
Research Journal of Applied Sciences, Engineering and Technology 11(4): 355-371, 2015

DOI: 10.19026/rjaset.11.1789

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: March 12, 2015 Accepted: March 24, 2015 Published: October 05, 2015

Corresponding Author: Lukas Holy, Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Univerzitni 8, Pilsen, 30614, Czech Republic
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

355

Research Article

An Interactive UML-like Visualization for Large Software Diagrams

1
Lukas Holy,

3
Ivo Maly,

2, 3
Ladislav Cmolik,

2
Kamil Jezek and 1Premek Brada

1
Department of Computer Science and Engineering,

2
NTIS-New Technologies for the Information Society, European Centre of Excellence, Faculty of Applied

Sciences, University of West Bohemia, Univerzitni 8, Pilsen, 30614, Czech Republic
3
Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2,

Prague, 16627, Czech Republic

Abstract: As current software keeps growing in size and complexity, the means to visualize its structure become
insufficient. Noticeably, standard UML diagrams and their implementations in the industrial tools can depict only
diagrams of certain level of complexity. When the complexity rises above this level, the diagrams become no longer
visually understandable and start to hinder analytical reasoning. This is mostly a problem of diagrams created during
automated reverse-engineering processes. In this study we summarize and validate a new approach for software
structure visualization which aims at supporting visual presentation of large software systems. It combines a
notation derived from the UML component diagram with tool-supported interaction, utilizing features like hiding of
unnecessary information that can be revealed on demand to reduce complexity of the diagrams. To validate the
approach, we implemented an experimental tool that provides both the notation and interactive features. The main
contribution of this study is an evaluation of the approach through a user study. The results of the user evaluation
suggest that the proposed notation in combination with the interactive features allows users to gain insight into a
visualized application faster in comparison to standard UML as supported by industrial tools.

Keywords: Complexity, component diagrams, diagram interaction techniques, software visualization, UML, user

study

INTRODUCTION

Modern software techniques such as component-

based software engineering (Szyperski, 2002) allow for
rapid development of large applications. Although
components have opened the way to build such
applications, designing them is still a difficult task.
When a legacy application is to be extended it is also
difficult to reverse-engineer it and design its extensions.
The main reason is that software applications can easily
consist of hundreds or thousands of coarse-grained
entities such as modules or components which makes it
difficult to explore the structure of their bindings and
create a mental model of the whole system.

A user creates a mental model of a reverse-
engineered system from the perception, imagination
and comprehension of discourse (Johnson-Laird, 1983;
Holt, 2002). Although there are lots of tools (Enterprise
Architect, 2014; MagicDraw, 2014; IBM Rational
Software Architect, 2014; Visual Paragigm, 2014)
helping with application design and reverse-
engineering, their support for understanding complex
applications is still limited. One of the limiting factors
is that the tools that build on standard Unified

Modelling Language (UML) diagrams cannot cope with
large diagrams well. The main problem is the need to
provide enough detail and show the overall structure at
the same time. Visual clutter is produced by large
number of elements and lines. Static nature of UML
then cannot hide any of the elements or lines as it is not
possible to show it later on demand. Simply said, too
many lines of component connections make
visualization unreadable.

The problem of visual clutter is on the general level
illustrated in Fig. 1a. As it may be easily seen from the
example, lines denoting component connections hinders
orientation in the diagram. On the other hand, when
detail is provided (so that, for example, a user is able to
read an element name), it is difficult to trace
dependencies from distant components. This case is
shown in Fig. 1b.

As an alternative, we have proposed a notation
derived from the UML component diagram (Caserta
and Zendra, 2011) and implemented it together with
novel interaction features in a (CoCAEx (Complex
Component Applications Explorer) 2014) tool. This
tool uses improved representation of the application
structure and its non-structural aspects (e.g., metrics) as

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

356

(a)

(b)

Fig. 1: (a): Overview of complex diagram; (b): Higher level of detail in complex diagram

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

357

well as the ability to interact with the visualized

diagrams. Key parts of this approach were described in

our previous works (Holy et al., 2012a, b). This new

approach should fill the gap mainly in the field of

component-based engineering where industrial tools

suffer from the above mentioned insufficiency of UML.

In this study we summarise the CoCAEx approach

and present its validation study which was performed in

order to find out whether it is faster to study the

structure of component-based applications interactively

rather than statically with one of the state-of-the-art

UML tools. The study focuses on performance (time

required to provide a correct answer) during application

structure analysis tasks.

LITERATURE REVIEW

Software visualization is a well-established field of

research. In this section we provide an overview of

approaches, techniques and references closely related to

our work.

The Unified Modeling Language (UML) provides

three groups of diagrams to model both static and

dynamic features of software (Object Management

Group, 2009), including the component diagram. The

notation used in this diagram captures components and

their static interconnections. The usability of UML

notation has been studied by Moody and van

Hillegersberg (2009) and Morris and Spanoudakis

(2001).

Research efforts related to visualization of software

diagrams fall into two broad categories: displaying the

structure and dealing with interactivity. Nowadays, the

efforts to display diagrams are most commonly oriented

to ex-tensions of the UML itself, not taking interactivity

under consideration. However attempts to provide

interactivity exist. For instance Dumoulin and Gerard

(2010) introduced layers to support multiple views in

one diagram and (Byelas et al., 2006) suggested the

usage of coloured areas of interest to improve

orientation in classical UML component diagrams.

The work of Telea and Voinea (2004) on

(interactive) visualization of component-based software

is generic, but it does not provide many details about

components themselves and can hardly be compared

with UML. Wettel and Lanza (2007) visualized

software as cities. They defined several visual

properties of each visualized software element: three

dimensions of a block (mapped to defined metrics),

position, colour, colour saturation and transparency.

This approach could be used for visualization of

component application, but it does not provide details

needed to gain full comprehension of the application

structure.

Interactivity should help primarily with the

creation of a mental model, so that one will be able to

reason about the architecture and make decisions. It is

important to decrease the cognitive load, namely hide

unnecessary details as (Holt, 2002) highlighted in

several examples. The importance of interactivity for

the ability to make decisions about a mental model is

mentioned in several studies, e.g., by Meyer et al.

