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Abstract: A software defect is a error, failure, fault in a computer program or system producing an incorrect or 
unexpected result, or causing it to behave in an unintended way. Software Defect Prediction (SDP) locates defective 
modules in software. The final product should have null or minimal defects to produce high quality software. 
Software defect detection at the earliest stage reduces development cost, reworks effort and improves the quality of 
software. In this study, the efficiency of different classifiers such as Naïve Bayes, Support Vector Machine (SVM) 
and K-Nearest Neighbor (KNN) are evaluated for SDP. 
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INTRODUCTION 

 
Software defects are errors, flaws, bugs, mistakes, 

failures or faults in computer programs or systems that 
generate inaccurate/unexpected outcome, or preclude 
software from its intended behavior. A project team 
aspires to create quality software products with null or 
minimal defects. High risk components of a software 
project need to be detected at the earliest stage of 
software life cycle to enhance the software quality. 
Software defects, affect quality and time. Also, 
identifying and rectifying defects are time consuming 
and expensive. It is impractical to eliminate all defects, 
but reducing defects magnitude and adverse effects on 
projects is possible (Rawat and Dubey, 2012). A 
software defect is a flaw or imperfection in a software 
work product or software process. A software process is 
an activity, method, practice and transformation that 
people use to develop and maintain software work 
products (Clark and Zubrow, 2001).  

Software Defect Prediction (SDP) locates defective 

modules in software. The final product should have as 

few defects as possible to ensure high quality software.  

Software defect detection at the earliest stage leads to 

reduce development cost, rework efforts and reliable 

software. Thus defect prediction study is important to 

ensure software quality. The most discussed problems 

in software quality and software reliability is SDP. As 

Boehm says, finding and fixing a problem after delivery 

is 100 times more expensive than fixing it in the 

requirement and design phase. Also, software projects 

spend 40 to 50% of effort in avoidable rework (Boehm 

and Basili, 2007). 

Software is a complex entity of various modules 

with varied defect occurrence possibility range. 

Efficient and timely defect occurrence prediction allows 

software project managers to use people, cost and time 

for improved quality assurance. Defects in software, 

results in poor quality software and leads to software 

project failure. Occasionally, it is impossible to identify 

defects and fix them during development and so they 

are handled when noticed by team members. Hence, 

defect-prone software modules should be predicted 

before deployment to plan better maintenance 

strategies. Early detection of defect prone software 

module knowledge ensures an efficient process 

improvement plan within stipulated cost and time. This 

results in better software release and high customer 

satisfaction. Accurate defect measurement and 

prediction is crucial in software as it is an indirect 

measurement based on many metrics (Nam, 2010). 

A common SDP process based on machine learning 

models is seen in Fig. 1. The first step in building a 

prediction model is to generate instances from software 

archives like version control systems, e-mail archives 

and issue tracking systems. Each instance represents a 

system, class, function (method), a software component 

(or package), source code file and/or code change based 

on prediction granularity. An instance, has many 

metrics (features) culled from software archives and 

labeled with buggy/clean or number of bugs. For 

example, instances generated from software archives 

are labeled with ‘B’ (buggy), ‘C’ (clean), or the number 

of bugs (Verner and Tate, 1992) in Fig. 1. 
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Fig. 1: Common process of software defect prediction 

 
Software metrics are defined by measuring some 

property of a software portion or its specifications. 
Software metrics ensure quantitative method to assess 
software quality. Software metrics are defined as 
"continuous application of measurement based 
techniques to software development and its products to 
ensure supply of meaningful and timely Management 
Information with use of techniques to improve products 
and process" (Rawat et al., 2012). Software metrics is 
used for measuring the process and product of software. 
Various software metrics are classified as Software 
Product metrics, Software Process metrics and Software 
Project metrics. Process metrics highlights the software 
development process. It aims to measure the process 
duration, cost and type of method used. Process metrics 
augment software development and maintenance. 
Examples include efficacy of defect removal during 
development, patterning of testing defect arrival and fix 
process response time. Project metrics monitor the 
project situation and status. Project metrics preclude 
problems or risks by calibrating projects and optimize 
the software development plan. Project metrics describe 
project characteristics and execution. Measuring the 
number of software developers, staffing pattern over a 
software life cycle, cost, schedule and productivity are 
the examples of project metrics. Product metrics 
describe the software product attributes during any 
development phase. Product metrics measure program 
size, software design complexity, performance, 
portability, maintainability and product scale. Product 
metrics presume and invent product quality. Product 
metrics measure the medium or  final  product  (Rawat  
et al., 2012). These metrics play an important role in 
classifying the modules as defective or non-defective. 

