
Research Journal of Applied Sciences, Engineering and Technology 11(4): 434-439, 2015

DOI: 10.19026/rjaset.11.1799

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: April 23, 2015 Accepted: May 22, 2015 Published: October 05, 2015

Corresponding Author: Ahmad Abdullah, College of Computer Science, Chongqing University, Chongqing 400044, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

434

Research Article
From Relational Databases to NoSQL Databases: Performance Evaluation

Ahmad Abdullah and Qingfeng Zhuge

College of Computer Science, Chongqing University, Chongqing 400044, China

Abstract: In nowadays applications, the amount of data in the database grows exponentially. So, the DBMS must
process these huge amounts of data as fast as possible. The main aim of this study is to prove that NoSQL databases
process big data faster than relational database. The changing in applications, user and infrastructure characteristics,
mostly of the Web 2.0 domain and cloud platform, led to explosion of data sources and massive workloads. These
huge amounts of data have raised the problems of storage and usability of data as the usual Relational Database
Management Systems (RDBMS) were unable to handle the exponentially growing data on a single in house server
(vertical scalability). Furthermore, the required time to process these big data is an issue. The study implements
prototype which verifies performance argument. The performance evaluation compares the insertion and retrieval
speeds between MongoDB as NoSQL database and MySQL as relational database. The benchmarking performed
shows that MongoDB is faster than MySQL in the most of scenarios we chose, particularly when we deal with huge
amount of data.

Keywords: MongoDB, MySQL, NoSQL databases, performance evaluation, relational databases, speed comparison

INTRODUCTION

Since the 1970s, the relational databases and the

associated entity relationship models have together
been the standard for database development
(Harrington, 2009). Choosing between databases was
limited to the study of differences between available
commercial and open source relational databases. They
provide the users with the best mix of simplicity,
robustness, flexibility, performance, scalability and
compatibility (Plugge et al., 2010). However, the
changing in applications, user and infrastructure
characteristics, mostly of the Web 2.0 domain (Hecht
and Jablonski, 2011) and cloud platform, led to
exponential growth of Internet, the explosion of data
sources and massive workloads. This kind of data is
usually referred to as Big Data (Chang et al., 2006).
Relational databases are found to be inadequate in
handling Big Data applications. Also, multiplication of
data sources and types has led to the problem of storing
and manipulation of these unstructured data by
structured data models provided by RDBMS. NoSQL
databases enjoy schema-free architecture and possess
the power to manage highly unstructured data. They
can be easily deployed to multi-core or multi-server
clusters serving modularization, scalability and
incremental replication. NoSQL databases being
extremely scalable, offer high availability and
reliability, even while running on hardware that is
typically prone to failure. In this study, the comparison
focuses on time consumption. So that, DBMS which

takes less time in processing huge amount of data will
be more favorable. The main objective of this study is
to prove that the performance of NoSQL databases is
better than relational databases in the cases of Inserting
and filtering data. Even though, we do not cover all
scenarios available, we give a good picture of the speed
differences between selected databases.

Challenges with relational database: With the
continuous development of the Internet and cloud
computing, various types of applications have emerged,
which made database technology more demands,
mainly in the following aspects (Bhat and Jadhav,
2010; Han et al., 2011).

High concurrent of reading and writing with low
latency: Database were demand to meet the needs of
high concurrent of reading and writing with low
latency, at the same time, in order to greatly enhance
customer satisfaction, database were demand to help
applications reacting quickly enough.

Efficient big data storage and access requirements
large applications need: Database to meet the efficient
data storage and can respond to the needs of millions of
traffic.

High scalability and high availability: With the
increasing number of concurrent requests and data, the
database needs to be able to support easy expansion and
upgrades and ensure rapid uninterrupted service.

Res. J. Appl. Sci. Eng. Technol., 11(4): 434-439, 2015

435

Lower management and operational costs: With the

dramatic increase in data, database costs, including

hardware costs, software costs and operating costs,

have increased. Therefore, need lower costs to store big

data.

Although relational databases have occupied a high

position in the data storage area, but when facing above

requirements, it has some inherent limitations.

Slow reading and writing: A relational database itself

has a certain logic complexity, with the data size

increases, it is prone to bring about deadlocks and other

concurrency issues, this has led to the rapid decline in

the efficiency of reading and writing.

Limited capacity: Existing relational database cannot

support big data in search engine or Big System.

Expansion difficult: Multi-table correlation

mechanism which exists in relational database, became

the major factor of database scalability.

NoSQL databases: As late as 2008, relational

databases were both commercially dominant and well

entrenched in the development community. However, a

new group popularly known as “NoSQL databases” has

emerged (mostly in large web applications) to challenge

the supremacy of relational databases and address the

shortcomings in them. This class of storage engine

seeks to breakdown the rigidity of the relational model,

in exchange for leaner models that can perform and

scale at higher levels, using various models (including

key/value pairs, column oriented databases and

document oriented approaches) which can be created

and read efficiently as the basic unit of data storage.