(2010). They went even further and defined a new

science of visually enabled reasoning, implying that

interactivity is its key enabler.

Visual clutter reduces understand ability of

diagrams as may be seen in Fig. 2. It shows the

(Eclipse, 2014) structure visualized in (Dependency

Visualization) tool. Some of the techniques to reduce

Fig. 2: Visual clutter caused by highly connected components

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

358

clutter were developed to cope with this problem:
bundling (Holten and Van Wijk, 2009), sampling
(Rafiei, 2005), or clustering (Chen and Liu, 2003).
From the well-developed taxonomy of these techniques
described by (Ellis and Dix, 2007) the following ones
are primarily relevant for us.

Firstly, visual clutter caused by the lines is often
reduced by edge bundling (Holten, 2006). Although this
approach reduces the clutter, it makes it difficult to
trace the dependencies between connected nodes
leading through the edge bundles. Secondly, visual
clutter can be reduced by the clustering of components
(nodes) so that multiple components are visually
represented by one node. Thus the number of nodes in
the whole diagram is reduced, though the connections
among them are usually still present. Clusters can either
be marked manually, in an automated way (Chiricota
et al., 2003; Mancoridis et al., 1998) or by a
combination of those approaches (McGee and
Dingliana, 2012). Thirdly, it is possible to reduce
clutter by dividing large diagram into smaller ones. But
in this case the user would lose the overview of the
whole system and the information about
interconnections among system parts. Diagrams of
hierarchical component models (Bures et al., 2006)
usually does not have this problem because they keep
the information about parts in their hierarchy but there
are lots of component models (Sun Microsystems,
2006; OSGi Alliance, 2009) with flat structure where
the described problem can occur. Lastly, the chosen
layout algorithm is an influencing factor to clutter since
it can ease (or hinder) orientation in both clustered
graphs (Feng, 1997) and the non-clustered ones (Hachul
and Jünger, 2007).

Existing tools related to the domain of component
diagram visualization were described in our previous
work (Holy et al., 2012c). One of the relevant tools is
SoftVision (Softvision, 2014; Telea and Voinea, 2004),
a software visualization framework which is able to
interactively explore relations between data structures.
It is a desktop application which offers a generic
interface for describing the language to be parsed as an
input. It thus requires initial investment in such
description creation. Its visual syntax is not well
known.

Works evaluating visualization approaches are also
related. The work of Forsell (2010) should be
highlighted as it provides a clear guide for similar
studies. Laidlaw et al. (2001) use a similar comparative
study of performance on 2D vector field visualization
methods. Evaluation of software visualization was also
described by Sensalire et al. (2009).

METHODOLOGY

The CoCAEx notation and approach: To visualize a
diagram efficiently we need to satisfy several and often
contradictory criteria. E.g., on one hand we need to
reduce the visual clutter mainly caused by the large

number of lines in the diagram, but on the other hand
we need to show as much information about
interconnections between the components as possible.

We are approaching this problem by utilizing
information hiding to reduce the visual clutter and
interactivity to display the hidden information on
demand. Displaying the hidden information on demand
may slow down the user during diagram exploration.
However, we believe that the speed up gained by
reduced clutter will be much higher.

Based on above desiderata we designed a suitable
set of techniques which deal with them; see earlier
works (Holy et al., 2012b, c) for details. Subsequently
we put them into one integrated approach. Because we
expect that the most useful features are the ones
reducing visual clutter, the presentation here focuses on
them-interface clustering, most connected components
removal and forming logical clusters. The drawback of
these methods is that details are hidden by default and
shown on demand which may potentially slow down
users during diagram exploration. However, we believe
that the speed up gained by reduced clutter will be
much higher; the description provided in next
subsections and the user study we performed aim to
provide support for this position.

The tool which implements the integrated
approach, called CoCAEx, is designed for easy and
quick exploration of component diagrams. The tool
provides standard features such as panning and
zooming, but also several more advanced interactive
techniques such as exploration of details, full-text
search, highlighting and Separated Components area
technique (SeCo).

The following subsections describe the key
features of the tool. Please refer to Fig. 3 where each
feature is marked with a capital letter in a circle and
respectively linked in the following text.

Interactive highlighting: Within the diagram area,
interactive highlighting is provided to help users
quickly identify components related to the selected one.
If the user clicks on a component (H), its required
connections are highlighted by red colour and the
provided ones by blue colour. All other components
and connections become visually less prominent. This
feature helps the user orientate themselves in diagrams
of highly interconnected applications and leads to
perceived diagram simplification (Fig. 4 and 5).

Another part of highlighting is a full-text search of
components’ names. It is provided, together with
component highlighting of the results, directly in the
visualized diagram.

Interface clustering: To reduce visual clutter, our
approach introduces modifications to the UML
component diagram. We tried to propose a modification
that resembles the original UML notation as much as
possible to allow for easy switching from existing tools
to the new one.

Res. J. App

Fig. 3: CoCAEx demonstration

Fig. 4: CoCoME application shown in CoCAEx

App. Sci. Eng. Technol., 11(4): 355-371, 2015

359

Fig. 4: CoCoME application shown in CoCAEx

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

360

Fig. 5: UML diagram showing the CoCoME application

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

361

(a) (b)

Fig. 6: (a): Differences between UML; (b): Our approach

(a) (b)

Fig. 7: (a): Visual clutter of Nuxeo-all connections shown; (b): Visual clutter of Nuxeo-7 most connected components removed

Fig. 8: Clustered interfaces exploration

The most important change is interface clustering.

In UML, each single interface provided by a component

is visualized as a “lollipop shape” and other

components that require this interface are connected to

this “lollipop shape” with a “socket shape”. Our

approach on the contrary groups all the respective

interfaces of one component into one symbol (i.e., only

one “lollipop” and one “socket” are drawn). The

consequence is that for each pair of dependent

components, only one connection is needed to display

the relationship between all the respective provided and

required interfaces. This feature is visualized in Fig. 6.

In this example, there are two required interfaces (Iface

C and Iface D) for Component Q that is provided by

Component G displayed as separated “lollipops”.

