
Research Journal of Applied Sciences, Engineering and Technology 11(2): 169-175, 2015

DOI: 10.19026/rjaset.11.1704

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: March 31, 2015 Accepted: June 14, 2015 Published: September 15, 2015

Corresponding Author: Bramah Hazela, Department of Computer Science and Engineering, Amity University, Lucknow,

India, Tel.: +91-09839123463
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

169

Research Article

Formalizing Semantics for UML Activity Diagram through Regular

Expression Translation

1
Bramah Hazela,

1
Deepak Arora and

2
Vipin Saxena

1
Department of Computer Science and Engineering, Amity University,

2
Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Abstract: Formalization of UML models now becomes a requisite action by most of the software designers. UML is

semiformal in nature. So it becomes necessary to formalize the UML which would reduce the overall complexity of

software design. Today as software becoming more interactive and distributed in nature, the formal syntax and

automated verification analysis of behavioral aspect of any model becomes very important in order to reduce overall

software development cost and time. UML Activity diagram has become widely acceptable tool for documenting the

artifacts related to Control flow and complexity of the software system. Here Authors proposed the semantics for

activity diagram of UML by means of regular expression and its equivalent transition system. UML has now

become one of the most widely acceptable standards for visual modeling related to object based software

development. Since inception, continuous adoption of various design patterns and profiles of software have been

included to make it more flexible and capable to represent different views of software design at early phases of its

development. It is also found that the mapping of these visual modeling structures to some pre-established formal

graphical notations of data structures like graph certainly provides more realistic and robust automated verification

and validation ground for these models. The available literature shows the tremendous research work is being

carried out to make it more adoptable and reliable visual modeling platform across the globe. Although UML has a

richer and wider visual modeling skill set, but still it is not very easy to find better ground for establishing, set of

rules and semantics for UML model verification and validation. The research work also proposes a formal

verification and traceability method for any activity model with the help of Arden's lemma. The correctness of

proposed verification method has been shown with supporting case studies after generating its corresponding formal

regular expression.

Keywords: Arden’s lemma, finite state machine, regular expression, transition system, UML activity diagram

INTRODUCTION

Unified Modeling Language (UML) is a

framework or platform that is used for writing

blueprints of software by industry experts. UML is

process independent framework. Unified Modeling

Language (UML) (Rumbaugh et al., 2001) specification

provides the details of various software systems having

varying complexity and hardware designs (Martin and

Müller, 2005; Berlin Müller et al., 2006). UML

provides a set of graphical notation to visualize

different views of a system. UML models can also be

customized for a specific domain. UML activity

diagram is a widely accepted tool for software

designing at the system level. The semi-formal

specification of the activity diagram is specifically

useful to describe the concurrent behavior of complex

logic operations of software systems.

In past, various verification techniques have been
proposed to validate software design through automated
generation of test case (Ammann et al., 1998).

Traditional verification and validation methods of

software system are less efficient as they are basis of

handwork. These software methods took more time to

developed and hence increased of overall development

cost. Now-a-days, software testing highly demands its

automaton due to development of testing advancement.

The effective and maintainable testing of software can

only be guaranteed through automated generation of

test cases. Software testing industries are now choosing

a methodology known as Model based testing. The

main potential advantage of this testing approach

includes the faults detection in software at early stage

and reducing the overall time for the development of

software. In Literature review, different diagram of

UML has been considered for generation of various test

Res. J. App. Sci. Eng. Technol., 11(2): 169-175, 2015

170

cases (Wang et al., 2005; Li and Lam, 2005; Chandler

et al., 2005; Chen et al., 2006; Xu et al., 2005).
Activity diagram of UML are most suitable for the

study of behavioral aspects of a given system. Behavior
modeling for a service-oriented architecture system and
large software system can be allowed through
workflows specifications (Eshuis et al., 2002; Alonso
et al., 2004).