In this study, the efficiency of the classifiers in 
classifying defective modules are evaluated. A KC1 
dataset from the PROMISE software dataset repository 
is used for evaluation. 

  
LITERATURE REVIEW 

 
An association rule mining based method to predict 

defect associations and defect correction effort was 
presented by Song et al. (2006) to help developers 
detect software defects and assists project managers to 

allocate testing resources effectively. This study applied 
the new method to the SEL defect data of more than 
200 projects over more than 15 years. Results reveal 
that for defect association prediction, accuracy is very 
high and false-negative rate very low. Likewise, for 
defect correction effort prediction, accuracy for defect 
isolation effort prediction and defect correction effort 
prediction are high. This study compared defect 
correction effort prediction method with other methods-
PART, C4.5 and Naive Bayes and showed that 
accuracy improved by 23%. Support and confidence 
levels impact on prediction accuracy was evaluated, 
along with the false-negative rate, false-positive rate 
and rules.  

Various classifications and clustering methods 
aimed at predicting software defects was proposed by 
Chug and Dhall (2013). It analyzed classification and 
clustering techniques to predict software defects. 
Performance of 3 data mining classifier algorithms 
called J48, Random Forest and Naive Bayesian 
Classifier based on criteria like ROC, Precision, MAE 
and RAE were evaluated. Clustering technique using k-
means are then applied on Hierarchical Clustering and 
Make Density Based Clustering algorithm on the data 
set. Evaluation of clustering is based on criteria like 
Cluster Instance, Time Taken, Incorrectly Clustered 
Instance, Number of Iterations and Log Likelihood. An 
exploration of 10 real time NASA software projects 
defect datasets followed by applications finally leads to 
defect prediction. 

A new SDP model using Particle Swarm 
Optimization (PSO) and Support Vector Machine 
(SVM)  named  P-SVM  model  was proposed by Can 
et al. (2013). The authors use PSO algorithm to 
calculate best SVM parameters and adopts optimized 
SVM model to predict software defect. P-SVM model 
and three other prediction models predict software 
defects in JM1 data set on an experimental basis, the 
results showing that P-SVM has a higher prediction 
accuracy compared to BP Neural Network model, SVM 
and GA-SVM models. 

A technique to select best attributes set to improve 
SDP accuracy was proposed by Khan et al. (2014). 
Software attribute characteristics influence the defect 
prediction model’s performance and effectiveness. The 
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new method is evaluated using NASA metric data 
repository data sets and demonstrates acceptable 
accuracy using a simple algorithm. 

The best size of feature subset to build a prediction 

model to prove that feature selection establishes SDP 

model was discussed by Wang et al. (2012a). Mutual 

information is an outstanding relevance indicator 

between variables and used as a measurement in the 

new feature selection algorithm. A nonlinear factor for 

evaluation function was introduced for feature selection 

to improve performance. The results of the feature 

selection algorithm were validated by varying machine 

learning methods. Experimental results reveal that all 

classifiers achieved high accuracy. 

Three new defect prediction models based on C4.5 

model were proposed by Wang et al. (2012b). 

Spearman's rank correlation coefficient was introduced 

to choose the root node of the decision tree which 

improves models on defect prediction. An experimental 

scheme was designed to verify the improved model's 

effectiveness and this paper compared prediction 

accuracies of existing and improved models. Results 

showed that improved models reduced decision tree 

size by 49.91% on average and increased prediction 

accuracy by 4.58 and 4.87% on two modules in the 

experiment. 

A defect predictor based on Naive Bayes theory 

was presented by Tao and Wei-Hua (2010), analyzed 

their difference estimation methods and algorithm 

complexity. This study concluded that the best defect 

predictor to be Multi-variants Gauss Naive Bayes 

(MvGNB) through evaluation and compared it with a 

decision tree learner J48. Results on benchmarking 

MDP data sets proved that MvGNB was useful to 

predict defects. 

