filter has high projection order and large step size which makes it to have fast 
convergence at the cost of more steady state error. The second component filter has slow convergence and less 
steady state error due to the selection of small step size and projection order. Both are combined using convex 
combiner so as to have best final output with fast convergence and less steady state error. Each of the component 
filters are updated using their own error signals and stochastic gradient approach is used to update the convex 
combiner so as to have minimum overall error. By using energy conservation argument, analytical treatment of the 
combination stage is made in stationary environment. It is found that during initial stage the proposed scheme 
converges to the fast filter which has good convergence later it converges to either of the two (whichever has less 
steady state error) and towards the end, the final output converges to slow filter which is superior in lesser steady 
state error. Experimental results proved that the proposed algorithm has adopted the best features of the component 
filters. 
 
Keywords: Affine projection adaptive filter, convex combination, echo cancellation, energy conservation argument, 

excess mean square error, steady state error analysis 

 
INTRODUCTION 

 
Adaptive filters were used for various applications 

ranging from noise cancellation, system identification, 

echo cancellation, time delay estimation, model order 

selection etc. The desirable characteristic of an adaptive 

filter includes high convergence, small steady state error 

and low computational complexity. Some of the popular 

adaptive filters were Least Mean Square (LMS), 

Normalized Least Mean Square (NLMS), Affine 

Projection Algorithm (APA), Recursive Least Square 

(RLS) algorithm (Haykin, 2002). However each has 

their own limitations. The one with small steady state 

error has small convergence (RLS). If the convergence 

is good, then the steady state error is more (LMS). If 

both are satisfied then the computational complexity is 

more (APA). If all the above are met, then they have 

very poor tracking capability especially with colored or 

speech input (NLMS) (Haykin, 2002; Radhika and 

Arumugam, 2012). Several variants with improved 

performance  includes  variable  step  size  (Paleologu  

et al., 2008) sparse (Naylor et al., 2006), proportionate 

(Haiquan et al., 2014; Zhao and Yu, 2014) frequency 

domain (He et al., 2014) adaptive filters. But none 

satisfies all the requirement of an adaptive filter. 

Therefore combinational  approach  is  found  to  have  a 
promising solution for an overall improvement in 
adaptive filter performance (Zhang and Chambers, 
2006; Martinez-Ramon et al., 2002). In a combinational 
approach, more than one adaptive filter is operated in 
parallel in two or more stages. The output of one stage 
acts as the input for the second stage which is done 
efficiently by a suitable combiner. One such combiner is 
the convex combiner. Convex combination is used to 
combine different adaptive filters for an improved 
overall performance (Zhang and Chambers, 2006; 
Martinez-Ramon  et  al.,  2002;  Das and Chakraborty, 
2014; Choi et al., 2014; Arenas-Garcia et al., 2005a; 
Kozat et al., 2010). Convex combination of slow and 
fast LMS adaptive filter is discussed in the context of 
system identification with variation in tap length (Zhang 
and Chambers, 2006). The simulation results were 
performed for low SNR and it is proved that the 
combination approach has improved performance even 
in low signal to noise ratio conditions. A similar analysis 
for plant identification is made using LMS adaptive 
filter (Martinez-Ramon et al., 2002). Convex 
combination of zero attracting LMS and conventional 
LMS is discussed for system identification application  
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Fig. 1: General system description 

 
(Das and Chakraborty, 2014). From the results, it is 
proved that the combinational approach adapts 
dynamically to the level of sparseness with less 
complexity than any other algorithm. In Azpicueta-Ruiz 
et al. (2011) kernel LMS and kernel RLS were 
combined to obtain the best performance applicable for 
echo cancellation application. 