Instead, our approach shows only one connection (one

“lollipop” and one “socket”). It groups Iface C and

Iface D to one graphical element. Names of the

interfaces are not shown and can be displayed

interactively on demand. When there is only one

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

362

connection, e.g., Iface A between Component G and

Component T, our approach and UML provides the

same visual notation, except our notation hides

interface names (Fig. 7).
A clustered interface, as mentioned above, can be

explored simply by mouse click. CoCAEx then shows
the interfaces involved in the connection, as shown in
the green tooltip in Fig. 8.

The interface clustering effect on clutter reduction
is visually apparent in Fig. 4 and quantified in Table 1.
It shows several software systems with components
having large numbers of connections. The table lists
one system per a line with columns denoting its number
of components, clustered and non-clustered connections
among the components and the clustering effect that
indicates the connections reduction ratio between
clustered and non-clustered option. While non-clustered
connections represent e.g., the UML notation which
connects separately each individual provided-required
interface pair, clustered connections collapse all
connections between two components into two sets: all
provided interfaces and all required interfaces.

Separated components area: We performed several
experiments focused on removing the most connected
components from a diagram performed on systems
listed in Table 1. These experiments tried to examine
the correlation between the number of removed
components from the graph and the number of
consequently removed lines. In one of the experiments
only 7 (Nuxeo, 2014) components have been removed
from the diagram area leading to 241 and 431 lines
remaining in the graph for the clustered and non-
clustered versions, respectively. Therefore, the graphs
were reduced by 69% of lines in the clustered and 65%
of lines in non-clustered version. Visual effect of the
results is shown in Fig. 7a and b, using circle layout for
clarity. These numbers show that by removing the most
connected components, significant visual clutter
reduction may be achieved.

Based on these experiments and in line with the

aim to keep the information about component

interconnections available even when such highly

connected nodes have been removed from the diagram,

we developed a new technique called the Separated

Components area (SeCo). The SeCo technique reduces

visual clutter by removing components (e.g., those with

a large number of connections) from the main diagram

into a separated area placed on the side of the tool’s

window (a right sidebar in Fig. 3). When a user moves

components from the main diagram to this area, the

lines between these components and the remaining ones

are elided.

Several other features are connected with SeCo.

The area is structured into a list of items. Each item

consists of clustered connections (indicated by the mark

(T) in Fig. 3), components (U) and one corresponding

Symbol (S). Connections are clustered into two sets

Table 1: Several systems with the number of components and connections

System Components Clustered

Non

clustered

Clustering

effect (%)

Nuxeo (2014) 202 698 1425 48

CoCoME (2014) 37 125 188 66

OpenWMS (2014) 65 232 642 36

Eclipse (2014) 378 533 1079 49

(T): all provided connections and all required

connections (displayed as “lollipops” and “sockets” to

resemble standard UML). Numbers inside the clustered

connections represent the number of elements clustered

in the given symbol. It is a design which goes beyond

UML capabilities.

The purpose of the graphical symbols-icons is-to

create clear and easily recognizable keys which

uniquely identify each of the items within the SeCo

area. These symbols can be used in the diagram area to

represent connection between a given component and

the corresponding item placed in SeCo area (S). They

are shown as small rectangles (which we call

“delegates”) neighbouring the displayed components

(K).

Typically, users move components to SeCo area

when they want to mark them as “familiar ones” and

concentrate on the rest of the system. For this reason, it

makes sense to remove all connecting lines to reduce

visual clutter and to enable easy exploration of other

system parts. Also very often, only a small number of

components are connected to a large number of other

components. Such components are often, among

developers, informally called “God Objects”

(Fig. 2). This is another kind of the best candidates for

removal to SeCo, because such action significantly

reduces the number of lines from the graph. For

instance, a user may displace a component

implementing a logger. Such a component is probably

used by most of components in the system and its

displacement reduces the diagram complexity. It is also

usually not necessary to show such components in a

diagram, because it is actually not important for a user.

Forming logical clusters: It is possible that a particular

functionality of the system is implemented by a group

of components. Clarity of the diagram is therefore

enhanced if such groups are removed from a diagram

and replaced by a simpler element. The SeCo part of

our approach therefore provides the concept of

“groups” to handle such situations, indicated by the

Mark (M) in Fig. 3.

Any component from the diagram area can be

added to an existing item (a component or a group) in

SeCo. This is achievable by the right-click action on a

component in the diagram area, as shown in Fig. 9. A

context menu appears and a user can select the symbol

which belongs to the item in SeCo. If a user is not sure

what an item with corresponding symbol contains, there

is a possibility to expand such an item directly in the

context menu as shown for the red group.

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

363

Fig. 9: Adding components from diagram to SeCo groups

Fig. 10: Showing the “core” group as a node

Fig. 11: An outline and properties view of IBM rational software architect

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

364

The group in SeCo contains a list of components

and is represented by one symbol, as shown by the

heart symbol near the Mark (M) in Fig. 3. Logical

clusters can be formed and displaced from the diagram

to reduce its visual complexity. When the cluster is

displaced, a user can continue with studying the

remaining diagram. All connections to any of the

components in such group use a common delegate in

the diagram. Purpose of sharing the delegate is again

the desire for space saving.

Besides the representing symbol, any group can

also have a name. This helps giving the clusters human-

understandable semantics better than using only

symbols that are primarily for showing elided

connection lines.

When a logical cluster of components is formed,

there is a possibility to show the whole group which it

represents as a diagram node in the diagram area. It is

shown in Fig. 10. This allows a user to see connections

of this group with the rest of the content in the diagram

area directly without any additional interaction.

Compared to single component visualization, we

can see that there are additional icons in the symbol’s

visual representation in the diagram area.

The first one serves for expanding the group’s

graphical representation from a symbol to a list of

components. The list is shown in the diagram area

inside a group box. Individual components inside the

expanded list are equally interactive as when shown

separately. It means a user can use highlighting of its

required and provided interfaces. The second one (right

arrow) moves the group back to SeCo. The third one

(red cross icon) removes the group and shows the

individual contained components in the diagram area.

