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Abstract: As current software keeps growing in size and complexity, the means to visualize its structure become 
insufficient. Noticeably, standard UML diagrams and their implementations in the industrial tools can depict only 
diagrams of certain level of complexity. When the complexity rises above this level, the diagrams become no longer 
visually understandable and start to hinder analytical reasoning. This is mostly a problem of diagrams created during 
automated reverse-engineering processes. In this study we summarize and validate a new approach for software 
structure visualization which aims at supporting visual presentation of large software systems. It combines a 
notation derived from the UML component diagram with tool-supported interaction, utilizing features like hiding of 
unnecessary information that can be revealed on demand to reduce complexity of the diagrams. To validate the 
approach, we implemented an experimental tool that provides both the notation and interactive features. The main 
contribution of this study is an evaluation of the approach through a user study. The results of the user evaluation 
suggest that the proposed notation in combination with the interactive features allows users to gain insight into a 
visualized application faster in comparison to standard UML as supported by industrial tools. 
 
Keywords: Complexity, component diagrams, diagram interaction techniques, software visualization, UML, user 

study 

 
INTRODUCTION 

 
Modern software techniques such as component-

based software engineering (Szyperski, 2002) allow for 
rapid development of large applications. Although 
components have opened the way to build such 
applications, designing them is still a difficult task. 
When a legacy application is to be extended it is also 
difficult to reverse-engineer it and design its extensions. 
The main reason is that software applications can easily 
consist of hundreds or thousands of coarse-grained 
entities such as modules or components which makes it 
difficult to explore the structure of their bindings and 
create a mental model of the whole system. 

A user creates a mental model of a reverse-
engineered system from the perception, imagination 
and comprehension of discourse (Johnson-Laird, 1983; 
Holt, 2002). Although there are lots of tools (Enterprise 
Architect, 2014; MagicDraw, 2014; IBM Rational 
Software Architect, 2014; Visual Paragigm, 2014) 
helping with application design and reverse-
engineering, their support for understanding complex 
applications is still limited. One of the limiting factors 
is that the tools that build on standard Unified 

Modelling Language (UML) diagrams cannot cope with 
large diagrams well. The main problem is the need to 
provide enough detail and show the overall structure at 
the same time. Visual clutter is produced by large 
number of elements and lines. Static nature of UML 
then cannot hide any of the elements or lines as it is not 
possible to show it later on demand. Simply said, too 
many lines of component connections make 
visualization unreadable. 

The problem of visual clutter is on the general level 
illustrated in Fig. 1a. As it may be easily seen from the 
example, lines denoting component connections hinders 
orientation in the diagram. On the other hand, when 
detail is provided (so that, for example, a user is able to 
read an element name), it is difficult to trace 
dependencies from distant components. This case is 
shown in Fig. 1b. 

As an alternative, we have proposed a notation 
derived from the UML component diagram (Caserta 
and Zendra, 2011) and implemented it together with 
novel interaction features in a (CoCAEx (Complex 
Component Applications Explorer) 2014) tool. This 
tool uses improved representation of the application 
structure and its non-structural aspects (e.g., metrics) as 
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Fig. 1: (a): Overview of complex diagram; (b): Higher level of detail in complex diagram 



 

 

Res. J. App. Sci. Eng. Technol., 11(4): 355-371, 2015 

 

357 

well as the ability to interact with the visualized 

diagrams. Key parts of this approach were described in 

our previous works (Holy et al., 2012a, b). This new 

approach should fill the gap mainly in the field of 

component-based engineering where industrial tools 

suffer from the above mentioned insufficiency of UML. 

In this study we summarise the CoCAEx approach 

and present its validation study which was performed in 

order to find out whether it is faster to study the 

structure of component-based applications interactively 

rather than statically with one of the state-of-the-art 

UML tools. The study focuses on performance (time 

required to provide a correct answer) during application 

structure analysis tasks. 

 

LITERATURE REVIEW 

 

Software visualization is a well-established field of 

research. In this section we provide an overview of 

approaches, techniques and references closely related to 

our work. 

The Unified Modeling Language (UML) provides 

three groups of diagrams to model both static and 

dynamic features of software (Object Management 

Group, 2009), including the component diagram. The 

notation used in this diagram captures components and 

their static interconnections. The usability of UML 

notation has been studied by Moody and van 

Hillegersberg (2009) and Morris and Spanoudakis 

(2001). 

Research efforts related to visualization of software 

diagrams fall into two broad categories: displaying the 

structure and dealing with interactivity. Nowadays, the 

efforts to display diagrams are most commonly oriented 

to ex-tensions of the UML itself, not taking interactivity 

under consideration. However attempts to provide 

interactivity exist. For instance Dumoulin and Gerard 

(2010) introduced layers to support multiple views in 

one diagram and (Byelas et al., 2006) suggested the 

usage of coloured areas of interest to improve 

orientation in classical UML component diagrams. 

The work of Telea and Voinea (2004) on 

(interactive) visualization of component-based software 

is generic, but it does not provide many details about 

components themselves and can hardly be compared 

with UML. Wettel and Lanza (2007) visualized 

software as cities. They defined several visual 

properties of each visualized software element: three 

dimensions of a block (mapped to defined metrics), 

position, colour, colour saturation and transparency. 