A general theoretical analysis of convex 
combination two adaptive filters is discussed in detail in 
Arenas-Garcia et al. (2006) and Martinez-Ramon et al. 
(2002). Steady state analysis of convex combination of 
two LMS is considered in Arenas-Garcia et al. (2005b). 
The convex combiner is represented as a sigmoid 
function so that the convex combiner never exceeds one. 
Energy conservation argument is used to obtain the 
steady state mean square error. From the results it is 
found that the steady state error is at least similar to one 
of the filter and even lesser than both under certain 
conditions. The extension of Arenas-Garcia et al. 
(2005a) is carried out in Arenas-Garcia et al. (2006) 
where tracking in stationary and non stationary 
environment is discussed in detail. Two LMS with 
variable step size is also  discussed.  In  Arenas-Garcia  
et al. (2005b) a general rule for convex combination of 
multiple LMS adaptive filter is derived. Softmax 
activation function is used for the mixing of multiple 
LMS filters. Two variants of LMS which are M-LMS 
and D-LMS were introduced to obtain improved 
tracking and speed than the CLMS approach (Arenas-
Garcia et al., 2006). Normalized rule for the updation is 
proposed in Azpicueta-Ruiz et al. (2008). From the 
paper it is proved that normalization gives more stability 
and also simplified the selection of step size than the 
CLMS approach. 

In Kim et al. (2008) convex combination of two 
APA with different regularization for each component 
filter is proposed. In Choi et al. (2014) convex 
combination of NLMS and APA is proposed. The 
optimum value for the convex combiner is derived 
based on mean square error deviation analysis. It is also 
found that the performance is much improved than the 
individual filter acting alone. Kwang-Hoon et al. (2014) 
discussed the convex combination of two APA with one 
having large projection order and the other with small 
projection order. The simulation results proved that they 

outperform the single long filter approach both in Mean 
Square Error (MSE) and in convergence rate. 

Thus from the above literature survey it is found 
that combinational approach has improved overall 
performance than single filter approach. Also APA is 
faster and is more suitable for speech input (Haykin, 
2002). Therefore we propose to combine two APA using 
convex combiner. A theoretical analysis based on 
energy conservation argument is made to prove that 
there is performance improvement. 

Figure 1 specifies the system model. It consists of 
two stages. The first stage consists of two independent 
APA filters. Their input is x (n) and they produce their 
own error signal to produce the estimated output y1 (n) 
and y2 (n). The second stage consists of the combination 
stage where the convex combiner λ (n) is used to obtain 
the overall system output as y (n) given by: 

 ���� = ��������� + 	� − ����������            (1) 

 
Similarly if w1 (n) and w2 (n) are the component 

weight vectors, then they can be represented as: 
 w�n� = λ�n�w��n� + 	1 − λ�n��w��n�             (2) 

 
Here ���� is called convex combiner. A combiner 

is said to be convex if the values are non negative and 
are restricted to a maximum of one. As done in Arenas-
Garcia et al. (2006) it is more convenient to represent ���� in terms of the sigmoidal function: 
 

λ�n� = sigm�a�n� = �
��������               (3) 

 
The updation for the convex combiner is done 

using gradient descent algorithm as done in (Arenas-
Garcia et al., 2006) given by: 
 

  �� + �� =  ��� − ! 
�

"#����
" ���                (4) 

 
Here the error signal for the overall filter structure 

is given by e (n) = d (n) - y (n) where d (n) is the 
desired output. Substituting y (n) from (1) in e (n) we 
get the a (n) in recursive form as: 
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$�� + 1� =$��� + %&'���()���� − )����*����(1 − ����*     (5) 
 

Practically the range of a (n) is restricted to [-a
+
, 

+a
+
] which in turn restricts ���� to [1- λ

+
, λ

+
]. 

 

MATERIALS AND METHODS 
 

In this section we combine two APA with different 
step size and projection order using convex combiner. 
Let the first one has larger step size µ1 and projection 
order L1 and the second has smaller step size µ2 and 
projection order L2. The selection is made such that 
L2<L1<M. where M is the order of the filter. 