The group shown in the diagram area can also use

highlighting of required and provided components.

The described approach of forming logical clusters

allows users to persistently enrich a diagram by its own

point of view on how components should be grouped

into individual features or parts. It is suitable for

clusters of components a user is interested in and thus

wants to keep them together to easily see their

surroundings. Alternatively, this feature can be used for

components a user is not interested in and wants to keep

them together because of their hiding and consequential

clutter reduction. When a user finishes diagram

exploration and creates the desired clusters, it is then

possible to show them in the diagram area and thus

provide a high level overview of the system on a higher

level of detail than for individual components. Also the

visual clutter caused by connections would likely be

highly reduced.

Implementation: CoCAEx, 2014 is a web-based tool

able to automatically reverse engineer a whole

component-based application implemented in a

supported component model. It uses the ComAV

(Snajberk et al., 2012) platform to parse the distribution

packages of existing components of an application into

a graph based representation. After the ComAV

platform creates the model of the application, CoCAEx

shows the application diagram in the web page. The

front end of CoCAEx uses HTML5 technologies to

provide modern and easily extensible user interface.

The UML approach: As has been said, our approach

tries to use good parts of UML and propose improved

notation implemented in an interactive tool. This

decision has been taken as UML is an industry

acceptable standard and it is widely used.

A lot of tools implement UML with certain set of

interactive features. Typical ones are scrolling, panning,

zooming, search or filtering. While it makes the

navigation better than with the diagram printed on the

paper, it still relies on the statical nature of a diagram

keeping its original pros and cons. Therefore, one of the

state-of-the-art UML tools should be selected to

objectively investigate its usability; this is not an easy

task as there are a lot of tools with large (and not fully

comparable) sets of features.

For the evaluation of our approach, from the

currently most used tools (mentioned in above section)

we chose IBM Rational Software Architect (2014)

(RSA). The reason for selecting RSA is that it can be

considered as the most advanced, industry-strength tool

with a lot of additional features and widely used by the

biggest software houses. In other words, we decided to

choose the most challenging competitor to compare

with CoCAEx.

Besides all standard features included in other

tools, RSA supports some advanced ones that allow

users to manipulate the diagram, like changing the

layout of nodes, changing the line routing and

modifying the look of components and interfaces.

Another added value is in its “properties view”

displayed at the bottom of the screen; Fig. 11. This

view shows all the details about components and

relations and, most importantly, can be used to navigate

to related components. For example, the

“Relationships” tab shows a list of all elements that use

or are used by a given component. This list clearly

specifies which kind of relation is used and which

components are related. Each relation line contains a

link which can be used for acquiring more information

about the line.

User study: In order to find out to what degree of

interactivity is useful or which techniques used in

CoCAEx approach are most beneficial for shortening

the time needed for exploring the structure of complex

component-based applications, we performed a

controlled user study. This section provides the details

of its goal and mechanics, while the following sections

describe and discuss the results.

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

365

Goal of the study: This study evaluates whether it is

faster to analyse the structure of component-based

applications interactively with the CoCAEx notation

and tool rather than to study the structure with one of

the good state-of-the-art UML tool, in particular RSA.

Our null hypothesis is that the user performance is

approximately the same. This knowledge of the effects

of the approach is important because the level of

interactivity used in CoCAEx is high and could

negatively affect the user’s performance while he/she

collects multiple detailed information, specifically

because a lot of this information is hidden and revealing

it requires user interaction.

In the study we are using two different tools for

experiments. Ideally, our notation as well as standard

UML notation would be tested in one tool to use

exactly the same look and feel for both notations as

well as the same basic framework of user interaction.

However, this was not possible as CoCAEx cannot be

switched to standard UML notation and our notation is

obviously not implemented in RSA. Integration of one

of the notations to the opposite tool is technically

difficult. For that reason, we decided to perform the

study with two tools and mitigate the possible problems

caused by their differences by a careful design of the

experiment procedure.

The study simulated the activities performed

during one step of architecture analysis. These activities

are focused on collecting knowledge about

components’ features, dependencies and overall context

consisting of related components. The concrete set of

tasks used in the study, which was based on those

activities, is discussed thoroughly further below.

Participants: Twelve participants were recruited from

two different universities. All participants were young

software engineers and all were academics or Ph.D.

candidates (the use of academics and Ph.D. candidates

was encouraged by Sensalire et al. (2009). All were

proficient users of computers and had sufficient

knowledge of UML to fully understand the presented

diagrams and they had also proficiency in analysis of

component-based structures and applications.

Apparatus: The hardware used in the study consisted

of standard PC (Intel Core i5 at 2.8 GHz with 8 GB

RAM), 24 inches LCD display (resolution 1920×1080

pixels), PC keyboard and optical mouse with 2 buttons,

running Windows 7.

Participants used RSA (version 8) and CoCAEx

Tool (2014) (version 0.3) in the study. Although RSA is

currently at version 9, there are no new features

introduced in eclipse client, which would affect results

of our study. Both tools were running smoothly on the

selected hardware.

During the study, users were analysing the

Common Component Modeling Example application

CoCoME (CoCoME, 2014; Rausch et al., 2008) -an

information system for supermarket chains developed

originally with the aim of comparing different

approaches to component-based software modelling.

The CoCoME application, which represents a medium-

size application, consists of about 40 components

divided into three main parts. First is a cash desk,

including barcode scanners, credit card readers, etc. The

second part is a store back office server and a store

client. Finally, the chain part consists of an enterprise

server and client applications. For the purposes of the

test we have used our own implementation of CoCoME

(available at CoCoME implementation in OSGi (2014))

in the OSGi component model (OSGi Alliance, 2009) -

the diagrams in Fig. 4 and 5 visualize the structure of

this CoCoME implementation in CoCAEx and UML,

respectively.

The UML diagram (in RSA) of the CoCoME

application can be seen in Fig. 5. There are components

containing names, additional details and large number

of non-clustered connections. If we compare this Figure

to CoCoME shown in CoCAEx application (Fig. 4), we

can see that interface clustering used in CoCAEx

reduced the number of connections. Also details of

components hiding saves space in the diagram area.