This approach could be used for visualization of 

component application, but it does not provide details 

needed to gain full comprehension of the application 

structure. 

Interactivity should help primarily with the 

creation of a mental model, so that one will be able to 

reason about the architecture and make decisions. It is 

important to decrease the cognitive load, namely hide 

unnecessary details as (Holt, 2002) highlighted in 

several examples. The importance of interactivity for 

the ability to make decisions about a mental model is 

mentioned in several studies, e.g., by Meyer et al. 

(2010). They went even further and defined a new 

science of visually enabled reasoning, implying that 

interactivity is its key enabler. 

Visual clutter reduces understand ability of 

diagrams as may be seen in Fig. 2. It shows the 

(Eclipse, 2014) structure visualized in (Dependency 

Visualization) tool. Some of the techniques to reduce 

 

 
 

Fig. 2: Visual clutter caused by highly connected components 
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clutter were developed to cope with this problem: 
bundling (Holten and Van Wijk, 2009), sampling 
(Rafiei, 2005), or clustering (Chen and Liu, 2003). 
From the well-developed taxonomy of these techniques 
described by (Ellis and Dix, 2007) the following ones 
are primarily relevant for us. 

Firstly, visual clutter caused by the lines is often 
reduced by edge bundling (Holten, 2006). Although this 
approach reduces the clutter, it makes it difficult to 
trace the dependencies between connected nodes 
leading through the edge bundles. Secondly, visual 
clutter can be reduced by the clustering of components 
(nodes) so that multiple components are visually 
represented by one node. Thus the number of nodes in 
the whole diagram is reduced, though the connections 
among them are usually still present. Clusters can either 
be marked  manually,  in an automated way (Chiricota 
et al., 2003; Mancoridis et al., 1998) or by a 
combination of those approaches (McGee and 
Dingliana, 2012). Thirdly, it is possible to reduce 
clutter by dividing large diagram into smaller ones. But 
in this case the user would lose the overview of the 
whole system and the information about 
interconnections among system parts. Diagrams of 
hierarchical component models (Bures et al., 2006) 
usually does not have this problem because they keep 
the information about parts in their hierarchy but there 
are lots of component models (Sun Microsystems, 
2006; OSGi Alliance, 2009) with flat structure where 
the described problem can occur. Lastly, the chosen 
layout algorithm is an influencing factor to clutter since 
it can ease (or hinder) orientation in both clustered 
graphs (Feng, 1997) and the non-clustered ones (Hachul 
and Jünger, 2007). 

Existing tools related to the domain of component 
diagram visualization were described in our previous 
work (Holy et al., 2012c). One of the relevant tools is 
SoftVision (Softvision, 2014; Telea and Voinea, 2004), 
a software visualization framework which is able to 
interactively explore relations between data structures. 
It is a desktop application which offers a generic 
interface for describing the language to be parsed as an 
input. It thus requires initial investment in such 
description creation. Its visual syntax is not well 
known. 

Works evaluating visualization approaches are also 
related. The work of Forsell (2010) should be 
highlighted as it provides a clear guide for similar 
studies. Laidlaw et al. (2001) use a similar comparative 
study of performance on 2D vector field visualization 
methods. Evaluation of software visualization was also 
described by Sensalire et al. (2009). 
 

METHODOLOGY 
 
The CoCAEx notation and approach: To visualize a 
diagram efficiently we need to satisfy several and often 
contradictory criteria. E.g., on one hand we need to 
reduce the visual clutter mainly caused by the large 

number of lines in the diagram, but on the other hand 
we need to show as much information about 
interconnections between the components as possible. 

We are approaching this problem by utilizing 
information hiding to reduce the visual clutter and 
interactivity to display the hidden information on 
demand. Displaying the hidden information on demand 
may slow down the user during diagram exploration. 
However, we believe that the speed up gained by 
reduced clutter will be much higher. 

Based on above desiderata we designed a suitable 
set of techniques which deal with them; see earlier 
works (Holy et al., 2012b, c) for details. Subsequently 
we put them into one integrated approach. Because we 
expect that the most useful features are the ones 
reducing visual clutter, the presentation here focuses on 
them-interface clustering, most connected components 
removal and forming logical clusters. The drawback of 
these methods is that details are hidden by default and 
shown on demand which may potentially slow down 
users during diagram exploration. However, we believe 
that the speed up gained by reduced clutter will be 
much higher; the description provided in next 
subsections and the user study we performed aim to 
provide support for this position. 

The tool which implements the integrated 
approach, called CoCAEx, is designed for easy and 
quick exploration of component diagrams. The tool 
provides standard features such as panning and 
zooming, but also several more advanced interactive 
techniques such as exploration of details, full-text 
search, highlighting and Separated Components area 
technique (SeCo). 

The following subsections describe the key 
features of the tool. Please refer to Fig. 3 where each 
feature is marked with a capital letter in a circle and 
respectively linked in the following text. 

 
Interactive highlighting: Within the diagram area, 
interactive highlighting is provided to help users 
quickly identify components related to the selected one. 
If the user clicks on a component (H), its required 
connections are highlighted by red colour and the 
provided ones by blue colour. All other components 
and connections become visually less prominent. This 
feature helps the user orientate themselves in diagrams 
of highly interconnected applications and leads to 
perceived diagram simplification (Fig. 4 and 5). 