Different feature selection and dimensionality 

reduction methods were used to determine most 

important software metrics by Xia et al. (2013). Three 

different classifiers, namely Naïve Bayes, SVM and 

decision tree were used. On the NASA data, 

comparative experiment results show that instead of 22 

or more metrics, less than 10 metrics ensure better 

performance. 

The problem of defect prediction was focused on 

by Czibula et al. (2014) which was important during 

software maintenance and evolution. As conditions 

which result in software modules having defects are 

hard to identify, machine learning based classification 

models was used to offset this issue. This study 

proposed a new relational association rules mining 

based classification model which in turn is based on the 

discovery of relational association rules to predict 

whether a software module is defective.  

The positive effects of combining feature selection 

and ensemble learning on defect classification 

performance were demonstrated by Laradji et al. 

(2014). Added to the efficient feature selection, a new 

two-variant (with/without feature selection) ensemble 

learning algorithm was proposed to ensure robustness 

of data imbalance and feature redundancy. This study 

shows software dataset features which are carefully 

chosen for defective components accurate 

classification. Further, tackling software data issues 

mentioned above, with the new combined learning 

model lead to remarkable classification performance 

and paved the way for successful quality control. 

A new algorithm called Transfer Naive Bayes 

(TNB) proposed by Ma et al. (2012), used information 

of all training data features. This solution estimates test 

data distribution and transfers cross-company data 

information to training data weights. The defect 

prediction model is built on the weighted data. This 

article presents a theoretical analysis of comparative 

methods, showing data sets’ experiment results from 

various organizations. It indicates that TNB is more 

accurate regarding AUC (Area Under receiver 

operating characteristic Curve), with reduced runtime 

than state of the art methods. 

Three cost-sensitive boosting algorithms to boost 

neural networks for SDP were presented by Zheng 

(2010). Based on threshold-moving, the first algorithm 

tries to move the classification threshold to not-fault-

prone modules as more fault-prone modules are 

classified correctly. The other two weight-updating 

based algorithms incorporate misclassification costs 

into the boosting procedure’s weight-update rule so that 

algorithms boost more weights on samples associated 

with misclassified defect-prone modules. Performances 

of the three algorithms were evaluated using 4 NASA 

project datasets regarding a singular measure, 

Normalized Expected Cost of Misclassification 

(NECM). Experiments suggested that threshold-moving 

is the best choice to build cost-sensitive SDP models 

with boosted NNs, among the three algorithms. 

Combining meta-heuristic optimization methods 

and bagging technique to improves SDP performance 

was proposed by Wahono et al. (2014). Meta-heuristic 

optimization methods (Genetic Algorithm (GA) and 

PSO) were applied to handle feature selection and 

bagging technique is used to deal with class imbalance 

issues. Results indicated that new methods improved 

classifier performance greatly. Based on comparisons, it 

is concluded that there is no great difference between 

PSO and GA when used as feature selection for 

classifiers in SDP. 

A new Two-Stage Cost-Sensitive learning (TSCS) 

method for SDP, using cost information in the 

classification and feature selection stages was proposed 

by Liu et al. (2014). For feature selection, it specifically 

developed 3 new cost-sensitive feature selection 

algorithms, Cost Sensitive Variance Score (CSVS), 

Cost-Sensitive Laplacian Score (CSLS) and Cost-

Sensitive Constraint Score (CSCS), by including cost 

information into traditional feature selection algorithms. 
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The new methods were evaluated in NASA projects 7 

real data sets. Results suggest that TSCS method 

achieved better performance in SDP compared to 

current single-stage cost-sensitive classifiers. This 

experiment also reveals that new cost-sensitive feature 

selection methods outperform conventional cost-blind 

feature selection methods, validating the use of cost 

information at the feature selection stage. 

Four semi-supervised classification methods for 

semi-supervised defect prediction was evaluated by 

Catal (2014). Low-Density Separation (LDS), SVM, 

Expectation-Maximization (EM-SEMI) and Class Mass 

Normalization (CMN) methods were investigated on 

NASA data sets including CM1, KC1, KC2 and PC1. 

Results proved that SVM and LDS algorithms 

outperformed CMN and EM-SEMI algorithms. LDS 

algorithm performs better than SVM in large data sets. 