Design: The study was organized as one factor (with

two levels) within-subject design. The independent

variable was the used analytical tool. The order of tools

was counter balanced and the group effect

(asymmetrical transfer of skills from tool one to tool

two) was evaluated.

The main measure was speed, measured as a

number of seconds needed to accomplish each task.

Procedure: The test was performed at two locations

with the same procedure. At each location, the

experiment was performed in a dedicated room where

participants were not disturbed. Before the experiment

was started, participants adjusted the position of the

display and the mouse to feel comfortable.

The moderator of the experiment first explained the

user interface of the first tool. The experiment began

with a training session. In the training session

participants were asked to accomplish 5 tasks very

similar to those they will perform in the actual

experiment, but using visualized structure of different

small-size application. During the training session, the

moderator helped participants to accomplish all tasks if

necessary. The goal was to let participants get familiar

with the first approach, get used to the experiment

procedure and minimize any learning effects.

Specifically, we focused on minimization of impact of

different complexity of tools on the results of the study.

Namely, in case of RSA, we gave hints to users of what

features they will need in the study. This should prevent

a situation when the user gets lost in large number of

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

366

features provided by RSA. The training lasted 15-20

min and it ended when the participant felt confident and

familiar with both tools and able to perform all types of

tasks used in this user study.

Training was followed by the experiment session

with the first tool. During the experiment session,

participants were asked to proceed as quickly as

possible. All tasks were performed so that the right

result was obtained in the end. Between each task,

participants were allowed to take a short break. After

the sessions with the first tool the same procedure was

repeated for the second tool. The whole study lasted

about 1 h.

Participants accomplished 5 tasks. These were

given to participants as follows:

T1 : Which components use interfaces provided by

CoCoME data-Impl? The task was focused on

analysis of the parts of the system which will be

influenced if some particular component is

changed.

T2 : Which components are not from CoCoME

core (are third party)? The task was focused on

analysis of the system structure, mainly

discovery of the core of the system and usage of

the third party components in the system.

T3 : Which packages need CoCoME data Impl

from CoCoME data? The task was focused on

analysis of the relation between two components

in the system.

T4 : Which components do not require or provide

interfaces to any other components (are

unconnected)? The task was focused on analysis

of unconnected components that are suspicious,

because they are probably using some non-

standard way of communication with other

components.

T5 : Which components require or provide

interfaces to any of cash desk components in

CoCoME? The task was focused on analysis

how a particular part (usually feature) of the

system is connected with the rest of the system.

The tasks were defined based on our experience

with the structure of component-based applications and
based on hints obtained during interviews with several
software engineers from local software companies.
Individual tasks are typical tasks used iteratively in
global task that deals with the question of what is the
structure of application and how particular components
are integrated in the CoCoME application. One has to
find out what these components offer and require and
uncover their ties to other components, simulating the
activities performed during one step of the architecture
analysis.

Two questionnaires were given to participants

during the test. At the beginning of the test, participants

were asked about the experience with UML diagrams

and UML editors. After the data collection, participants

completed a questionnaire investigating their subjective

judgment about the used approaches.

RESULTS AND DISCUSSION

This section provides detailed results of the study

for each approach and their comparison. As the reader

may notice, the results differ greatly depending on the

participant. This was caused by individual perception

and orientation abilities. A lot of attention was paid to

preparing all participants thoroughly in the above

section. Task completion times of all participants for

each task and basic statistics of individual tasks are

presented in Table 2. Comparison of mean times of

individual tasks is in Fig. 12a. Detailed comparison of

average, median, minimal and maximal times is in

Fig. 12b.

(a) (b)

Fig. 12: (a): Comparison of average times needed to accomplish the tasks in RSA and in CoCAEx; (b): Minimum and maximum

times with marked medians (black lines) needed to accomplish the tasks in RSA and in CoCAEx

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

367

Table 2: Time (min: sec) measured for each participant and each task. Together with sum of times for all tasks and statistical measures

Participant

RSA

--

CoCA-Ex

--

T1 T2 T3 T4 T5 All T1 T2 T3 T4 T5 All

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

00:33

02:03

01:05

01:09

03:35

00:54

00:26

00:50

00:45

00:57

00:40

00:27

00:39

00:30

00:30

00:32

00:30

00:26

00:32

00:32

00:49

00:27

00:23

00:37

01:34

01:45

01:18

00:28

04:59

00:21

00:27

01:57

02:15

01:31

01:34

01:25

01:07

01:38

01:47

03:02

07:06

01:02

01:53

00:55

01:43

01:17

01:41

01:11

03:47

04:55

03:24

03:23

04:37

03:26

03:22

03:36

03:52

03:31

04:15

03:40

07:40

10:51

08:04

08:34

20:47

06:09

06:40

07:50

09:24

07:43

08:33

07:20

00:23

00:26

00:23

00:16

00:41

00:25

00:46

00:22

00:38

00:14

00:53

00:30

00:29

00:41

00:34

00:46

01:51

00:55

00:29

00:49

00:50

00:23

00:18

00:33

01:00

00:31

00:28

00:11

00:32

00:15

00:22

00:23

00:26

00:21

00:13

00:20

00:30

00:12

00:05

00:05

00:11

00:05

00:10

00:05

00:05

00:06

00:04

00:05

01:06

02:11

01:39

00:58

01:52

00:39

00:47

00:57

00:58

00:54

00:41

01:07

03:28

04:01

03:09

02:16

05:07

02:19

02:34

02:36

02:57

01:58

02:09

02:35

Measure T1 T2 T3 T4 T5 All T1 T2 T3 T4 T5 All

Mean

Median

Min.

Max.

S.D.