Another part of highlighting is a full-text search of 
components’ names. It is provided, together with 
component highlighting of the results, directly in the 
visualized diagram. 
 
Interface clustering: To reduce visual clutter, our 
approach introduces modifications to the UML 
component diagram. We tried to propose a modification 
that resembles the original UML notation as much as 
possible to allow for easy switching from existing tools 
to the new one. 



Res. J. App

Fig. 3: CoCAEx demonstration 

 

 

Fig. 4: CoCoME application shown in CoCAEx

 

 

App. Sci. Eng. Technol., 11(4): 355-371, 2015 

 

359 

 

Fig. 4: CoCoME application shown in CoCAEx 
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Fig. 5: UML diagram showing the CoCoME application 
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(a)                (b) 

 

Fig. 6: (a): Differences between UML; (b): Our approach  

 

 
 

(a)                                                                       (b) 

 

Fig. 7: (a): Visual clutter of Nuxeo-all connections shown; (b): Visual clutter of Nuxeo-7 most connected components removed 

 

 
 

Fig. 8: Clustered interfaces exploration 

 

The most important change is interface clustering. 

In UML, each single interface provided by a component 

is visualized as a “lollipop shape” and other 

components that require this interface are connected to 

this “lollipop shape” with a “socket shape”. Our 

approach on the contrary groups all the respective 

interfaces of one component into one symbol (i.e., only 

one “lollipop” and one “socket” are drawn). The 

consequence is that for each pair of dependent 

components, only one connection is needed to display 

the relationship between all the respective provided and 

required interfaces. This feature is visualized in Fig. 6. 

In this example, there are two required interfaces (Iface 

C and Iface D) for Component Q that is provided by 

Component G displayed as separated “lollipops”. 

Instead, our approach shows only one connection (one 

“lollipop” and one “socket”). It groups Iface C and 

Iface D to one graphical element. Names of the 

interfaces are not shown and can be displayed 

interactively on demand. When there is only one 
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connection, e.g., Iface A between Component G and 

Component T, our approach and UML provides the 

same visual notation, except our notation hides 

interface names (Fig. 7). 
A clustered interface, as mentioned above, can be 

explored simply by mouse click. CoCAEx then shows 
the interfaces involved in the connection, as shown in 
the green tooltip in Fig. 8. 

The interface clustering effect on clutter reduction 
is visually apparent in Fig. 4 and quantified in Table 1. 
It shows several software systems with components 
having large numbers of connections. The table lists 
one system per a line with columns denoting its number 
of components, clustered and non-clustered connections 
among the components and the clustering effect that 
indicates the connections reduction ratio between 
clustered and non-clustered option. While non-clustered 
connections represent e.g., the UML notation which 
connects separately each individual provided-required 
interface pair, clustered connections collapse all 
connections between two components into two sets: all 
provided interfaces and all required interfaces. 
 
Separated components area: We performed several 
experiments focused on removing the most connected 
components from a diagram performed on systems 
listed in Table 1. These experiments tried to examine 
the correlation between the number of removed 
components from the graph and the number of 
consequently removed lines. In one of the experiments 
only 7 (Nuxeo, 2014) components have been removed 
from the diagram area leading to 241 and 431 lines 
remaining in the graph for the clustered and non-
clustered versions, respectively. Therefore, the graphs 
were reduced by 69% of lines in the clustered and 65% 
of lines in non-clustered version. Visual effect of the 
results is shown in Fig. 7a and b, using circle layout for 
clarity. These numbers show that by removing the most 
connected components, significant visual clutter 
reduction may be achieved. 

Based on these experiments and in line with the 

aim to keep the information about component 

interconnections available even when such highly 

connected nodes have been removed from the diagram, 

we developed a new technique called the Separated 

Components area (SeCo). The SeCo technique reduces 

visual clutter by removing components (e.g., those with 

a large number of connections) from the main diagram 

into a separated area placed on the side of the tool’s 

window (a right sidebar in Fig. 3). When a user moves 

components from the main diagram to this area, the 

lines between these components and the remaining ones 

are elided. 

Several other features are connected with SeCo. 

The area is structured into a list of items. Each item 

consists of clustered connections (indicated by the mark 

(T) in Fig. 3), components (U) and one corresponding 

Symbol  (S).  Connections  are  clustered  into  two  sets 

Table 1: Several systems with the number of components and connections 

System Components Clustered 

Non 

clustered 

Clustering 

effect (%) 

Nuxeo (2014) 202 698 1425 48 

CoCoME (2014) 37 125 188 66 

OpenWMS (2014) 65 232 642 36 

Eclipse (2014) 378 533 1079 49 

 

(T): all provided connections and all required 

connections (displayed as “lollipops” and “sockets” to 

resemble standard UML). Numbers inside the clustered 

connections represent the number of elements clustered 

in the given symbol. It is a design which goes beyond 

UML capabilities. 

The purpose of the graphical symbols-icons is-to 

create clear and easily recognizable keys which 

uniquely identify each of the items within the SeCo 

area. These symbols can be used in the diagram area to 

represent connection between a given component and 

the corresponding item placed in SeCo area (S). They 

are shown as small rectangles (which we call 

“delegates”) neighbouring the displayed components 

(K). 

