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Abstract: The main purpose of this study is to intoduce an optimal penalty function for testing homogeneity of 
finite mixture of skew-normal distribution based on Markov Chain Monte Carlo (MCMC) simulation. In the present 
study the penalty function is considered as a parametric function in term of parameter of mixture models and a 
Baysian approach is employed to estimating the parameters of model. In order to examine the efficiency of the 
present study in comparison with the previous approaches, some simulation studies are presented. 
 
Keywords: Homogeneity test, markov chain monte carlo simulation, penalty function, skew-normal mixtures 

 
INTRODUCTION 

 
Finite mixture model that is convex linear 

combination of densities, have been applied in various 
areas such as genetics, image processing, medicine and 
economics. These models have been used to model 
heterogeneous data (Bohning, 2000; McLachlan and 
Peel, 2000). Many works are also devoted to Baysian 
mixture modeling (Diebolt and Robert, 1994; Escobar 
and West, 1995; Richardson and Green, 1997; Stephens 
2000). 

Testing for homogeneity is one of the particular 
statistical problem in 2  component mixture models that 
is used to determine whether the data are from a 
mixture of 2  distributions or single distribution. But 
there are some limitation for testing in previous 
methods, such as Likelihood Ratio Test(LRT), 
Modified Likelihood Ratio Test (MLRT) and the test of 
Expectation- Maximization (EM). Since the mixture 
models don't have regularity conditions therefore 
limiting distribution of LRT is very complex (Liu and 
Shao, 2003). Although in MLRT (Chen, 1998; Chen 
and Chen, 2001; Chen et al., 2004) a penalty is added to 
the Log-likelihood function but dependence on 
establishment of several regularity conditions and 
chosen penalty function  are restriction for this test. Li 
et al. (2008) have been proposed EM test based on 
another form of penalty function. Though this test is 
independent of some necessary conditions but like 
MLRT test is based on penalized likelihood function. 

In the present study, to overcome the above 
mentioned disadvantages we consider penalty function 

as a parametric function and employ Metropolis-
Hasting sampling as a MCMC method for estimation 
parameters of finite mixture of skew-normal 
distribution and parameter of determinative shape of the 
penalty function. The proposed method is based on the 
work of Farnoosh et al. (2012).  

Recently, skewed distributions such as Skew-
Normal (SN) and Skew-T (ST) are considered as 
component of mixture models in order to efficiently 
deal with population heterogeneity and skewness 
(Azzalini, 1985; Azzalini and Capitanio, 2003; Cabral 
et al., 2008). Literature review show taht Lin et al. 
(2007b) have been proposed a mixture model based on 
the skew-normal distribution. This study was extended 
by Lin et al. (2007a) where they considered mixtures of 
the student-t skewed distributions (Azzalini and 
Capitanio, 2003). Lin (2009) has proposed Maximum 
Likelihood Estimation (MLE) for multivariate skew-
normal mixture models. Basso et al. (2010) considered 
estimation for univariate finite mixtures of flexible 
class of Skew-Normal Independent distribution (SNI) 
(Lachos et al., 2010) which is a subclass of the skew-
elliptical class propossed by Branco and Dey (2001). In 
this study, we apply the methology of Farnoosh et al. 
(2012) to test homogeneity of mixture of skew-normal 
distribution. 

 
FINITE MIXTURE OF SKEW-NORMAL 

DISTRIBUTION 
 

Skew-Normal distribution: As defined by Azzalini 
(1985), a random variable Y has skew-normal 
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distribution with location parameter ߤ, scale parameter 
σ2 and skewness parameter λ, if its density is given by: 
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where ∅(.; μ, σ2) denotes the density of the univariate 
normal distribution with mean μ and variance σ2 0 
and Φ(.) is the distribution function of the standard 
univariate normal distribution. It is denoted by Y~  
SN(μ, σ2, λ). 
 
Lemma : A random variable Y~SN(μ, σ2, λ) has a 
stochastic representation given by: 
 

,)(1||= 1
1/22
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where δ = 
ఒ

ඥଵା	ఒమ
, T0 and T1 are independent standard 

normal variable and  |.| denotes absolute value (Henze, 
1986). 
 