Primarily, these new technologies have arisen in

situations where traditional relational database systems

would be extremely challenging to scale horizontally to

the degree needed for global systems.

Even though, NoSQL databases don’t have specific

definition, we adopted this definition: A NoSQL

database is a database that is not an SQL database. Data

is not stored in relations and the main query language to

retrieve data is not SQL.

NoSQL obviously have general common

characteristics:

• Ability to horizontal scalability, not using the

relational model (nor the SQL language)

• Ability to replication and partitioning data across
multiple servers

• Access to a simple API

• A weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems

• Flexible Scheme, allowing fields to be added to
any record without controls

Introduction to mongoDB: Chodorow and Dirolf

(2010) MongoDB
1
 is a schema less document oriented

database developed by 10 gen and an open source

community. The MongoDB is intended to be scalable

and fast and is written in C++. In addition to its

document oriented databases features, MongoDB can

be used to store and distribute large binary files like

images and videos. So MongoDB could be used as a

file system. MongoDB stores documents as BSON

(Binary JSON) objects, which are binary encoded

JSON like objects. MongoDB is a document-oriented

database with no transactions and joins. So it is easier

to write queries. Each document has an ID field, which

is used as a primary key. To enable fast queries, the

developer can create an index for each query able field

in a document. MongoDB also supports indexing over

embedded objects and arrays.

Documents in MongoDB can be organized in so

called "collections". Each collection can contain any

kind of document, but queries and indexes can only be

made against one collection. But MongoDB has

restriction of indexes number per collection. Relations

in MongoDB can be modeled by using embedded

objects and arrays.

With all these features, MongoDB has many

advantages. It is extremely fast. And it is easy to adapt

quickly as requirements change.

METHODOLOGY

We intended to test and compare two different

types of databases, relational databases such as

MySQL
2
 and Document Oriented NoSQL databases

such as MongoDB. We used (PHP) as a programming

language. We generate a pair of test one for each

DBMS and measure which of them performs the

fastest. Testing should reflect real-world scenarios as

possible as we can, in order to find out how much faster

is MongoDB instead of MySQL in real applications.

The software we choose determines the possible ways

to implement our use cases depending on the available

features. The choosing of these two databases is partly

because MySQL is one of the most popular databases in

website applications. We chose Document Oriented

NoSQL database, because it has rich data model and it

is considered a real alternative solutions by a lot of

companies. MongoDB is relatively new and was

released in 2009. However, according to previous

studies which compared MongoDB with CouchDB,

MongoDB was speeder than CouchDB in most tests.

That makes the choosing of MongoDB more exciting to

make comparisons with MySQL. This prototype is

simple database model based on MySQL and

MongoDB to compare the performance. We also

present the results of the performance test, showing

which one of the tested databases is the best suited one

for the type of data that we chose to store. Even though,

Res. J. Appl. Sci. Eng. Technol., 11(4): 434-439, 2015

436

we do not cover all scenarios available, we give a good

picture of the speed differences between selected

databases.

Performance benchmarking: To test the performance

of the MongoDB and MySQL we developed a test suite

in PHP. Every benchmark will be run on different

object sets with different sizes, because we need to see

how the databases scale. The tasks are generated

randomly, thus every query differs and it is very hard

for the database to cache any query. The tests are

always running under the same user using the default

database settings. First of all, we have two scenarios.

Data insertion: This benchmark tests the speed of

inserting a lot of data objects. Both MySQL and

MongoDB support inserting all data in a single request

(Bulk inserts
3
). Experiments will perform both type of

inserts in order to see the differences between both

types.

Data retrieval: This benchmark will measure the time

to query objects with a specific value. In relational

databases this will test the join behavior and in

document oriented databases the speed of querying

objects.

Every individual test case, however, has been run

five times. And then the average value will be

calculated. That because the times may vary between

each run.

Software and Hardware:

• Microsoft Windows7 64-bit

• PHP 5.3.5

• MySQL 5.1.62

• 10 gen MongoDB 2.0.5

• php_mongo v 1.3

• Sony vaio VPCCA (laptop)

• Intel core i5, CPU 2.30 GHz (I used only 40%

from CPU)

• 4 GB RAM

• Client libraries: During the implementation of the

performance benchmark, we used php_mongo as

client libraries for PHP programming language.

There are much more libraries for almost every

programming language, but we used the official

one
4

• Databases setting: With MySQL, we test using

the memory engine for Member Table. And

because memory engine doesn’t support Blob data,

I chose MyISAM engine for Image table. Even

though comparing a disk engine in MongoDB to a

memory engine in MySQL sounds unfair, the other

MySQL engine can’t compete with MongoDB at

all i.e., they took a lot of time comparison with

MongoDB.

RESULTS AND DISCUSSION

Data insertion scenario: The following subsections

showcase the results of the write (insertion) speed

benchmarks performed. They answer the questions of

which DBMS, MySQL or MongoDB, is the fastest at

different amount of data.