Typically, users move components to SeCo area 

when they want to mark them as “familiar ones” and 

concentrate on the rest of the system. For this reason, it 

makes sense to remove all connecting lines to reduce 

visual clutter and to enable easy exploration of other 

system parts. Also very often, only a small number of 

components are connected to a large number of other 

components. Such components are often, among 

developers,   informally   called   “God   Objects”   

(Fig. 2). This is another kind of the best candidates for 

removal to SeCo, because such action significantly 

reduces the number of lines from the graph. For 

instance, a user may displace a component 

implementing a logger. Such a component is probably 

used by most of components in the system and its 

displacement reduces the diagram complexity. It is also 

usually not necessary to show such components in a 

diagram, because it is actually not important for a user. 

 

Forming logical clusters: It is possible that a particular 

functionality of the system is implemented by a group 

of components. Clarity of the diagram is therefore 

enhanced if such groups are removed from a diagram 

and replaced by a simpler element. The SeCo part of 

our approach therefore provides the concept of 

“groups” to handle such situations, indicated by the 

Mark (M) in Fig. 3. 

Any component from the diagram area can be 

added to an existing item (a component or a group) in 

SeCo. This is achievable by the right-click action on a 

component in the diagram area, as shown in Fig. 9. A 

context menu appears and a user can select the symbol 

which belongs to the item in SeCo. If a user is not sure 

what an item with corresponding symbol contains, there 

is a possibility to expand such an item directly in the 

context menu as shown for the red group. 
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Fig. 9: Adding components from diagram to SeCo groups 

 

 
 

Fig. 10: Showing the “core” group as a node 

 

 
 

Fig. 11: An outline and properties view of IBM rational software architect 
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The group in SeCo contains a list of components 

and is represented by one symbol, as shown by the 

heart symbol near the Mark (M) in Fig. 3. Logical 

clusters can be formed and displaced from the diagram 

to reduce its visual complexity. When the cluster is 

displaced, a user can continue with studying the 

remaining diagram. All connections to any of the 

components in such group use a common delegate in 

the diagram. Purpose of sharing the delegate is again 

the desire for space saving. 

Besides the representing symbol, any group can 

also have a name. This helps giving the clusters human-

understandable semantics better than using only 

symbols that are primarily for showing elided 

connection lines. 

When a logical cluster of components is formed, 

there is a possibility to show the whole group which it 

represents as a diagram node in the diagram area. It is 

shown in Fig. 10. This allows a user to see connections 

of this group with the rest of the content in the diagram 

area directly without any additional interaction. 

Compared to single component visualization, we 

can see that there are additional icons in the symbol’s 

visual representation in the diagram area. 

The first one serves for expanding the group’s 

graphical representation from a symbol to a list of 

components. The list is shown in the diagram area 

inside a group box. Individual components inside the 

expanded list are equally interactive as when shown 

separately. It means a user can use highlighting of its 

required and provided interfaces. The second one (right 

arrow) moves the group back to SeCo. The third one 

(red cross icon) removes the group and shows the 

individual contained components in the diagram area. 

The group shown in the diagram area can also use 

highlighting of required and provided components. 

The described approach of forming logical clusters 

allows users to persistently enrich a diagram by its own 

point of view on how components should be grouped 

into individual features or parts. It is suitable for 

clusters of components a user is interested in and thus 

wants to keep them together to easily see their 

surroundings. Alternatively, this feature can be used for 

components a user is not interested in and wants to keep 

them together because of their hiding and consequential 

clutter reduction. When a user finishes diagram 

exploration and creates the desired clusters, it is then 

possible to show them in the diagram area and thus 

provide a high level overview of the system on a higher 

level of detail than for individual components. Also the 

visual clutter caused by connections would likely be 

highly reduced. 

 

Implementation: CoCAEx, 2014 is a web-based tool 

able to automatically reverse engineer a whole 

component-based application implemented in a 

supported component model. It uses the ComAV 

(Snajberk et al., 2012) platform to parse the distribution 

packages of existing components of an application into 

a graph based representation. After the ComAV 

platform creates the model of the application, CoCAEx 

shows the application diagram in the web page. The 

front end of CoCAEx uses HTML5 technologies to 

provide modern and easily extensible user interface. 

 

The UML approach: As has been said, our approach 

tries to use good parts of UML and propose improved 

notation implemented in an interactive tool. This 

decision has been taken as UML is an industry 

acceptable standard and it is widely used. 

A lot of tools implement UML with certain set of 

interactive features. Typical ones are scrolling, panning, 

zooming, search or filtering. While it makes the 

navigation better than with the diagram printed on the 

paper, it still relies on the statical nature of a diagram 

keeping its original pros and cons. Therefore, one of the 

state-of-the-art UML tools should be selected to 

objectively investigate its usability; this is not an easy 

task as there are a lot of tools with large (and not fully 

comparable) sets of features. 

For the evaluation of our approach, from the 

currently most used tools (mentioned in above section) 

we chose IBM Rational Software Architect (2014) 

(RSA). The reason for selecting RSA is that it can be 

considered as the most advanced, industry-strength tool 

with a lot of additional features and widely used by the 

biggest software houses. In other words, we decided to 

choose the most challenging competitor to compare 

with CoCAEx. 