01:07

00:52

00:26

03:35

00:51

00:32

00:31

00:23

00:49

00:07

01:38

01:32

00:21

04:59

01:10

02:02

01:39

00:55

07:06

01:37

03:49

03:38

03:22

04:55

00:30

09:08

07:57

06:09

20:47

03:42

00:30

00:26

00:14

00:53

00:12

00:43

00:38

00:18

01:51

00:23

00:25

00:23

00:11

01:00

00:12

00:09

00:05

00:04

00:30

00:07

01:09

00:58

00:39

02:11

00:28

02:56

02:36

01:58

05:07

00:52

For statistical analysis of the results we have used

the repeated measures ANOVA (Analysis of Variance)

(MacKenzie, 2012). We report the results in F-statistics

notation FX,N = V, p<α where X is number of factors

considered in the study, N is number of participants in

between-subject design (note that correction is applied

in our case due to the within-subject design). If value

V≤1 then it is impossible for the means of the tested

approaches to be significantly different. The amount V

rising above 1 is an indication of the size of the

difference in the means of the tested approaches. If the

null hypothesis is true then p is the probability of

obtaining the observed data. In other words, if the value

of p is lower than confidence level α (α is typically

0.05) then the difference in the means of the tested

approaches are unlikely to occur in the view of the null

hypothesis.

From this follows that we can reject the null

hypothesis when V>1 and p<0.05. When V≤1 or p≥0.05

were port that the difference in means of the tested

approaches is not significant (shortened to “ns”), in

such case the null hypothesis cannot be rejected.

In the following subsections we evaluate the null

hypothesis separately for each task. Later, in the

summary, we evaluate the null hypothesis for all tasks

together.

Task T1: Which components use interfaces provided

by CoCoME data-Impl? There was a significant

difference in speed between RSA and CoCAEx (F1,11 =

5.758, p<0.05). The average speed for RSA was 67 sec

and for CoCAEx 29.75 sec (2.25× faster than RSA).

The group effect was not detected.

In both cases, the users searched for the component

and then they analysed its provided interfaces. For

RSA, the analysis of provided interfaces took longer

time, while for CoCAEx this information was

immediately visible, when the component was selected.

Task T2: Which components are not from CoCoME

core (are third party)? There was no significant

difference in speed between RSA and CoCAEx

(F1,11 = 2.327, nsec). The average speed for RSA was

32.25 sec (1.34× faster than CoCAEx) and for CoCAEx

43.17 sec.

This was the only task where RSA was faster than

CoCAEx, but not significantly. With CoCAEx, the

users were searching for the components in the graph,

which took them additional time to skim through the

graph. On the other hand, with RSA, the users searched

for the components in the list in Outline window,

Fig. 11, which was very quick.

Task T3: Which packages need CoCoME data Impl

from CoCoME data? There was a significant

difference in speed between RSA and the CoCAEx

(F1,11 = 12.954, p<0.05). The average speed for RSA

was 97.83 sec and for CoCAEx 25.17 sec (3.89× faster

than RSA). The group effect was not detected.

In this task CoCAEx allowed fast analysis of

imported/exported packages between two components,

which is not immediately visible in the graph, but it is

shown as popup when mouse is over the

interconnection between two components. In RSA,

participants usually used the project tree and compared

full lists of exported/imported packages.

Task T4: Which components do not require or

provide interfaces to any other components (are

unconnected)? There was a significant difference in

speed between RSA and CoCAEx (F1,11 = 14.905,

p<0.05). The average speed for RSA was 121.83 sec

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

368

and for CoCAEx 8.58 sec (14.20× faster than RSA).

The group effect was not detected.

In this task the difference in performance between

RSA and CoCAEx was the biggest. This was due to the

fact that with RSA the participants had to find out the

unconnected components manually, however CoCAEx

allowed semiautomatic extraction and listing of all

unconnected components in the panel on the right.

Task T5: Which components require or provide

interfaces to any of cash desk components in

CoCoME? There was a significant difference in speed

between RSA and CoCAEx (F1,11 = 516.403, p<0.05).

The average speed for RSA was 229 sec and for

CoCAEx 69.08 sec (3.31× faster than RSA). The group

effect was not detected.

This was the most complex task which focused on

searching of multiple CashDesk components and

analysis of interface connections between these

components and rest of the components in the CoCoME

application. With RSA, this task required searching of

CashDesk components in the graph and iteration

through their provided/required inter-faces. With

CoCAEx, there were two approaches how to achieve

this task, both of them took similar time. In the first

case, the participants analysed CashDesk components’

interfaces in the graph, similarly as in the Task 1.

Alternatively, participants extracted CashDesk

components to the SeCo area (right sidebar) into one

group or individually and then highlighted all

components connected through required/provided

interfaces.

Subjective evaluation: We also asked participants

about the orientation in the visualized structure of the

CoCoME application, the level of comfort while

working with the tools and any other suggestions.

All participants described the orientation in

structure of the CoCoME application visualized in our

notation as better. Further, all participants stated that it

was more comfortable to solve all tasks in CoCAEx

than in RSA. Four participants stated that the visual

highlighting of the components related to the selected

component significantly improved their orientation in

the structure of the application. Three participants

suggested allowing the selection of more than one

component and visually highlighting components

related to all selected components. Two participants

would like to use the same approach as used in

CoCAEx for components also for classes and class

diagrams.

Discussion and summary: The measured times needed

to accomplish each task by each participant

demonstrate that the tasks T1, T3, T4 and T5 were

accomplished on average significantly faster in the

CoCAEx Tool (2014) than in RSA. The only exception

is the task T2, which the participants accomplished on

average faster with RSA. Overall speed comparison

showed that the tasks with the CoCAEx Tool (2014)

were accomplished on average 3× faster than with

RSA; Fig. 12a. In the majority of tasks, the maximum

values in CoCAEx were lower than the median values

for RSA; Fig. 12b. These results show that even the

slower CoCAEx users were faster than at least half of

the users in RSA for majority of tasks. The median

values are averagely placed at first fifth of the

minimum-maximum range.
The results indicate that the structure of the

CoCoME application visualized in our notation is less
cluttered which leads to faster orientation in the
structure of the application. Further, the visual
highlighting and interaction features of components
related to the selected component provided by CoCAEx
allowed participants to visually detect the related
components much faster.

From these facts, we can conclude that the abilities
to interact with the visualized structure of component-
based software systems and to provide visual cues to
ease identification of related components is better with
CoCAEx. There was a significant difference in speed
between RSA and CoCAEx for summed accomplished
task times (F1,11 = 46.581, p<0.05). Results for
individual and summed accomplished task times allows
us to reject the null hypothesis, i.e., that both tools
provide the same speed of analysis of component-based
application.