Over the past decade, in Software development
process it has been found that software models can be
best expressed by Unified Modeling Language (UML).
One of the limitations of UML is that it lacks formal
semantics as it focuses only on syntax for system
modeling. Today, implementation of formal methods is
a very hard task to automate software engineering by
software designers because of complex mathematical
theory behind them. However, formal semantics based
on UML specification have already been discussed
(OMG, 2007; Baresi and Heckel, 2002; Ehrig et al.,
1999).

A research work on formal semantics for activity
diagram had already been given in many research work
using different formal languages. Phenomenon of
Dynamic Meta Modeling was explained by Hausmann
(2005). This modeling was done by graph
transformation system. In his study, Hausmann (2005)
defined a concept named “Rule Invocation” to extend
the traditional graph rules. DMM is compromise of two
rules named as big and small step rules. The rules of
Big-step are traditional in nature that invoked small-
step rules. Author also used the concept of Dynamic
Meta Modeling to define the semantics for activity
diagram. DMM and semantics were used by Engels
et al. (2007) for modeling and workflows verification.
In their study, author change the rules of GROOVE
(Rensink, 2004) which was also verified by GROOVE,
to check the action reachability and deadlock freeness
properties of work flows. In reference to the previous
work, the given approach provides more flexibility for
system verification properties. Rule Invocation and
different Small or big step rules defined by Hausmann
(2005) can’t be modeled directly by the use of existing
tool by the designers. Petri-net was used by Störrle and
Hausmann (2005) that provides semantic background
for the UML activities.

In their work, authors examine the activities
described in the UML through the de-notational
semantics.

This approach describes basic data and control
flow, exception handling and expansion nodes. Authors
also found that some standard constructs are not easy to
be formalized by Petri nets. So, they concluded that
Petri nets cannot be possibly used to complete
semantics in UML 2.0 due to transverse. Strong fairness
property was used to verify the functional requirement
of state chart-like semantics for activity diagrams of
UML 1.5. This property states that the infinite loops
should be avoided by model as discussed by Eshuis
(2006). Cimatti et al. (2000) has suggested methods for
verification and correctness of the strong fairness

property in an expression of LTL where NuSMV model
checker is used. The approaches discussed in Börger
et al. (2000) and Bolton and Davies (2000) are the
predecessor of UML 1.5. Baldan et al. (2005) define
static model of a system by using instance graph. They
used the hyper graph with synchronized feature to
control the applications of the rules that are defined for
each action. Instead of defining the semantics for
activity, Synchronized Hyper graphs were used to show
the dynamic model behavior by using UML activities.
They implemented monadic second-order logic for the
verification of hyper graphs without introducing any
tools. Furthermore, they found that activity diagrams
are largely useful to describe the flow of events. This
assignment is necessary for transformation of test case
information into activity diagram. It generates an
activity graph in which every edge represent the flow in
activity diagram and each node representing a test case
construct from activity diagram. UML is semiformal in
nature and formalization of the UML diagram has now
become the dominant area of research.

In this research work, authors have proposed a

model transformation approach in order to generate

regular expression, corresponding to any UML activity

diagram. The target regular expression will be suitable

for verification and determining the consistency of the

system. The proposed method represents the

relationship of UML activity diagram with well

establish mathematical structure like activity graphs.

This relationship can further be useful to generate

equivalent transition diagram for a given activity

model. The authors have covered the concept of strings,

languages and regular expression of computation theory

to establish the relation between finite state automata

and UML activity graph. Authors have also explained a

transition system by referring the transformation

approach of UML activity diagram into state diagram.

The main idea of Activity diagram formalization has

given by discussing the Arden’s theorem for generating

regular expression from the transition system. The

result of this formalization will reduce the overall

software development complexity.

MATERIALS AND METHODS

Authors have given the concept of UML activity
diagram along with its equivalent transition system.
Further, based on the existing concepts of formal
language theory, different patterns of strings generated
by regular expressions of a transition system have also
explore by means of different case studies.