Besides all standard features included in other 

tools, RSA supports some advanced ones that allow 

users to manipulate the diagram, like changing the 

layout of nodes, changing the line routing and 

modifying the look of components and interfaces. 

Another added value is in its “properties view” 

displayed at the bottom of the screen; Fig. 11. This 

view shows all the details about components and 

relations and, most importantly, can be used to navigate 

to related components. For example, the 

“Relationships” tab shows a list of all elements that use 

or are used by a given component. This list clearly 

specifies which kind of relation is used and which 

components are related. Each relation line contains a 

link which can be used for acquiring more information 

about the line. 

 

User study: In order to find out to what degree of 

interactivity is useful or which techniques used in 

CoCAEx approach are most beneficial for shortening 

the time needed for exploring the structure of complex 

component-based applications, we performed a 

controlled user study. This section provides the details 

of its goal and mechanics, while the following sections 

describe and discuss the results. 
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Goal of the study: This study evaluates whether it is 

faster to analyse the structure of component-based 

applications interactively with the CoCAEx notation 

and tool rather than to study the structure with one of 

the good state-of-the-art UML tool, in particular RSA. 

Our null hypothesis is that the user performance is 

approximately the same. This knowledge of the effects 

of the approach is important because the level of 

interactivity used in CoCAEx is high and could 

negatively affect the user’s performance while he/she 

collects multiple detailed information, specifically 

because a lot of this information is hidden and revealing 

it requires user interaction. 

In the study we are using two different tools for 

experiments. Ideally, our notation as well as standard 

UML notation would be tested in one tool to use 

exactly the same look and feel for both notations as 

well as the same basic framework of user interaction. 

However, this was not possible as CoCAEx cannot be 

switched to standard UML notation and our notation is 

obviously not implemented in RSA. Integration of one 

of the notations to the opposite tool is technically 

difficult. For that reason, we decided to perform the 

study with two tools and mitigate the possible problems 

caused by their differences by a careful design of the 

experiment procedure. 

The study simulated the activities performed 

during one step of architecture analysis. These activities 

are focused on collecting knowledge about 

components’ features, dependencies and overall context 

consisting of related components. The concrete set of 

tasks used in the study, which was based on those 

activities, is discussed thoroughly further below. 

 

Participants: Twelve participants were recruited from 

two different universities. All participants were young 

software engineers and all were academics or Ph.D. 

candidates (the use of academics and Ph.D. candidates 

was encouraged by Sensalire et al. (2009). All were 

proficient users of computers and had sufficient 

knowledge of UML to fully understand the presented 

diagrams and they had also proficiency in analysis of 

component-based structures and applications. 

 

Apparatus: The hardware used in the study consisted 

of standard PC (Intel Core i5 at 2.8 GHz with 8 GB 

RAM), 24 inches LCD display (resolution 1920×1080 

pixels), PC keyboard and optical mouse with 2 buttons, 

running Windows 7. 

Participants used RSA (version 8) and CoCAEx 

Tool (2014) (version 0.3) in the study. Although RSA is 

currently at version 9, there are no new features 

introduced in eclipse client, which would affect results 

of our study. Both tools were running smoothly on the 

selected hardware. 

During the study, users were analysing the 

Common Component Modeling Example application 

CoCoME (CoCoME, 2014; Rausch et al., 2008) -an 

information system for supermarket chains developed 

originally with the aim of comparing different 

approaches to component-based software modelling. 

The CoCoME application, which represents a medium-

size application, consists of about 40 components 

divided into three main parts. First is a cash desk, 

including barcode scanners, credit card readers, etc. The 

second part is a store back office server and a store 

client. Finally, the chain part consists of an enterprise 

server and client applications. For the purposes of the 

test we have used our own implementation of CoCoME 

(available at CoCoME implementation in OSGi (2014)) 

in the OSGi component model (OSGi Alliance, 2009) -

the diagrams in Fig. 4 and 5 visualize the structure of 

this CoCoME implementation in CoCAEx and UML, 

respectively. 

The UML diagram (in RSA) of the CoCoME 

application can be seen in Fig. 5. There are components 

containing names, additional details and large number 

of non-clustered connections. If we compare this Figure 

to CoCoME shown in CoCAEx application (Fig. 4), we 

can see that interface clustering used in CoCAEx 

reduced the number of connections. Also details of 

components hiding saves space in the diagram area. 

 

Design: The study was organized as one factor (with 

two levels) within-subject design. The independent 

variable was the used analytical tool. The order of tools 

was counter balanced and the group effect 

(asymmetrical transfer of skills from tool one to tool 

two) was evaluated. 

The main measure was speed, measured as a 

number of seconds needed to accomplish each task. 

 

Procedure: The test was performed at two locations 

with the same procedure. At each location, the 

experiment was performed in a dedicated room where 

participants were not disturbed. Before the experiment 

was started, participants adjusted the position of the 

display and the mouse to feel comfortable. 