When there is limited fault data, LDS-based prediction 

approach is suggested for SDP. 

 

MATERIALS AND METHODS 

 

Dataset: CM1, PC1, KC1 and KC2 dataset are from the 

PROMISE software dataset repository and are widely 

used for evaluating SDP. This study used these datasets 

so that the predictive model’s performance could be 

compared. Table 1 shows the dataset of software 

defects. 

This dataset has many software metrics like Line of 

Code, number of operands and operators, Program 

length, Design complexity, effort and time estimator 

and other metrics which identify software with defects 

(Agarwal and Tomar, 2014). 

The KC1 data is obtained from a science data 

processing project coded in C++, containing 2108 

modules (Challagulla et al., 2008). NASA’s Metric 

Data Program (MDP) data repository’s KC1 data set 

comprises logical groups of Computer Software 

Components (CSCs) in a large ground system. KC1 has 

43,000 lines of code, coded in C++ the data set having 

2,107 instances (modules). In these instances, 325 have 

one or more faults and 1,782 have nil faults. A 

module’s maximum number of faults is seven. Defect 

prediction models have independent variables as 

product and process metrics and a dependent variable 

indicates whether a module has a fault. In this data set, 

class_label is the dependent variable and the rest 

independent variables (Gayathri and Sudha, 2014). 

KC1 dataset is a NASA Metrics Data Program 

(Shirabad and Menzies, 2005) verifying/improving 

predictive software engineering models. KC1 is a C++ 

system implementing storage management for ground 

data receipt/processing containing of McCabe and 

Halstead features code extractors and module based 

measures.  

Table 1: Details of software defect dataset 

Dataset Language No. of modules Defective (%) 

CM1 C 496 9.7 
PC1 C 1,107 6.9 
KC1 C++ 2,109 15.5 
KC2 C++ 522 20.5 

 
Defect detectors are calculated as: 

 
a  =  Classifier predicts no defects and module has no 

error 
b  =  Classifier predicts no defects and module has 

error 
c  =  Classifier predicts some defects and module has 

no error 
d  =  Classifier predicts some defects and module has 

error 
 

Accuracy, probability detection (pd) or recall, 
precision (prec), probability of false alarm (pf) and 
effort are calculated as: 
 

a d
Accuracy

a b c d

+
=

+ + +                                      (1) 
 

d
recall

b d
=

+                                            (2) 
 

c
pf

a c
=

+                                                          (3) 
 

d
prec

c d
=

+                                            (4) 
  

. .c LOC d LOC
effort

TotalLOC

+
=

                                    (5) 
 

KC1 dataset has 2109 instances and 22 varied 
attributes including 5 different LOC, 3 McCabe 
metrics, 12 Halstead metrics, a branch count and 1 
goal-field. Dataset’s attribute information is: total 
operands, design complexity, McCabe's Line count of 
Code (LOC), cyclomatic complexity, program length, 
effort, Halstead, class and others. Some samples from 
the dataset are given: 

 
Example 1 : 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3, 

1.3, 1.3, 1.3, 2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2, 
1.4, false 

Example 2 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, true 

Example 3 : 83, 11, 1, 11, 171, 927.89, 0.04, 23.04, 

40.27, 21378.61, 0.31, 1187.7, 65, 10, 6, 

0, 18, 25, 107, 64, 21, true 

 

Classifiers: Classification divides data samples into 

target classes. For example, a software module is 
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categorized as “defective” and “not-defective” using 

classification. In Classification, class categories are 

already known and so is a supervised learning approach 

(Han and Kamber, 2006). There are two classification 

methods: Binary and Multilevel. Binary classification 

divides a class only into two categories “defective” and 

“not-defective”. Multi-level classification is used when 

there are more than two classes and they are split into 

“highly complex”, “complex” or “simple.” Learning 

and Testing are two phases of a classification approach: 

hence, it divides a dataset into two parts: training and 

testing. Approaches like cross fold and Leave-one-out 

partition the dataset. During the learning phase, a 

classifier is learned using training dataset and evaluated 

with a testing dataset. Varied classification techniques 

are available and classifiers used for this are discussed 

below (Ma et al., 2012). 