Activity diagram: UML Activity Diagrams refer to a
method of software engineering that is modeled to
describe business processes, procedures and work
flows. Activity diagram of UML is a kind of behavioral
modeling. Any UML Activity Diagram may have its
equivalent UML activity graph and both are somewhat
similar to state machine diagrams.

Res. J. App. Sci. Eng. Technol., 11(2): 169-175, 2015

171

Modeling of different computational as well as
organizational processes can be done through Activity
diagram of UML. Activity diagrams show the flow of
activities in a stepwise manner, constructed with small
number of shapes and are connected through arrows.
The most important shape type includes:

• Actions denoted by rectangles having rounded
corner. Diamond shape represents decisions during
activity.

• Start (split) or end (join) of concurrent activities
represents by horizontal Bars.

• Initial state or start of the workflow is represented
by black circle.

• Solid black fill encircled represents the end or final
state.

• Arrows represent the order in which activities
happen from start to end state.

Transformation of Activity diagram of UML into

Finite State Machine for description of activity diagram
semantics have already been specified by Object
Management Group (2005) and Friedl (2006).

Strings, languages and regular expressions: Theory

of formal languages is the base for any programming

languages. Formal theory refers to the fact that all the

rules for the languages are stated explicitly in terms of

what strings of symbols can occur. A Symbol is an

abstract or user defined identity. Letters and digits are

example of a set of symbols, which is finite in nature

and is also known as alphabet, for example, x = {a, b}

is an alphabetic set with symbols a and b. Another

alphabet is Y = {tiger, elephant, snake and python} is a

set of alphabet with symbols tiger, elephant, snake and

python. A String can be defined as a finite sequence of

symbols from that alphabet. Strings play an important

role in testing of patterns. Finite state machine takes

strings as inputs and test for its acceptability. Thus a

string serves as a test input. A language is a collection

of strings. For example, the language of binary numbers

is the combination of all strings defined over zeros and

ones. Total number of symbols count in a string gives

the length of string which is written as |s|. For example,

|1010| = 4 and |hot, pot| = 3. An empty String must be

of length 0, which can be written as ∊. Concatenation of

two strings s1 and s2 is denoted by s1 • s2. For example,

given the alphabet X = {a, b} and two strings abb and

bab over X, then concatenation of two strings would be

abb. bab = abbbab.
A Set of strings can be described through Regular

expression based on certain syntax rules (Raschke,
2009). Regular expressions are used by most of the
application software for searching and manipulating
text patterns as in word processors and programming
languages. Short description of a set can be given as
Regular expressions, without elements listing. For
example, a set of two strings "green" and "grean"
would be a regex "gre [ea] n". Regular expression

Fig. 1: Language and its equivalent regular expression

provides a compact representation of sets of strings. For
example, the regular expression (ab)* represent the set
of strings that consists of the empty string, the string ab
and all strings obtained by concatenating the string ab
with itself one or more times. Expression (ab)* denotes
an infinite set. Formally, a regular expressions,
generates various patterns of strings that can be
recognized by finite state automata. Suppose X is a set
of finite alphabet, then regular expressions over X are
given as here:

If p ∈ X, then ‘p’ is a regular expression that
represent the set {p}. If we consider regular expressions
Re1 and Re2 over the alphabet X that represents the two
set L1 and L2, respectively, then concatenation of two
regular expressions written as Re1. Re2 is also regular
expression represented by the set {L1 • L2}. Similarly,
Union of two regular expressions Re1, Re2 written as
Re1 + Re2 is also a regular expression represented by
the set {L1 ∪ L2}. If Re1 is a regular expression, then
Re1* is also a regular expression known as Kleen
closure of Re1.