The FM-SN model: The Finite Mixture of Skew-
Normal distributions model (FM-SN) is defined by 
considering a random sample y = (y1,⋯,yn)

T from a g-
component mixture of skew-normal densities given by: 
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where θj = (μj, ߪ

ଶ, λj) is the specific vector of 
parameters for the component j, ψ (yi; θj) 

is the SN(θj) density, p1,⋯,pg are the mixing probabilities and Θ = 
((p1,⋯,pg)

T, θଵ,⋯ , θሻ 
is the vector with all 

parameters.  
The finite mixture of skew-normal distributions 

model in this study is a special case of Finite Mixture of 
Scale Mixtures Of Skew-Normal Distribution(FM-
SMSN) when ߢ (u) = 1 (Basso et al., 2010). 

As introduced by McLachlan and Peel (2000), we 
consider the latent indicator variable Zij (for each i and 
j) such that,  
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The indicators Z1,…,Zn where Zi = (Zi1,…, Zig)

T, i = 
1,…n are independent and each one having a 
multinomial distribution with probability function: 
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and it is denoted by Zi ~ M(1; p1,…, pg).  

So, the likelihood function and Log-likelihood 
function of complete data are:  
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Parameter stimation via the EM algorithm: In this 
subsection we  present  the  EM  algorithm (Dempster 
et al., 1977) for maximu likelihood estimation of a FM-
SN distribution. Let y = (y1,⋯,yn)

T

 
 be a random sample 

from a FM-SN distribution. From (4) and Lemma we 
consider the following hierarchical representation for yi: 
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By using (8)-(10) complete-data log-likelihood 

function is: 
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(12) 

 
where c is a constant that is independent of the 
parameter vector Θ. 

Thus, the EM algorithm for maximum likelihood 
estimation of Θ is defined as follow: 
 
E-step: Given a current estimate Θ(k) and compute መܼ 
for i = 1,..., n, j = 1,..., g as follow: 
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M-step: Update Θ(k) by maximizing the expected 
complete-data function or Q-function over Θ given by: 
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which leads to the following closed form expressions: 
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Note that (ߪො

ଶ)(k+1) and ߣመj
(k+1) can be obtained by 

using (11), that is: 
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This process is iterated untill a suitable 

convergence rule is satisfied, e.g., if || ߆  (k+1) _ ߆ (k) || is 
sufficiently small. 

 
METHODOLOGY 

 
LRT and MLRT: Suppose Y1,…,Yn is a random 
sample from a mixture of skew-normal distribution by g 
= 2 component: 
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where null hypothesis means homogeneity of 
population and alternative hypothesis means consisting 
population from 2  heterogeneous subpopulation as (3). 
If θ0 and (pො , θ1, θ2) are maximization of the likelihood 
function under null and alternative hypothesis, 

respectively, then the statistic that obtained from LRT 
is as follow: 
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Large value of this statistic leads to rejecting of 

null hypothesis. 
For overcoming the boundary problem and non-

identifiablity, Chen and Chen (2001) proposed a 
penalty function in terms of p as T(p) add to LRT 
statistic, such that: 
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and penalized Log-likelihood function is as follows: 
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Use of this penalty function lead to the fitted value 

of p under the modified likelihood that is bounded away 
from 0 or 1. As showed Chen and Chen (2001) under 
some regularity conditions asymptotic null distribution 
of MLRT statistic is the mixture of the χଵଶ and χ