The moderator of the experiment first explained the 

user interface of the first tool. The experiment began 

with a training session. In the training session 

participants were asked to accomplish 5 tasks very 

similar to those they will perform in the actual 

experiment, but using visualized structure of different 

small-size application. During the training session, the 

moderator helped participants to accomplish all tasks if 

necessary. The goal was to let participants get familiar 

with the first approach, get used to the experiment 

procedure and minimize any learning effects. 

Specifically, we focused on minimization of impact of 

different complexity of tools on the results of the study. 

Namely, in case of RSA, we gave hints to users of what 

features they will need in the study. This should prevent 

a situation when the user gets  lost  in  large  number  of 
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features provided by RSA. The training lasted 15-20 

min and it ended when the participant felt confident and 

familiar with both tools and able to perform all types of 

tasks used in this user study. 

Training was followed by the experiment session 

with the first tool. During the experiment session, 

participants were asked to proceed as quickly as 

possible. All tasks were performed so that the right 

result was obtained in the end. Between each task, 

participants were allowed to take a short break. After 

the sessions with the first tool the same procedure was 

repeated for the second tool. The whole study lasted 

about 1 h. 

Participants accomplished 5 tasks. These were 

given to participants as follows: 

 

T1 :  Which components use interfaces provided by 

CoCoME data-Impl?  The task was focused on 

analysis of the parts of the system which will be 

influenced if some particular component is 

changed. 

T2 :  Which components are not from CoCoME 

core (are third party)? The task was focused on 

analysis of the system structure, mainly 

discovery of the core of the system and usage of 

the third party components in the system. 

T3 :  Which packages need CoCoME data Impl 

from CoCoME data? The task was focused on 

analysis of the relation between two components 

in the system. 

T4 : Which components do not require or provide 

interfaces to any other components (are 

unconnected)? The task was focused on analysis 

of unconnected components that are suspicious, 

because they are probably using some non-

standard way of communication with other 

components. 

T5 : Which components require or provide 

interfaces to any of cash desk components in 

CoCoME? The task was focused on analysis 

how a particular part (usually feature) of the 

system is connected with the rest of the system. 

 
The tasks were defined based on our experience 

with the structure of component-based applications and 
based on hints obtained during interviews with several 
software engineers from local software companies. 
Individual tasks are typical tasks used iteratively in 
global task that deals with the question of what is the 
structure of application and how particular components 
are integrated in the CoCoME application. One has to 
find out what these components offer and require and 
uncover their ties to other components, simulating the 
activities performed during one step of the architecture 
analysis. 

Two questionnaires were given to participants 

during the test. At the beginning of the test, participants 

were asked about the experience with UML diagrams 

and UML editors. After the data collection, participants 

completed a questionnaire investigating their subjective 

judgment about the used approaches. 

 

RESULTS AND DISCUSSION 

 

This section provides detailed results of the study 

for each approach and their comparison. As the reader 

may notice, the results differ greatly depending on the 

participant. This was caused by individual perception 

and orientation abilities. A lot of attention was paid to 

preparing all participants thoroughly in the above 

section. Task completion times of all participants for 

each task and basic statistics of individual tasks are 

presented in Table 2. Comparison of mean times of 

individual tasks is in Fig. 12a. Detailed comparison of 

average, median, minimal and  maximal  times  is  in  

Fig. 12b. 

 

 
 

(a)                                                                                                (b) 

 

Fig. 12: (a): Comparison of average times needed to accomplish the tasks in RSA and in CoCAEx; (b): Minimum and maximum 

times with marked medians (black lines) needed to accomplish the tasks in RSA and in CoCAEx 
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Table 2: Time (min: sec) measured for each participant and each task. Together with sum of times for all tasks and statistical measures 

Participant 

RSA 

-------------------------------------------------------------------------- 

CoCA-Ex 

------------------------------------------------------------------------------ 

T1 T2 T3 T4 T5 All T1 T2 T3 T4 T5 All 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

P10 

P11 

P12 

00:33 

02:03 

01:05 

01:09 

03:35 

00:54 

00:26 

00:50 

00:45 

00:57 

00:40 

00:27 

00:39 

00:30 

00:30 

00:32 

00:30 

00:26 

00:32 

00:32 

00:49 

00:27 

00:23 

00:37 

01:34 

01:45 

01:18 

00:28 

04:59 

00:21 

00:27 

01:57 

02:15 

01:31 

01:34 

01:25 

01:07 

01:38 

01:47 

03:02 

07:06 

01:02 

01:53 

00:55 

01:43 

01:17 

01:41 

01:11 

03:47 

04:55 

03:24 

03:23 

04:37 

03:26 

03:22 

03:36 

03:52 

03:31 

04:15 

03:40 

07:40 

10:51 

08:04 

08:34 

20:47 

06:09 

06:40 

07:50 

09:24 

07:43 

08:33 

07:20 

00:23 

00:26 

00:23 

00:16 

00:41 

00:25 

00:46 

00:22 

00:38 

00:14 

00:53 

00:30 

00:29 

00:41 

00:34 

00:46 

01:51 

00:55 

00:29 

00:49 

00:50 

00:23 

00:18 

00:33 

01:00 

00:31 

00:28 

00:11 

00:32 

00:15 

00:22 

00:23 

00:26 

00:21 

00:13 

00:20 

00:30 

00:12 

00:05 

00:05 

00:11 

00:05 

00:10 

00:05 

00:05 

00:06 

00:04 

00:05 

01:06 

02:11 

01:39 

00:58 

01:52 

00:39 

00:47 

00:57 

00:58 

00:54 

00:41 

01:07 

03:28 

04:01 

03:09 

02:16 

05:07 

02:19 

02:34 

02:36 

02:57 

01:58 

02:09 

02:35 

Measure T1 T2 T3 T4 T5 All T1 T2 T3 T4 T5 All 

Mean 

Median  

Min.  