Regular expressions are useful in expressing both
finite and infinite test sequences. For example, if a
program takes a sequence of zeroes and ones and flips
from 0 to 1 and vice versa, then a few possible sets of
test inputs are 0*, (10)+010|100. Regular expressions
are also useful in defining the all possible inputs to a
finite state machine that will give transition of the
machine from one arbitrary state to another state. Every
regular expression ‘Re’ can be recognized by a given
transition system and finite automaton. For further
explanation, consider two different languages and their
finite state automaton that accepts the language defined
by regular expression as given in Fig. 1:

Example: 1
L = (a|b) c
ex. {ac, bc}

Example: 2
L = a* b
ex. {b, ab, aab, aaab, …….}

For every regular expression ‘Re’, there exists a

corresponding finite automaton that accepts the regular

Res. J. App

set given by ‘Re’ due to equivalent expressive power of

Regular expressions and finite automata.

So we can say that regular languages, regular

expressions and finite automata are all

representation of the same string. In this reference,

Arden’s Theorem defines the transformation rules and

semantics to convert a transition system to its

corresponding regular expression. According to

Arden’s method, let the P and Q are regular

over alphabet Σ and if P does not have null string, then

given equation in ‘R’, written as R =

solution R = QP*. This unique solution can be found by

substituting the value of R = QP* in the R.H.S. of

Q + RP, further R = Q+(Q+RP) P = Q

by substituting the value of R again and again, we will

get the following set of equations:

R = Q+QP+QP
2
+QP

3
…..

R = Q (1+P+P
2
 + P

3
+ …..)

R = Q (є+P+P
2
+P

3
+ …..)

The second part of the product on the L.H.S can be

replaced with the help of kleen closure property. So the

final equation becomes R = QP*, which is unique

solution as stated above. For getting regular expression

for the given automata we first create equa

given form for all the states:

q1 = q1w11+q2w21+…+qnwn1+є

(q1 is the initial state)

q2 = q1w12+q2w22 + …+qnwn2+……

qn = q1w1n+q2w2n+…+qnwnn

Here, wij is the regular expression representing the

set of labels of edges from qi to qj. For parallel edges,

we find similar expressions for all states in the

expression. Then, these equations are solved to get the

equation for qi in terms of wij and that expression is the

required solution, where qj is a final state.

RESULTS AND DISCUSSION

Formalization and Generation of Regular

Expression is shown by a simple login process as in

Fig. 2.

The user will enter the login name and password.

And then, these details must be validated by the system

to check the correctness of unique pairing, user name

and password. In case of valid entry, system allows to

login the user. In case of invalid informa

will ask from its user to re-enter their credentials.

Based on notion of semantics for translation of

UML Diagrams into finite state machines for Model

Checking (Deepak et al., 2012; Raschke, 2009) and

formalization of UML activity diagram us

state machine (Rodrigues, 2000), it is concluded that a

App. Sci. Eng. Technol., 11(2): 169-175, 2015

172

due to equivalent expressive power of

Regular expressions and finite automata.

So we can say that regular languages, regular

expressions and finite automata are all different

representation of the same string. In this reference,

Arden’s Theorem defines the transformation rules and

semantics to convert a transition system to its

corresponding regular expression. According to

are regular expressions

does not have null string, then

R = (Q+RP) have a

. This unique solution can be found by

in the R.H.S. of R =

P = Q+QP+RP
2
, Now

again and again, we will

The second part of the product on the L.H.S can be

replaced with the help of kleen closure property. So the

, which is unique

solution as stated above. For getting regular expression

for the given automata we first create equations of the

+……

is the regular expression representing the

. For parallel edges,

we find similar expressions for all states in the

expression. Then, these equations are solved to get the

and that expression is the

is a final state.

RESULTS AND DISCUSSION

Formalization and Generation of Regular

Expression is shown by a simple login process as in

The user will enter the login name and password.

And then, these details must be validated by the system

to check the correctness of unique pairing, user name

and password. In case of valid entry, system allows to

login the user. In case of invalid information, system

enter their credentials.