 

Support Vector Machine (SVM): SVM divides data 
samples of two classes by determining a hyper-plane in 
original input space maximizing their separation. SVM 
works well for classification of data samples 
inseparable linearly by using the kernel function theory. 
Many kernel functions for example Gaussian, 
Polynomial and Sigmoid are available and are used to 
map data samples to higher dimensional feature space. 
SVM then determines a hyper-plane in the feature space 
to divide data samples of various classes. This is a 
better choice for linearly and nonlinearly separable data 
classification. SVM has many advantages like ensuring 
a global solution for data classification. It generates a 
unique global hyper-plane to separate different class 
data samples rather than local boundaries as compared 
to existing data classification approaches. As SVM 
follows Structural Risk Minimization (SRM) principle, 
it reduces risk during training and enhances its 
generalization capability (Xing et al., 2005). 

SVM uses machine learning technique and Method 
level metrics. SVM is a supervised learning models 
with associated learning algorithms analyzing data and 
recognizing patterns for classification and regression 
analysis (Challagulla et al., 2008). SVM was 
successfully solved classification and regression 
problems in applications. SVM’s capability in 
predicting defect prone software modules and 
comparing its performance against 8 statistical and 
machine learning models in the context of four NASA 
datasets is studied. Results indicate that SVM 
prediction performance is better than the models 
compared. SVM’s advantage is ensuring better 
performance and its disadvantage is that it does not 
work well on public datasets (Singh et al., 2010). SVM 
was used in bioinformatics, image classification and 
handwriting recognition. SVM is used for data 
classification and is robust in nature than other software 
quality prediction techniques. It adapts to modeling 
non-linear functional relationships, achieves improved 
performance and is an efficient software quality 

prediction technique. To minimize cost and improve 
software testing process effectiveness, researchers used 
SVM on a Data set from NASA’s Metrics Data 
Program (MDP) data repository (Voulgaris and 
Magoulas, 2008). The advantage of SVM is that they 
provide better performance. The main disadvantage of 
SVM is that it does not work well on public datasets. 
 

K-Nearest Neighbor (KNN): This classifier’s working 

is based on a voting system. KNN locates new or 

unidentified data sample aided by earlier identified data 

samples, called nearest neighbor and samples being 

assigned using voting strategy. More than one nearest 

neighbor participates in data samples classification. 

KNN learning is slow and hence is called Lazy Learner. 

KNN technique is used in clustering and classification.  
An algorithm in k Nearest Neighbor classification 

(Sridhar and Babu, 2012), finds a set of k objects in 
training set close to the input and classifies it based on 
the majority of that group class. The elements needed 
for this approach are: distance metrics, labeled objects 
set and a number of k. 
 
PART: PART is a partial decision tree algorithm is the 

extension of RIPPER and C4.5 algorithms. PART 

algorithm need not perform global optimization to 

produce the appropriate rules. Class for generating a 

PART decision list use separate-and-conquer method.  

 
DTNB: Decision Tree and Naïve Bayes algorithm uses 
a decision table/naive bayes hybrid classifier. At each 
point during the search, the algorithm evaluates the 
advantage of dividing the attributes into two disjoint 
subsets. Initially all attributes are modeled by decision 
table initially. A forward selection search is used where 
each attribute is modeled by Naïve Bayes and 
remaining by decision table. At each step, the algorithm 
also dropping an attribute entirely from the model. 
 
NNge: Nearest-neighbor-like algorithm using non-
nested generalized exemplars which can be viewed as 
if-then rules. 
 
Naïve Bayes: Naive Bayesian classifier is based on 
Bayes theorem with independence assumptions 
between the predictors. Naive Bayesian model is easy 
to build, having no complicated iterative parameter 
estimation making it specifically useful for large 
datasets. Despite simplicity, Naive Bayesian classifier 
often does well and is used as it outperforms 
sophisticated classification methods. 
 
Bayes net: Bayes Network classifier uses a variety of 
search algorithms and quality measures. It supports 
different data structures like network structure, 
conditional probability distributions.  
 