From the subjective point of view the participants
perceived the orientation in our notation as better in
comparison to the standard UML notation. They also
subjectively perceived comfort of work in CoCAEx as
better in comparison to RSA. All participants also
answered that CoCAEx provides a clearer diagram that
is more readable and understand-able. They mentioned
two main reasons: highlighting and simplicity of use.

There is a combination of two factors influencing
participants’ performance in each task, interactivity of
tools and visual notation. This fact means that we
cannot exactly separate impact of interactivity and the
notation. As a consequence, we cannot be sure whether
better performance in certain tasks was caused more by
the interactivity or by the notation. For instance, we
could think that a task was performed faster due to an
interactive feature (e.g., usage of interface clustering)
while in fact a better colour encoding or contrast helped
a user more.

CONCLUSION AND RECOMMENDATIONS

This study presented key parts of our approach for

component application visualization and described a

user study that compared its performance in component

diagram analysis with the UML component diagram.

Our notation was implemented and tested in the

research proof of the concept CoCAEx Tool (2014),

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

369

while IBM Rational Software Architect (2014) was

selected to test standard UML and certain interactivity

features. This software was chosen also because it is

widely adapted by industry and largely used by the

world biggest software houses.
In the user study, 12 participants were tested in a

within-subject test on both tools. The participants
accomplished 5 tasks, related to the activities needed in
software architecture analysis and their speed to
accomplish each task with each tool was measured. In
addition, we collected subjective evaluation of the tool
usability.

The data obtained shows that participants working
with CoCAEx Tool (2014) and its improved notation
are comparatively fast of faster (up to 3 times) than
participants using standard UML in RSA.

We believe that results of this user study confirm
that the proposed interactive visualization provides
better user experience, leading to more efficient
exploration of complex component-based applications.
Features such as highlighting or grouping help users
perform faster the exploration while the increased need
for interaction does not introduce significant slowdown.

The present implementation of the CoCAEx
approach allowed us to perform the validation
experiments presented in this study. In our future work,
we will also consider implementing the CoCAEx as
(Plugin, 2014) to a known tool, such as IBM RSA. This
would allow us to compare the results without being
affected by differences between tools.

We believe that some of the presented ideas can be
generalized to be used in other domains (e.g., UML
Class diagrams, bank transfers graphs, server
interconnections graphs) where one suffers from visual
clutter caused by the large number of nodes and
connection lines. Thus one direction of our future work
will be providing a generalized concept of the ideas and
techniques presented in this study.

ACKNOWLEDGMENT

The study was supported by European Regional

Development Fund (ERDF), project “NTIS-New

Technologies for the Information Society”, European

Centre of Excellence, CZ.1.05/1.1.00/02.0090, by the

UWB grant SGS-2013-029 Advanced Computer and

Information Systems and by the Aktion OE/CZ grant

number 68p5.
We would like to also thank Jaroslav Snajberk and

Eduard Chromik for the help with the tasks and study
design.

REFERENCES

Bures, T., P. Hnetynka and F. Plasil, 2006. SOFA 2.0:

Balancing advanced features in a hierarchical
component model. Proceeding of the 4th
International Conference on Software Engineering
Research Management and Applications, pp:
40-48.

Byelas, H., E. Bondarev and A. Telea, 2006.
Visualization of areas of interest in component-
based system architectures. Proceeding of the 32nd
EUROMICRO Conference on Software
Engineering and Advanced Applications, pp:
160-169.

Caserta, P. and O. Zendra, 2011. Visualization of the
static aspects of software: A survey. IEEE T. Vis.
Comput. Gr., 17(7): 913-933.

Chen, K. and L. Liu, 2003. A visual framework invites
human into the clustering process. Proceeding of
15th International Conference on Scientific and
Statistical Database Management, pp: 97-106.

Chiricota, Y., F. Jourdan and G. Melanc, 2003.
Software components capture using graph
clustering. Proceeding of the 11th IEEE
International Workshop on Program
Comprehension (IWPC ’03), pp: 217.

CoCAEx Tool, 2014. Retrieved form: http://relisa-
dev.kiv.zcu.cz:8083/efpcocaex/. (Accessed on:
Sep. 29, 2014)

CoCoME, 2014. Retrieved form: http://www.
cocome.org/. (Accessed on: Sep. 29, 2014)

CoCoME Implementation in OSGi, 2014. Retrieved
form: http://relisa-
dev.kiv.zcu.cz/data/experiments/cocome-
userstudy/. (Accessed on: Sep. 29, 2014)

Dumoulin, C. and S. Gerard, 2010. Have multiple
views with one single diagram! a layer based
approach of UML diagrams. Research Report
Inria-00527850, Institut National de Recherche en
Informatique et en Automatique, Universite des
Sciences et Technologies de Lille (October, 2010).

Eclipse, 2014. Retrieved form:
https://www.eclipse.org/. (Accessed on: Sep. 29,
2014)

Ellis, G. and A. Dix, 2007. A taxonomy of clutter

reduction for information visualisation. IEEE

T. Vis. Comput. Gr., 13(6): 1216-1223.

Enterprise Architect, 2014. Retrieved form:

http://www.sparxsystems.com.au/ (Accessed on:

Sep. 29, 2014).

Feng, Q., 1997. Algorithms for drawing clustered

graphs. Ph.D. Thesis, Department of Computer

Science and Software Engineering, University of

Newcastle.

Forsell, C., 2010. A guide to scientific evaluation in

information visualization. Proceeding of 17th

International Conference on Information

Visualisation, pp: 162-169.

Hachul, S. and M. Jünger, 2007. Large-graph layout

algorithms at work: An experimental study.

J. Graph Algorithms Appl., 11(21): 345-369.

Holt, R., 2002. Software architecture as a shared mental

model. Proceeding of 1st ASERC Workshop on

Software Architecture.
Holten, D., 2006. Hierarchical edge bundles:

Visualization of adjacency relations in hierarchical
data. IEEE T. Vis. Comput. Gr., 12(5): 741-748.