Based on notion of semantics for translation of

UML Diagrams into finite state machines for Model

., 2012; Raschke, 2009) and

formalization of UML activity diagram using finite

state machine (Rodrigues, 2000), it is concluded that a

transition system can be drawn from the given UML

activity diagram as shown in Fig. 3.

Through massive literature survey it can be

concluded that regular expressions are one of the

important algebraic expression in theory of computation

that can also be implemented by Finite State

Automaton. A Finite State Automata is a significant

tool of computational linguistics. A regular expression

is a formula in a special language that is used for

characterizing a set of strings known as pattern. Any

regular expression can be modeled through finite state

automaton. Based on the Fig. 2 one can arrive at the

following set of equations:

q1 = q21y3+

(As q1 is the initial state a ‘ ’

Arden’s theorem for generating regular expression from

transition system):

q2 = q1y1

q21 = q2n1

q22 = q2y2

q3 = q22y4

q4=q21n2+q3y5

From Eq. (2):

q2 = (q21y3+) y1 = (q21y3y1+y1

Or,

q2 = y1+q21y3y1

Or,

q2 = y1+q2n1y3y1

By Eq. (3):

q2 = y1+q2 (n1y3y1)

By Arden’s theorem for generating regular

expression from the transition system, if regular

expression is of the form of R = Q+RP

solution of this regular expression is

q2 = y1 (n1y3y1)*

From Eq. (6), we get:

q4 = q21n2+q3y5 = q2n1n2+q3y5

transition system can be drawn from the given UML

Through massive literature survey it can be

concluded that regular expressions are one of the

t algebraic expression in theory of computation

that can also be implemented by Finite State

Automaton. A Finite State Automata is a significant

tool of computational linguistics. A regular expression

is a formula in a special language that is used for

racterizing a set of strings known as pattern. Any

regular expression can be modeled through finite state

automaton. Based on the Fig. 2 one can arrive at the

 (1)

’ should be added by

Arden’s theorem for generating regular expression from

 (2)

 (3)

 (4)

 (5)

 (6)

1)

 (7)

By Arden’s theorem for generating regular

expression from the transition system, if regular

R = Q+RP then the unique

solution of this regular expression is R = QP*:

 (8)

Res. J. App. Sci. Eng. Technol., 11(2): 169-175, 2015

173

Client enters Login name &

Password

Correct

 Login

 &

Password

Client has Successfully Logged in

Client Settings are displayed

Session end

Invalid Login Password

No. of

Attempts

 <=3

Yes

No

No

Yes

Yes

Yes

Yes

Fig. 2: Activity diagram for login process

By Eq.

= q2n1n2+q22y4y5 (9)

By Eq.

= q2n1n2+q2y2y4y5 (10)

By Eq.

By substituting of q2 from Eq. (7), we get the

Regular expression as:

 q4 = y1 (n1y3y1)*n1n2+y1 (n1y3y1)*y2y4y5

This expression gives the desire sequence of

activities performed throughout the login process. The

complete regular expression can be verified through the

following two cases:

Res. J. App. Sci. Eng. Technol., 11(2): 169-175, 2015

174

Fig. 3: Transition system for login process

Case 1: First activity includes login name and password

entered by user then transit to next activity which

required further validation. If the login and password

entered by the user is incorrect, then system allows two

more attempts before the termination of activity. As

soon as the valid attempts exhaust, the system will

terminate the session. This sequence of activities can be

best described by the regular expression, y1

(n1y3y1)*n1n2. This expression is concatenated form of

y1 and (n1y3y1)*n1n2, which confirms that without

capturing the desire inputs for login, the next sequence

of activities can’t be performed.