ଶ (χ
ଶ is 

a degenerate distribution with all its mass at 0) whit the 
same weights, i.e., 
  

2
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By choosing different penalty function, the 

estimation of p in EM algorithm (Section 2.3) will be 
changed. Chen and Chen (2001) proposed a penalty 
function as follow: 
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where, C is a positive constant. Li et al. (2008) also 
used a penalty function as the following form: 
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(27) 
 
where, (26) and (27) hold in condition (24). It is simply 
shown that by using penalty functions (26) and (27), the 
value of p in M-step of EM algorithm can be 
implemented as follows, respectively: 
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and 
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Optimal proposed penalty functoin: The penalty 
function (26) puts too much penalty on the mixing 
proportion when p is close to 0 or 1, then in spite of 
clear observation of mixture distribution, MLRT 
statictics can't reject null hypothesis. For overcoming 
this problem the penalty function (27) has been 
proposed. For p = 0.5 the inequality log(1 - |1- 2p|)   
log (1- |1 – 2p|2) = log (4p(1- p)) convert to log(1- | 1- 
2p|) ൎ - |1- 2p|. It means penalty functions (26) and (27) 
are almost equivalent for values of p that are close to 
0.5 but have considerable difference for values of p that 
are close to 0 or 1. Farnoosh et al. (2012) proposed the 
penalty function that is able to overcome the 
disadvanyages of the penalty functions (26) and (27) as 
follows: 
  

2 <0),|21|(1=),( hpClogphg h               (30) 

 
The penalty functions (26) and (27) are obtained by 

substituting h = 1 and h = 2 in (30), respectively. How 
to choose the value of h effects on the shape of penalty 
function and on the obtained inferences. Due to 
difficulty of classical approach in determining 
parameters of model and penalty function, these 
parameters will be estimated via the Baysian approach. 
Rang of parameter h in (30) is interval (0,2) but because 
the values of h in interval (0,1) may improve the power 
of MLRT the uniform distribution has been used as 
prior distribution for h. 
 
Baysian inference: In this subsection, we implement 
the Baysian methodology using MCMC techniques for 
the FM-SN and penalty function. Let y = (y1,⋯,yn)

T

 
 is a 

random sample from a mixture: 
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with an unknown mixing proportion p = (p1 = p, p2 = 1- 
p). Therefor from (8)-(10) penalized likelihood function 

of Θ = (p, θ1 = (μ1, σଵଶ, λ1), θ2 = (μ2, σଶ
ଶ, λ2)) associated 

with (y, t, z) is given by:  
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where, the nj (j = 1,2) are the number of observations 
associates to the j components. Now we need to 
consider prior distribution to all the unknown 
parameters μ, Δ2, Γ,p and h, as follows: 
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We assume prior independence between the 

parameters, such that the complete prior setting can be 
written as follow: 
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Combining the likelihood function (31) and the 

prior distribution (37), the joint posterior density is: 
  

),,,,(),,|,()),,|,,,,( hhLh c pΓΔμztyΘztypΓΔμ              

(38) 
 

Distribution (38) doesn't have a closed form but 
MCMC method can be used to draw samples. Two 
generation mechanism for production such Markov 
Chains are Gibbs and Metropolis-Hastings. Since the 
Gibbs sampler may fail to escape the atttraction of the 
local mode (Marin et al., 2005) a standard alternative 
i.e., Metropolis-Hastings is used for sampling from 
posterior destribution. This algorithm simulates a 
Markov Chain such that the stationary distribution of 
this chain coincides with the target distribution. Its 
iterative steps for k = 1, 2, ... are: 
 
 Choose P (0), θ(0) and h(0), 
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 Generate (μ ,∆෨ , Γ෨,p , ෨݄) from q(μ, Δ, Γ, p, h|μ(k-1), 
Δ(k-1), Γ(k-1), p(k-1), h(k-1)), 
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 Generate U from U(0,1) 
 if r ൏ u then  (μ(k), Δ(k), Γ(k), p(k), h(k)) = (μ ,∆෨ , Γ෨,p , ෨݄) 
  
else (μ(k),Δ(k), Γ(k),p(k), h(k)) = (μ(k-1),Δ(k-1), Γ(k-1), p(k-1), h(k-

1)). where, q is proposal distribution that often is 
considered as the random walk Metropolis-Hastings 
(Marin et al., 2005). 
 