The desired output and the input are related using 

linear regression model is given in (6). +,-./ ��� is the 

unknown weight vector of length M, v (n) is the 
independent and identically distributed noise which is 
independent of x (n) with variance σ1�. The following 
are the assumptions of APA based on the energy 
conservation argument (Shin and Sayed, 2004; Sayed, 
2003): 
 2��� = +,-./ ���3��� + 4���                             (6) 
 

The weight error vector (5���� is defined as the 
difference between the optimum weight and estimated 
weight vector. For the component filter: 
  56��� = +67-.��� − +6��� ∀ 9 = 1,2                   (7) 
 

For the final output: 
 5��� = +7-.��� − +���               (8) 
 

The weight error vector in recursive form can be 
written as: 
 56�� + 1� =

56��� − %6<6∗���	<6���<6∗����>�'6���                (9) 
 

The a priori error vector and the a posteriori error 
vector for the component and the combinational filter is 
defined as in Shin and Sayed (2004): 
 '-,6��� = <6���56�� + 1� ∀ 9 = 1,2            (10) 

 '&,6��� = <6���56��� ∀ 9 = 1,2                         (11) 

   '6��� = '&,6��� + 4��� ∀ 9 = 1,2            (12)

  '-��� = λ�n�e@,��n� + 	1 − λ�n��e@,��n�       (13) 

 '&��� = λ�n�eA,��n� + 	1 − λ�n��eA,��n�        (14) 

 '��� = '&��� + 4���                           (15) 
 
The MSE and Excess Mean Square Error (EMSE) 

for the component and combinational filter is defined 
as: 

BCD6 = limF→∞ DH'6���H�                          (16) 
 

DBCD6 = limF→∞ DI'&,6���I�
                          (17) 

 BCD = limF→∞ DH'���H�             (18) 
 DBCD = limF→∞ DH'���H�             (19) 
 

The cross excess Mean Square Error �EMSE�,�� for 

the component filter is given by: 
 

EMSE�,� = limM→∞IeA,��n�eA,��n�I            (20) 

 

Also from Cauchy Schwarz inequality DBCD�,� ≤
ODBCD�ODBCD� which implies that the cross excess 

mean square error cannot be greater than the component 
filter EMSE. We also define the change in EMSE as: 
  ∆DBCD� = DBCD� − DBCD�,�            (21) 

 ∆DBCD� = DBCD� − DBCD�,�            (22) 

 
Steady state performance: The overall Steady state 
mean square error analysis in stationary environment is 
done in this section as in Arenas-Garcia et al. (2006). 
Taking expectation on both sides of (5) and using the 
assumption that λ (n) is independent of a priori errors of 
the component filter we get: 

 DQ$�� + 1�R =
SDQ$���R + %&DQλ�n�(1 − λ�n�*�R∆DBCD� −%&DQλ�n��(1 − λ�n� *R∆DBCD� T

>&U

&U
     (23) 

 
In order to analyze the steady state error 

performance of the combinational filter, we need to find 
(21) and (22) which in turn requires the evaluation of DBCD�,�. The EMSE equation for the component filter 

uses the assumption that the regularization V is a small 

value (Shin and Sayed, 2004). The DBCD� for the 

component filter with large value of step size %� and 

projection order W�  is given as: 
  

DBCD� = XY Z[\
�>XY ]^�_`�D a bY

c`�F�c\d            (24) 

 
Similarly for the component filter with smaller 

value of step size %� and projection order W� the excess 

mean square value DBCD� is given as: 
 

DBCD� = X\ Z[\
�>X\                              (25) 

 

To obtain the cross EMSE�,� we use energy 

conservation relation (Shin and Sayed, 2004) as follows. 
For the component filters the energy conservation 
relation is given by: 
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56�� + 1� + <6∗���	<6���<6∗����>�'&,6��� = 56��� + <6∗���	<6���<6∗����>�'-,6���                                       (26) 

 
Multiplying the complex conjugate of (26) for i = 1 with (26) for i = 2 and neglecting the dependency of 56��� on 

past noisesand if expectation is taken on both sides, we get: 
 