Max. 

S.D. 

01:07 

00:52 

00:26 

03:35 

00:51 

00:32 

00:31 

00:23 

00:49 

00:07 

01:38 

01:32 

00:21 

04:59 

01:10 

02:02 

01:39 

00:55 

07:06 

01:37 

03:49 

03:38 

03:22 

04:55 

00:30 

09:08 

07:57 

06:09 

20:47 

03:42 

00:30 

00:26 

00:14 

00:53 

00:12 

00:43 

00:38 

00:18 

01:51 

00:23 

00:25 

00:23 

00:11 

01:00 

00:12 

00:09 

00:05 

00:04 

00:30 

00:07 

01:09 

00:58 

00:39 

02:11 

00:28 

02:56 

02:36 

01:58 

05:07 

00:52 

 

For statistical analysis of the results we have used 

the repeated measures ANOVA (Analysis of Variance) 

(MacKenzie, 2012). We report the results in F-statistics 

notation FX,N = V, p<α where X is number of factors 

considered in the study, N is number of participants in 

between-subject design (note that correction is applied 

in our case due to the within-subject design). If value 

V≤1 then it is impossible for the means of the tested 

approaches to be significantly different. The amount V 

rising above 1 is an indication of the size of the 

difference in the means of the tested approaches. If the 

null hypothesis is true then p is the probability of 

obtaining the observed data. In other words, if the value 

of p is lower than confidence level α (α is typically 

0.05) then the difference in the means of the tested 

approaches are unlikely to occur in the view of the null 

hypothesis. 

From this follows that we can reject the null 

hypothesis when V>1 and p<0.05. When V≤1 or p≥0.05 

were port that the difference in means of the tested 

approaches is not significant (shortened to “ns”), in 

such case the null hypothesis cannot be rejected. 

In the following subsections we evaluate the null 

hypothesis separately for each task. Later, in the 

summary, we evaluate the null hypothesis for all tasks 

together. 

 

Task T1: Which components use interfaces provided 

by CoCoME data-Impl? There was a significant 

difference in speed between RSA and CoCAEx (F1,11 = 

5.758, p<0.05). The average speed for RSA was 67 sec 

and for CoCAEx 29.75 sec (2.25× faster than RSA). 

The group effect was not detected. 

In both cases, the users searched for the component 

and then they analysed its provided interfaces. For 

RSA, the analysis of provided interfaces took longer 

time, while for CoCAEx this information was 

immediately visible, when the component was selected. 

 

Task T2: Which components are not from CoCoME 

core (are third party)? There was no significant 

difference  in  speed  between  RSA  and  CoCAEx  

(F1,11 = 2.327, nsec). The average speed for RSA was 

32.25 sec (1.34× faster than CoCAEx) and for CoCAEx 

43.17 sec. 

This was the only task where RSA was faster than 

CoCAEx, but not significantly. With CoCAEx, the 

users were searching for the components in the graph, 

which took them additional time to skim through the 

graph. On the other hand, with RSA, the users searched 

for the components in the  list  in  Outline  window,  

Fig. 11, which was very quick. 

 

Task T3: Which packages need CoCoME data Impl 

from CoCoME data? There was a significant 

difference in speed between RSA and the CoCAEx 

(F1,11 = 12.954, p<0.05). The average speed for RSA 

was 97.83 sec and for CoCAEx 25.17 sec (3.89× faster 

than RSA). The group effect was not detected. 

In this task CoCAEx allowed fast analysis of 

imported/exported packages between two components, 

which is not immediately visible in the graph, but it is 

shown as popup when mouse is over the 

interconnection between two components. In RSA, 

participants usually used the project tree and compared 

full lists of exported/imported packages. 

 

Task T4: Which components do not require or 

provide interfaces to any other components (are 

unconnected)? There was a significant difference in 

speed between RSA and CoCAEx (F1,11 = 14.905, 

p<0.05). The average speed for RSA was 121.83 sec 
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and for CoCAEx 8.58 sec (14.20× faster than RSA). 

The group effect was not detected. 

In this task the difference in performance between 

RSA and CoCAEx was the biggest. This was due to the 

fact that with RSA the participants had to find out the 

unconnected components manually, however CoCAEx 

allowed semiautomatic extraction and listing of all 

unconnected components in the panel on the right. 

 

Task T5: Which components require or provide 

interfaces to any of cash desk components in 

CoCoME? There was a significant difference in speed 

between RSA and CoCAEx (F1,11 = 516.403, p<0.05). 

The average speed for RSA was 229 sec and for 

CoCAEx 69.08 sec (3.31× faster than RSA). The group 

effect was not detected. 