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

370

Holten, D. and J.J. Van Wijk, 2009. Force-directed
edge bundling for graph visualization. Comput.
Graph. Forum, 28(3): 983-990.

Holy, L., K. Jezek, J. Snajberk and P. Brada, 2012a.
Lowering visual clutter in large component
diagrams. Proceeding of International Conference
on Information Visualization. IEEE Computer
Society, Washington, DC, USA, pp: 36-41.

Holy, L., J. Snajberk and P. Brada, 2012b. Lowering
visual clutter of clusters in component diagrams.
Proceeding of International Conference on
Software Engineering Advances, IARIA. Red
Hook, NY, USA, pp: 304-307.

Holy, L., J. Snajberk and P. Brada, 2012c. Evaluating
component architecture visualization tools-criteria
and case study. Proceeding of GRAPP/IVAPP,
SciTePress, pp: 737-742.

IBM Rational Software Architect, 2014. Retrieved
form:
http://www.ibm.com/developerworks/rational/prod
ucts/rsa/. (Accessed on: Sep. 29, 2014)

Johnson-Laird, P.N., 1983. Mental models: Towards a
Cognitive Science of Language, Inference, and
Consciousness. Harvard University Press,
Cambridge, MA.

Laidlaw, D.H., J.S. Davidson, T.S. Miller, M. da Silva,
R.M. Kirby, W.H. Warren and M. Tarr, 2001.
Quantitative comparative evaluation of 2d vector
field visualization methods. Proceeding of the
Conference on Visualization (VIS ’01).
Washington, DC, USA, pp: 143-150.

MacKenzie, I.S., 2012. Human-computer Interaction:
An Empirical Research Perspective. Elsevier
Science, Burlington.

Magicdraw, 2014. Retrieved form:
http://www.nomagic.com/ (Accessed on: Sep. 29,
2014)

Mancoridis, S., B.S. Mitchell, C. Rorres, Y. Chen and
E.R. Gansner, 1998. Using automatic clustering to
produce high-level system organizations of source
code. Proceeding of the 6th International
Workshop on Program Comprehension (IWPC
’98). Washington, DC, USA, pp: 45.

McGee, F. and J. Dingliana, 2012. Visualising small
world graphs-agglomerative clustering of small
world graphs around nodes of interest. In: Richard,
P., M. Kraus, R.S. Laramee and J. Braz (Eds.),
GRAPP & IVAPP, 2012: Proceeding of
International Conference on Computer Graphics
Theory and Applications and International
Conference on Information Visualization Theory
and Applications. SciTePress, Rome, Italy, pp:
678-689.

Meyer, J., J. Thomas, S. Diehl, D.A. Keim and
B. Fisher, 2010. From visualization to visually
enabled reasoning. In: Hagen, H. (Ed.), Scientific
Visualization: Advanced Concepts. Vol. 1 of
Dagstuhl Follow-Ups, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, pp:
227-245.

Moody, D. and J. van Hillegersberg, 2009. Evaluating

the visual syntax of UML: An analysis of the

cognitive effectiveness of the UML family of

diagrams. In: Gasevic, D., R. Lammel, E. Van Wyk

(Eds.), SLE, 2008. LNCS 5452, Springer-Verlag,

Berlin, Heidelberg, pp: 16-34.

Morris, S. and G. Spanoudakis, 2001. UML: An

evaluation of the visual syntax of the language.

Proceeding of the 34th Annual Hawaii

International Conference on System Sciences.

Washington, DC, USA, pp: 10.

Nuxeo, 2014. Retrieved form: http://www.nuxeo.com/

(Accessed on: Sep. 29, 2014)

Object Management Group, 2009. UML Superstructure

Specification (2009).

OpenWMS, 2014. Retrieved form: http://www.

openwms.org/ (Accessed on: Sep. 29, 2014)

OSGi Alliance, 2009. OSGi Service Platform v4.2.

Core Specification, OSGi Alliance (2009).

Plugin, 2014. Dependency Visualization. Retrieved

form:

http://www.eclipse.org/pde/incubator/dependency-

visualization/. (Accessed on: Sep. 29, 2014)
Rafiei, D., 2005. Effectively visualizing large networks

through sampling. Proceeding of IEEE
Visualization (VIS, 2005), pp: 375-382.

Rausch, A., R. Reussner, R. Mirandola and F. Plasil,

2008. The Common Component Modeling

Example: Comparing Software Component

Models.1st Edn., LNCS 5153, Springer-Verlag,

Berlin, Heidelberg, pp: 1-3.

Sensalire, M., P. Ogao and A. Telea, 2009. Evaluation

of software visualization tools: Lessons learned.

Proceeding of 5th IEEE International Workshop on

Visualizing Software for Understanding and

Analysis (VISSOFT, 2009), pp: 19-26.

Snajberk, J., L. Holy and P. Brada, 2012. Comav-a

component application visualisation tool.

Proceeding of International Conference on

Information Visualization Theory and

Applications, SciTePress.

Softvision, 2014. Retrieved form:

http://www.win.tue.nl/vis1/home/lvoinea/soft/Soft

VisionManual.pdf. (Accessed on: Sep. 29, 2014)

Sun Microsystems, 2006. Enterprise Java Beans (TM).

Version 3.0, EJB Core, Sun Microsystems (2006).

Szyperski, C., 2002. Component Software: Beyond

Object-oriented Programming. 3rd Edn., Addison-

Wesley, ACM Press.

Telea, A. and L. Voinea, 2004. A framework for

interactive visualization of component-based

software. Proceeding of the 30th EUROMICRO

Conference. IEEE Computer Society, Washington,

DC, USA, pp: 567-574.

Visual Paragigm, 2014. Retrieved form:

http://www.visual-paradigm.com. (Accessed on:

Sep. 29, 2014)

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015

371

Wettel, R. and M. Lanza, 2007. Visualizing software

systems as cities. Proceeding of the 4th IEEE

International Workshop on Visualizing Software

for Understanding and Analysis. Society Press, pp:

92-99.