NB updateable t: Naive Bayes classifier uses estimator 
classes. It  is  the  updateable  version  of  Naïve  Bayes. 
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Fig. 2: Classification accuracy for different classifiers 

 

 
 
Fig. 3: Precision and recall for different classifiers 

 
Table 2: Classification accuracy, precision, recall for different 

classifiers using K folds cross validation 

Algorithm 

Classification 

accuracy  Precision Recall 

SVM 86.27 0.822 0.863 

KNN 85.51 0.845 0.855 

PART 85.13 0.890 0.955 

DTNB 84.13 0.894 0.945 

NNge 83.61 0.885 0.943 

Complement NB 81.71 0.903 0.910 

NB simple 80.90 0.902 0.905 

NB 80.85 0.806 0.809 

NB updateable 80.57 0.902 0.905 

Bayes net 66.88 0.944 0.711 

 

This classifier uses a default precision of 0.1 for 

numeric attributes with zero training instances. 

 

NB simple: It is a Class for building and using a simple 

Naive Bayes classifier and numeric attributes are 

modelled by a normal distribution. 

 

RESULTS AND DISCUSSION 

 

In this study experiment are conducted for 

obtaining classification accuracy, precision and recall 

for classifiers such as Naïve Bayes, SVM and KNN. 

Table 2 and Fig. 2 shows the results of accuracy, 

precision and recall for different classifiers. 

For Classification accuracy, SVM classifier 

performs better than all the other classifiers. For 

Classification accuracy, SVM classifier performs better 

by 25.32% than Bayes Net and by 6.83% than NB 

Updateable (Fig. 3). 

For Precision, Bayes Net classifier performs better 

than all the other classifiers. For Precision, Bayes Net 

classifier performs better by 15.77% than NB and by 

13.82% than SVM. For Recall, PART classifier 

performs better than all the other classifiers. For Recall, 

PART classifier performs better by 29.29% than Bayes 

Net and by 16.55% than NB. 

 

CONCLUSION 

 

In this study, experiments are carried out for 

analyzing the defect prediction using different types of 

classifiers such as NB, SVM, KNN etc. The classifiers 

are evaluated for KC1 dataset. The classification 

accuracy of the SVM classifier performs better when 

compared to other classifiers. The study can be 

extended to improve the classifier for SDP which 

outperforms well for classification accuracy, precision 

and recall. 

 

REFERENCES 

 

Agarwal, S. and D. Tomar, 2014. A feature selection 

based  model  for  software  defect  prediction.  Int.  

J. Adv. Sci. Technol., 65: 39-58. 

Boehm, B. and V.R. Basili, 2007. Software defect 

reduction  top  10  list.  Software   Eng.   Barry   

W. Boehm's Lifetime Contribut. Software Develop. 

Manage. Res., 34(1): 75. 

Can, H., X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang 

and X. Liqiang, 2013. A new model for software 

defect prediction using particle swarm optimization 

and support vector machine. Proceeding of 25th 

IEEE Chinese Control and Decision Conference 

(CCDC, 2013), pp: 4106-4110. 

Catal, C., 2014. A comparison of semi-supervised 

classification approaches for software defect 

prediction. J. Intell. Syst., 23(1): 75-82. 

Challagulla,  V.U.B.,  F.B.  Bastani,  I.L.  Yen  and  

R.A. Paul, 2008. Empirical assessment of machine 

learning based software defect prediction 

techniques.  Int.  J.  Artif.  Intell.   T.,  17(02):  

389-400. 

Chug, A. and S. Dhall, 2013. Software defect prediction 

using supervised learning algorithm and 

unsupervised learning algorithm. Proceeding of 4th 

International Conference Confluence 2013: The 

Next Generation Information Technology Summit, 

pp: 173-179.  



 

 

Res. J. App. Sci. Eng. Technol., 11(1): 63-69, 2015 

 

69 

Clark, B. and D. Zubrow, 2001. How good is the 
software: A review of defect prediction 
techniques? Sponsored by the US Department of 
Defense. Carnegie Mellon University, Pittsburgh, 
PA.  

Czibula, G., Z. Marian and I.G. Czibula, 2014. 
Software defect prediction using relational 
association   rule  mining.  Inform.  Sci. Int. J.,  
264:  260-278. 

Gayathri, M. and A. Sudha, 2014. Software defect 
prediction system using multilayer perceptron 
neural network with data mining. Int. J. Recent 
Technol. Eng. (IJRTE), 3(2). 