This was the most complex task which focused on 

searching of multiple CashDesk components and 

analysis of interface connections between these 

components and rest of the components in the CoCoME 

application. With RSA, this task required searching of 

CashDesk components in the graph and iteration 

through their provided/required inter-faces. With 

CoCAEx, there were two approaches how to achieve 

this task, both of them took similar time. In the first 

case, the participants analysed CashDesk components’ 

interfaces in the graph, similarly as in the Task 1. 

Alternatively, participants extracted CashDesk 

components to the SeCo area (right sidebar) into one 

group or individually and then highlighted all 

components connected through required/provided 

interfaces. 

 

Subjective evaluation: We also asked participants 

about the orientation in the visualized structure of the 

CoCoME application, the level of comfort while 

working with the tools and any other suggestions. 

All participants described the orientation in 

structure of the CoCoME application visualized in our 

notation as better. Further, all participants stated that it 

was more comfortable to solve all tasks in CoCAEx 

than in RSA. Four participants stated that the visual 

highlighting of the components related to the selected 

component significantly improved their orientation in 

the structure of the application. Three participants 

suggested allowing the selection of more than one 

component and visually highlighting components 

related to all selected components. Two participants 

would like to use the same approach as used in 

CoCAEx for components also for classes and class 

diagrams. 

 

Discussion and summary: The measured times needed 

to accomplish each task by each participant 

demonstrate that the tasks T1, T3, T4 and T5 were 

accomplished on average significantly faster in the 

CoCAEx Tool (2014) than in RSA. The only exception 

is the task T2, which the participants accomplished on 

average faster with RSA. Overall speed comparison 

showed that the tasks with the CoCAEx Tool (2014)  

were accomplished on average 3× faster than  with  

RSA;  Fig. 12a. In the majority of tasks, the maximum 

values in CoCAEx were lower than the median values 

for RSA; Fig. 12b. These results show that even the 

slower CoCAEx users were faster than at least half of 

the users in RSA for majority of tasks. The median 

values are averagely placed at first fifth of the 

minimum-maximum range. 
The results indicate that the structure of the 

CoCoME application visualized in our notation is less 
cluttered which leads to faster orientation in the 
structure of the application. Further, the visual 
highlighting and interaction features of components 
related to the selected component provided by CoCAEx 
allowed participants to visually detect the related 
components much faster. 

From these facts, we can conclude that the abilities 
to interact with the visualized structure of component-
based software systems and to provide visual cues to 
ease identification of related components is better with 
CoCAEx. There was a significant difference in speed 
between RSA and CoCAEx for summed accomplished 
task times (F1,11 = 46.581, p<0.05). Results for 
individual and summed accomplished task times allows 
us to reject the null hypothesis, i.e., that both tools 
provide the same speed of analysis of component-based 
application. 

From the subjective point of view the participants 
perceived the orientation in our notation as better in 
comparison to the standard UML notation. They also 
subjectively perceived comfort of work in CoCAEx as 
better in comparison to RSA. All participants also 
answered that CoCAEx provides a clearer diagram that 
is more readable and understand-able. They mentioned 
two main reasons: highlighting and simplicity of use. 

There is a combination of two factors influencing 
participants’ performance in each task, interactivity of 
tools and visual notation. This fact means that we 
cannot exactly separate impact of interactivity and the 
notation. As a consequence, we cannot be sure whether 
better performance in certain tasks was caused more by 
the interactivity or by the notation. For instance, we 
could think that a task was performed faster due to an 
interactive feature (e.g., usage of interface clustering) 
while in fact a better colour encoding or contrast helped 
a user more. 

 

CONCLUSION AND RECOMMENDATIONS 

 

This study presented key parts of our approach for 

component application visualization and described a 

user study that compared its performance in component 

diagram analysis with the UML component diagram. 

Our notation was implemented and tested in the 

research proof of the concept CoCAEx Tool (2014), 
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while IBM Rational Software Architect (2014) was 

selected to test standard UML and certain interactivity 

features. This software was chosen also because it is 

widely adapted by industry and largely used by the 

world biggest software houses. 
In the user study, 12 participants were tested in a 

within-subject test on both tools. The participants 
accomplished 5 tasks, related to the activities needed in 
software architecture analysis and their speed to 
accomplish each task with each tool was measured. In 
addition, we collected subjective evaluation of the tool 
usability. 

The data obtained shows that participants working 
with CoCAEx Tool (2014) and its improved notation 
are comparatively fast of faster (up to 3 times) than 
participants using standard UML in RSA. 

We believe that results of this user study confirm 
that the proposed interactive visualization provides 
better user experience, leading to more efficient 
exploration of complex component-based applications. 
Features such as highlighting or grouping help users 
perform faster the exploration while the increased need 
for interaction does not introduce significant slowdown. 

The present implementation of the CoCAEx 
approach allowed us to perform the validation 
experiments presented in this study. In our future work, 
we will also consider implementing the CoCAEx as 
(Plugin, 2014) to a known tool, such as IBM RSA. This 
would allow us to compare the results without being 
affected by differences between tools. 

We believe that some of the presented ideas can be 
generalized to be used in other domains (e.g., UML 
Class diagrams, bank transfers graphs, server 
interconnections graphs) where one suffers from visual 
clutter caused by the large number of nodes and 
connection lines. Thus one direction of our future work 
will be providing a generalized concept of the ideas and 
techniques presented in this study. 
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