5�∗�� + 1�5��� + 1� + '&,�∗ ���	<����<�∗ ����>�<����<�∗ ���	<����<�∗ ����>�'&,���� = 5�∗���5���� +
'-,�∗ ���	<����<�∗ ����>�<����<�∗ ���	<����<�∗ ����>�'-,����                                                                           (27) 

 
As � → ∞ we obtain: 
 DQ5�∗�� + 1�5��� + 1�R = DQ5�∗���5����R                                                                                                           (28) 
 
The correlation between aproiri and a posterior error for the component filter from Shin and Sayed (2004) is: 
  

'-,6��� = '&,6��� − %6<6���<6∗���	Ve + <6���<6∗����>�'6���                                                                            (29) 

 
Substituting (28) and (29) in (27) and using the assumption that noise vector v (n) is independent of the 

regression vector <� ��� <� ���we get: 
 

%�%�D f'�∗���	Ve + <����<�∗ ����>�<����<�∗ ���	Ve + <����<�∗ ����>�'����g = %� 

D f'�∗���	Ve + <����<�∗ ����>�<����<�∗ ���	<����<�∗ ����>�'&,����g +
%�Dh'&,�∗ ����<����<�∗ ����>�<����<�∗ ����Ve + <����<�∗ ����>�'����i                                                        (30) 

 
Now substitute (12) in (30) we get: 
 

%�%�Dh'&,�∗ ����Ve + <����<�∗ ����>�<����<�∗ ����Ve + <����<�∗ ����>�'&,����i + %�%�D f4∗���	Ve +
<1�<1∗�−1<1�<2∗�Ve+<2�<2∗�−14���=%1D'$,1∗���Ve+<1���<1∗���−1<1���<2∗���<2���<2∗���−1'$,2���+%2D'$,1∗�<1�<1∗�−1<1�<2∗�Ve+<2�<2∗�−1'$,2���                                                           (31) 

 
Let: 
 j��� = �Ve + <����<�∗ ����>�<����<�∗ ����Ve + <����<�∗ ����>� 

 k��� = �Ve + <����<�∗ ����>�<����<�∗ ����<����<�∗ ����>� 
 _��� = �<����<�∗ ����>�<����<�∗ ����Ve + <����<�∗ ����>�                                                                             (32) 

 
Replacing (31) by using (32), we get (33): 
 %�%�Dh'&,�∗ ���j���'&,����i + %�%�DQ4∗���j���4���R =

%�Dh'&,�∗ ���k���'&,����i + %�Dh'&,�∗ ���_���'&,����i                                                                                    (33) 

 
From the Eq. (33) we can obtain theDBCD�,�. Based on the assumption A.2 of Shin and Sayed (2004) and using 

the Appendix A of Shin and Sayed (2004) we get the LHS of (33) as: 
 %�%�Dh'&,�∗ ���j���'&,����i + %�%�DQ4∗���j���4���R 

= %�%�]^Dh'&,�∗ ���'&,����j���i + %�%�DQ4∗���4���j���R  = %�%�DBCD�,�]^�DQC. j���R� + %�%�m1�]^�DQj���R                                                                                      (34) 

 
Similarly, the RHS of (33) becomes: 
 %�Dh'&,�∗ ���k���'&,����i + %�Dh'&,�∗ ���_���'&,����i = %�DBCD�,�]^�DQC. k���R� + %�DBCD�,�]^�DQC. _���R�                                                                                  (35) 
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Eliminating DBCD�,� we get: 

 DBCD�,� =
XY X\Z[\/nop	q�F��r

XY/nos\.p	t�F��r�X\/nosu.p	v�F��r>XY X\/nosY.p	v�F��r       (36) 

 
In order to simplify (36) we adopt the partitioning 

method. Let us partition A2 (n) as [A1(n) <2���wwwwwwww]. After 
little mathematics we get: 
 

]^oD	j����r =  ]^ xD yz	<����<�∗����>�{ 0
0 0}~  

 
If  the  regularization  parameter  V  is  small,  then  

P (n) = Q (n) = R (n). Since %� is larger and %� is 
smaller step size we get S1 = S3 = I and S2 = 11

T
. 