Case 2: The inputs to the system may leads to transition

of new activity. If the client successfully logged into the

system, the client settings of the system are displayed

for further customization. If the client does not require

customization there then at this juncture there remains

an option of logout from the system by terminating the

session. This sequence of activity can be described by

the regular expression, y1(n1y3y1)*y2y4y5. This

expression confirms that with correct login and

password entered by the user the end user can

customized their settings.

CONCLUSION

In this study, authors have established a set of

semantics to generate corresponding regular

expressions for a UML activity diagram.

These semantics proves that the verification can be

done by the means of generated regular expressions.

The use of Arden’s theorem make it more concise in

order to assure the generation of corresponding regular

expression without transition system. This will reduce

overall effort towards verification of any UML activity

diagram.

For illustration purpose different case studies have

been shown to prove the correctness of proposed

methodology.

These regular expressions can be further helpful in

verifying the UML activity diagrams at early stages of

software development. The language generated by these

regular expressions is also useful in generating and

validating different test cases.

The proposed research work can be extended

towards other behavioral diagrams for the development

of important phase of compiler design known as lexical

analysis.

ACKNOWLEDGMENT

The authors are very grateful to respected Mr.
Aseem Chauhan, Chairman, Amity University
Lucknow and Maj. Gen. K.K. Ohri, AVSM (Retd.),
Pro-VC, Amity University, Lucknow Uttar Pradesh,
India, for providing excellent research infrastructure
facilities in the University campus. Authors also pay
their best regards to Wg. Cdr. (Dr.) Anil Kumar,
Director Amity School of Engineering and Technology,
AUUP, Lucknow, Prof. S.T.H. Abidi and Brig. U.K.
Chopra, Director Amity Institute of Information
Technology, Amity University, Lucknow for giving
their motivational support and help to carry out the
present research work.

REFERENCES

Alonso, G., F. Casati, H. Kuno and V. Machiraju, 2004.

Web Services: Concepts, Architectures and
Applications. Springer-Verlag, Berlin, Heidelberg,
pp: 354.

Ammann, P., P. Black and W. Majurski, 1998. Using
model checking to generate tests from
specifications. Proceeding of the International
Conference on Formal Engineering Methods
(ICFEM), pp: 46-54.

Baldan, P., A. Corradini and F. Gadducci, 2005.

Specifying and verifying UML activity diagrams

via graph transformation. In: Priami, C. and P.

Quaglia (Eds.), GC, 2004. LNCS, 3267, Springer-

Verlag, Berlin, Heidelberg, pp: 18-33.

Baresi, L. and R. Heckel, 2002. Tutorial introduction to

graph transformation: A software engineering

perspective. In: Corradini, A. et al. (Eds.), ICGT,

Res. J. App. Sci. Eng. Technol., 11(2): 169-175, 2015

175

2002. LNCS 2505, Springer-Verlag, Berlin,

Heidelberg, pp: 402-429.

Bolton, C. and J. Davies, 2000. On giving a behavioural

semantics to activity graphs. In: Evans, A., S. Kent

and B. Selic (Eds.), UML 2000. LNCS 1939,

Springer, Heidelberg.

Börger, E., A. Cavarra and E. Riccobene, 2000. An

ASM semantics for UML activity diagrams. In:

Rus, T. (Ed.), AMAST 2000. LNCS 1816,

Springer-Verlag, Berlin, Heidelberg, pp: 293-308.

Chandler, R., C.P. Lam and H. Li, 2005. An automated

approach to generating usage scenarios from UML

activity diagrams. Proceeding of the 12th Asia-

Pacific Software Engineering Conference.

Chen, M., X. Qiu and X. Li, 2006. Automatic test case

generation for UML activity diagrams. Proceeding

of the International Workshop on Automation of

Software Test (AST '06).

Cimatti, A., E. Clarke, F. Giun Chiglia and M. Roveri,

2000. NuSMV: A new symbolic model checker.

Int. J. Softw. Tools Technol. Trans., 2(4): 410-425.