Han, J. and M. Kamber, 2006. Data Mining, Southeast 
Asia Edition: Concepts and Techniques. Morgan 
Kaufmann, pp: 770. 

Khan,  J.I.,  A.U.  Gias,  M.  Siddik,  M.  Rahman,  
S.M. Khaled and M. Shoyaib, 2014. An attribute 
selection process for software defect prediction. 
Proceeding of the International Conference 
on Informatics, Electronics and Vision (ICIEV, 
2014), pp: 1-4. 

Laradji, I.H., M. Alshayeb and L. Ghouti, 2014. 
Software defect prediction using ensemble learning 
on selected features. Inform. Software Tech., 58: 
388-402. 

Liu, M., L. Miao and D. Zhang, 2014. Two-stage cost-
sensitive learning for software defect 
prediction. IEEE T. Reliab., 63(2): 676-686. 

Ma, Y., G. Luo, X. Zeng and A. Chen, 2012. Transfer 
learning for cross-company software defect 
prediction.   Inform.   Software   Tech.,  54(3): 
248-256. 

Nam, J., 2010. Survey on Software Defect Prediction. 
Rawat, M.S. and S.K. Dubey, 2012. Software defect 

prediction models for quality improvement: A 
literature study. Int. J. Comput. Sci., 9(5). 

Rawat,   M.S.,   C.O.E.T.  MGM’s,   A.  Mittal   and   
S.K. Dubey, 2012. Survey on impact of software 
metrics on software quality. Int. J. Adv. Comput. 
Sci. Appl., 3(1). 

Shirabad, J.S. and T.J. Menzies, 2005. The PROMISE 

repository of software engineering databases. 

School of Information Technology and 

Engineering, University of Ottawa, Canada. 

Singh, Y., A. Kaur and R. Malhotra, 2010. Prediction of 

fault-prone software modules using statistical and 

machine learning methods. Int. J. Comput. 

Appl., 1(22): 8-15. 

Song, Q., M. Shepperd, M. Cartwright and C. Mair, 

2006. Software defect association mining and 

defect    correction    effort    prediction.    IEEE    

T. Software Eng., 32(2): 69-82. 

Sridhar, S.M. and B.R. Babu, 2012. Evaluating the 

classification accuracy of data mining algorithms 

for anonymized data. Int. J. Comput. Sci. 

Telecommun., 3(8). 

Tao,  W.  and  L.  Wei-Hua,  2010.  Naïve  bayes  

software defect prediction model. Proceeding of 

International Conference on Computational 

Intelligence and Software Engineering (CiSE), pp: 

1-4. 

Verner, J. and G. Tate, 1992. A software size 

model. IEEE T. Software Eng., 18(4): 265-278. 

Voulgaris, Z. and G.D. Magoulas, 2008. Extensions of 

the k nearest neighbour methods for classification 

problems. Proceeding of 26th IASTED 

International Conference on Artificial Intelligence 

and  Applications,  CD  Proceedings  ISBN: 978-0-

88986-710-9, pp: 23-28. 

Wahono, R.S., N. Suryana and S. Ahmad, 2014. 

Metaheuristic optimization based feature selection 

for software defect prediction. J. Software, 9(5): 

1324-1333. 

Wang, J., B. Shen and Y. Chen, 2012b. Compressed 

C4. 5 models for software defect prediction. 

Proceeding of 12th International Conference 

on Quality Software (QSIC), pp: 13-16. 

Wang, P., C. Jin and S.W. Jin, 2012a. Software defect 

prediction scheme based on feature selection. 

Proceeding of International Symposium 

on Information Science and Engineering (ISISE, 

2012), pp: 477-480. 

Xia, Y., G. Yan and Q. Si, 2013. A study on the 

significance of software metrics in defect 

prediction. Proceeding of 6th International 

Symposium on Computational Intelligence and 

Design (ISCID, 2013), 2: 343-346. 

Xing, F., P. Guo and M.R. Lyu, 2005. A novel method 

for early software quality prediction based on 

support vector machine. Proceeding of 16th IEEE 

International Symposium on Software Reliability 

Engineering (ISSRE, 2005), pp: 10. 

Zheng, J., 2010. Cost-sensitive boosting neural 

networks for software defect prediction. Expert 

Syst. Appl., 37(6): 4537-4543. 

 