Table 1: MSE of maximum likelihood estimators 
Parameters p = 0.05 p = 0.1 p = 0.25 p = 0.5 
p 0.2726 0.2340 0.1451 0.0204 
μො1 0.9338 0.5971 0.4019 0.2008 
μො2 11.2431 10.6838 9.0696 1.9269 

σଵ
ଶ 93.3313 84.1086 42.8225 12.8946 

σଶ
ଶ 43.3699 46.0698 40.2560 13.2444 

 መ1 2.9249 0.0058 0.0052 0.0071ߣ

 መ2 0.0185 0.0172 0.0161 0.0091ߣ

 
Table 2: MSE of baysian estimators when h~⋃(0,1)  
Parameters p = 0.05 p = 0.1 p = 0.25 p = 0.5 

h  0.0006 
(0.6761) 

0.0002 
(0.3802) 

0.0036 
(0.0807) 

0.0006 
(0.6761) 

pො 0.2650 0.1906 0.2068 0.0837 
μො1 0.0050 0.0054 0.0058 0.0055 
μො2 0.0031 0.0046 0.0052 0.0034 

σଵ
ଶ 0.4048 0.4137 0.3184 0.4058 

σଶ
ଶ 0.5136 0.4817 0.8792 0.5114 

 መ1 0.6049 0.5541 0.6560 0.6049ߣ

 መ2 0.5242 0.4836 0.6328 0.5242ߣ

 
Table 3: MSE of baysian estimators when h~0.25U(0,0.5)+ 

0.75U(0.5,1) 
Parameters p = 0.05 p = 0.1 p = 0.25 p = 0.5 

h  0.0005 
(0.4709) 

0.0000007 
(0.5060) 

0.0003 
(0.6315) 

0.0011 
(0.7428) 

pො 0.3183 0.2464 0.1455 0.1064 
μො1 0.0049 0.0043 0.0060 0.0066 
μො2 0.0045 0.0061 0.0044 0.0044 

σଵ
ଶ 0.4164 0.5202 0.5129 0.3911 

σଶ
ଶ 0.3813 0.7096 0.6496 0.6604 

 መ1 0.8150 0.6936 0.8045 0.7792ߣ

 መ2 0.4593 0.4638 0.6524 0.6678ߣ

 
Table 4: MSE of baysian estimators when h~ 0.75U (0,0.5) + 0.25U 

(0.5,1) 
Parameters p = 0.05 p = 0.1 p = 0.25 p = 0.5 

h  0.00007 
(0.5618) 

0.00005 
(0.5518) 

0.0004 
(0.401) 

0.0012 
(0.2459) 

pො 0.2852 0.2870 0.1454 0.0829 
μො1 0.0054 0.0051 0.0041 0.0052 
μො2 0.0062 0.0046 0.0052 0.0028 

σଵ
ଶ 0.4601 0.4546 0.5189 0.5430 

σଶ
ଶ 0.4803 0.4982 0.6287 0.6748 

 መ1 0.7856 0.7403 0.6868 0.7175ߣ

 መ2 0.5166 0.4953 0.8476 0.4175ߣ

SIMULATION STUDY 
 

In this section, we compare estimation of 
parameters using the penalty function (27) and penalty 
function that obtained from Baysian estimation. We 
simulate n = 500 samples from FM-SN distribution 
with parameters μ1 = 15, μ2 = 20, σଵଶ = 20, σଶ

ଶ = 16, λ1 = 
6, λ2 = -4 and use 4 different values p=0.05, 0.1, 0.25, 
0.5 for p. 

In Table 1 we present the Mean Square Error 
(MSE) of maximum likelihood estimation of mixture 
model parameters. Tables 2 to 4 present MSE of 
baysian estimation of parameters and estimated values 
of h; The distributions U(0,1), 0.25 U(0,0.5) + 0.75 
U(0.5,1) and 0.75 U(0,0.5) + 0.25 U(0.5,1) are used as 
the prior distribution for h in Table 2 to 4, respectively. 

The simulation results show that in FM-SN the 
mean square error of baysian estimator is less than 
MLE one, especially in estimation of scale parameters. 

 
CONCLUSION 

 
In this study, we propose an optimal penalty 

function for testing homogeneity of finite mixture of 
skew-normal distribution. Simulation study shows that 
Baysian approach is more effective than the classical 
approach in estimation of model parameters and 
determining of optimal penalty function. 
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