Deepak, A., H. Bramah and S. Vipin, 2012. Semantics

for UML model transformation and generation of

regular grammar. ACM SIGSOFT, 37: 1-5.

Ehrig, H., G. Engels, H.J. Kreowski and G. Rozenberg,

1999. Handbook on Graph Grammars and

Computing by Graph Transformation: Vol. 2:

Applications, Languages and Tools. World

Scientific Publishing Co. Inc., River Edge, NJ,

USA.

Engels, G., C. Soltenborn and H. Wehrheim, 2007.

Analysis UML activities using dynamic meta

modeling. Proceeding of the 9th IFIP International

Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS), 4468:

76-90.

Eshuis, R., D. Jansen and R. Andwieringa, 2002.

Requirements-level semantics and model checking

of object-oriented statecharts. Requir. Eng. J., 7:

243-263.

Eshuis, R., 2006. Symbolic model checking of UML

activity diagrams. ACM T. Softw. Eng. Meth.,

15(1): 1-38.

Friedl, J.E.F., 2006. Mastering Regular Expressions.
O'Reilly, New York, ISBN: 0596528124.

Hausmann, J.H., 2005. Dynamic META modeling: A
semantics description technique for visual
modeling languages. Ph.D. Thesis, University of
Paderborn, Germany.

Li, H. and C.P. Lam, 2005. Using anti-ant-like agents to
generate test threads from the UML diagrams. In:
Khendek, F. and R. Dssouli (Eds.), TestCom 2005.
LNCS 3502, Springer-Verlag, Berlin, Heidelberg,
pp: 69-80.

Martin, G. and W. Müller, 2005. UML for SOC Design.
Springer, US.

Müller, W., A. Rosti, S. Bocchio, E. Riccobene, P.

Scandurra, W. Dehaene and Y. Vanderperren,

2006. UML for ESL design-basic principles, tools,

and applications. Proceeding of the IEEE/ACM

International Conference on Computer-Aided

Design, pp: 73-80.

Object Management Group, 2005. UML Specification
2.0. Retrieved from:
http://www.omg.org/technology/documents/modeli
ngspeccatalog.htm.

OMG, 2007. UML Superstructure V2.1.2. Retrieved
from: http://www.omg.org/spec/UML/2.1.2/.

Raschke, A., 2009. Translation of UML 2 activity
diagrams into finite state machines for model
checking. Proceeding of the 35th Euro Micro
Conference on Software Engineering and
Advanced Applications (SEAA, 2009), pp: 149-
154.

Rensink, A., 2004. The GROOVE simulator: A tool for
state space generation. In: Pfaltz, J.L., M. Nagl and
B. Böhlen (Eds.), Applications of Graph
Transformations with Industrial Relevance
(AGTIVE). LNCS 3062, Springer-Verlag, Berlin,
Heidelberg, pp: 479-485.

Rodrigues, R.W.S., 2000. Formalising UML activity
diagrams using finite state processes. Online
Proceeding of the UML 2000 Workshop on
Dynamic Behaviour in UML Models: Semantic
Questions.

Rumbaugh, J., I. Jacobson and G. Booch, 2001. The
Unified Modeling Language User Guide. Addison
Wesley, Boston.

Störrle, H. and J.H. Hausmann, 2005. Towards a
Formal Semantics of UML 2.0 Activities. In:
Liggesmeyer, P., K. Pohl and M. Goedicke (Eds.)
Software Engineering. LNI, GI, 64: 117-128.

Wang, L., J. Yuan, X. Yu, J. Hu, X. Li and G. Zheng,
2005. Generating test cases from UML activity
diagram based on gray-box method. Proceeding of
the 11th Asia-Pacific Software Engineering
Conference, pp: 284-291.

Xu, D., H. Li and C.P. Lam, 2005. Using adaptive
agents to automatically generate test scenarios
from the UML activity diagrams. Proceeding of the
12th Asia-Pacific Software Engineering
Conference.