Therefore (36) gets simplified as: 
 

DBCD�,� =  XY\Z[\/n(v*
��>XY\ �/n(v*              (37) 

 

where, %�� = �XY bYX\
XY �bYX\. 

Since %�  is larger and %� is smaller, L1 is larger 
than unity, the step size %�� is obtained as %� >%�� > %�. Therefore we can substitute S = I. Thus DBCD�,� becomes: 

 

DBCD�,� = XY\Z[\
��>XY\ �              (38) 

 
From the above we find that the there is similarities 

between (25) and (38). So we can write DBCD�,� as: 

 DBCD� > DBCD�,� > DBCD�             (39) 

 
which makes us to conclude that we are in the second 
case of discussion made in Arenas-Garcia et al. (2006). 
The ∆DBCD� is positive and ∆DBCD� is  negative.  This 

makes us to write DBCD�,� ≅ DBCD�. Thus we can say 

that the combinational affine projection filter has steady 

state error is more or less same as that of the component 

filter with step size %� and projection order L2. Thus we 

have obtained similar results of Arenas-Garcia et al. 

(2006) with an improved convergence and lower steady 

state error than obtained by combinational LMS. 

 

RESULTS AND DISCUSSION 

 

The simulation is performed in the context of 

acoustic echo cancellation. The input consists of 

colored noise which is obtained by passing Gaussian 

white noise through a system with impulse response H 

(z) = 1/ (1-0.7z-1.). The impulse response is obtained 

using image source method. The sampling frequency 

chosen is 8 kHz. The number of samples taken is 212. 

The signal to noise ratio is taken as 40 db. The noise is 

a white Gaussian noise with zero mean and unity 

variance. The length of the sequence is 10,000. The 

simulation is conducted with 50 independent trials. 

In Fig. 2 the excess mean square error performance 

of the single and combination adaptive filter is plotted. 

The parameters set for  this  simulation  are  µ1 = 0.8,   

µ2 = 0.1, µa = 100. The projection order for the filter are 

chosen to be L1 = 10, L2 = 1. The sigmoid function a (n) 

limiting value is chosen between -4 to +4. We can able 

to see that inititially the performance of C-APA 

matches with the faster convergence filter and later it 

matches with the smaller steady state error filter. As 

found from the theoretical results, we can see that the 

steady state error is same as that of the smaller step size 

filter µ2. 
Figure 3 shows the variation of EMSE1, 2 for 

different values of µ1 and µ2. From the figure we can 
see that the EMSE1, 2 increases as µ1 is taken as larger 
value. 

 
 
Fig. 2: Steady state performance of combinational affine projection filter and single filter with colored noise as input and wth 

SNR = 40 db 
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Fig. 3: Steady state excess cross mean square error estimated EMSE12 for different values of step size μ� and μ�  is μ� /r 

 

 
 

Fig. 4: Variation of the convex combiner with number of iterations 

 
Figure 4 shows the variation of the convex 

combiner throughout the experiment. As seen from the 
graph we find that initially the convex combiner is 
nearer to unity which makes the combiner to select 
component filter 1 which has more convergence. As the 
number of iterations reaches half, the convex combiner 
reaches nearer to zero which makes the combination 
filter to align to component filter 2 which has less 
steady state error. 
 

CONCLUSION 
 

We have seen that the combinational approach can 
improve the overall performance of the adaptive filter. 
One such combinational approach is presented in this 
study. The theoretical and the simulated results depicts 
that its performance is better than single filter acting 
alone.   Our   future   approach   will   be  to  reduce  the 

computational complexity by replacing the higher 
complex affine projection adaptive filter by a 
proportionate APA. 
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