Relational data model is based on MySQL that

mainly contain Member and Image tables Fig. 1.

Document oriented NoSQL data model is based on

MongoDB that contain Member document. All

members will insert into one document and each

collection has this structure:

Member = {

“_id”: object Id (“51603a46d06858501d000000”),

“firstName” : “MzdBk8”,

“username” : “sjk8J3ByD”,

“lastName” : “WzUKPhKRchT8”,

“age”: 57}

Notice that we used different types of data such as

(string, integer and image) to see if it may affect the

time of insertion and to find out the differences in

implementation.

The cost time of insertion into MongoDB and

MySQL were recorded in the tables according the

different numbers of rows/documents and different test

cases.

Insert to “members” object: In the first experiment,

we performed “single insert” tin order to answer the

question: how fast is MongoDB and MySQL,

respectively when inserting 1000 documents/rows,

10000 documents/rows and 100000 documents/rows?

Table 1 and Fig. 2.
Figure 2 clearly shows, MongoDB is faster than

MySQL at inserting objects. Approximately, MongoDB
came out two times faster that MySQL in case of insert
queries.

Fig. 1: Member and image tables

Table 1: The results of insertion members into databases

 MySQL MongoDB

Number of
objects

1000 0.1810 0.0762
10000 1.8720 1.0918

100000 18.5432 10.8424

Average processing time in second

Res. J. Appl. Sci. Eng. Technol., 11(4): 434-439, 2015

437

Fig. 2: Graph visualizing insert speeds of MongoDB and

MySQL

Fig. 3: Graph visualizing bulk insert speeds of MongoDB and

MySQL (member table)

Fig. 4: The results of insert images into databases

And then we performed “Bulk (multi) insert” for

100000 members and more. We won’t test small
quantities of objects, because it is not relevant Table 2.

Surprisingly, according to the Fig. 3. MySQL came
out one time faster than MongoDB in case of insert
queries with bulk feature Fig. 3.

For some databases, bulk insertion is just a wrapper

for sequential insertion. For others, bulk insertion could

be implemented optimally knowing the architecture of

TCP and file buffers. We didn’t investigate how these

databases implement bulk insertion, but MySQL

surprised us. Comparing the results, we noticed that

bulk insertion is overall quite faster than sequential

Table 2: The results of bulk insert members

 MySQL MongoDB

Number of

objects

10000 0.1142 0.0890

100000 0.9650 1.3016

150000 1.5418 2.2156

Average processing time in second

Table 3: The results of insert images into databases

 Number MySQL MongoDB

Number of

objects

1000 1.0577 0.3943

5000 5.2277 1.7213

10000 10.0027 3.4570

Average processing time in second

insertion. However, MySQL is the winner in this test

case.

Insert to “image” object: Here, experiment performs

insertion for different data type. We insert here images.

We won’t test big quantities of images, because it is

take long time in MySQL. However, MongoDB in this

type of data is defiantly the best Table 3 and Fig. 4.

As the graph clearly shows, MongoDB is a whole

lot faster (more than three times) than MySQL at

inserting images. The difference is very big particularly

when we insert more than 10000 images. We tried to

insert 100000 images into MongoDB, it was great

comparing with MySQL which take very long time. So,

MongoDB is very suitable for multimedia data types.

Data retrieval scenario: The following subsections

showcase the results of the read (retrieval data) speed

benchmarks performed. They answer the questions of

which DBMS, MySQL or MongoDB, is the fastest at

different amount of data.

Relational data model is based on MySQL that

mainly contain product and category tables. Figure 5,

shows the ERD and the many to many relationship

between product and category entities.

We represent many to many relationship between

product and category entities in relational database as

following Fig. 6.

Document oriented NoSQL data model is based on

MongoDB that contain product document. We can put

all information about product in one document, because

of flexibility which NoSQL data model has. All

products will insert into one document and each

collection has this structure:

//String generated randomly so, it has no meaning

Product = {“_id”: Object Id (“51701d51d06858e

421000000”),

“title” : “MvcPFxMUuHNT”,

“description”:

“rj1MLU0r6I4prjV2fMO8uJp4DfXHEVbk1RiPG

E1x8nzj1DFtKx

wSmERRC5ThurmssNsguKU13oWA7khh8E7z6

Wb1siIeckpXM6u

20

18

16

14

12

10

8

6

4

2

0
1000 10000 100000

Number of objects

A
v
er
ag
e
 p
ro
ce
ss
in
g
 t
im

e
 i
n
 s
ec
o
n
d

MySQL

MongoDB

2.5

2.0

10000 150000

Number of objects

A
v
e
ra
g
e
p
ro
ce
ss
in
g
 t
im

e
 i
n
 s
ec
o
n
d

MySQL

MongoDB

1.5

1.0

0.5

 0
100000

12

10

1000 10000

Number of objects

A
v
er
a
g
e
 p
ro
c
e
ss
in
g
 t
im

e
 i
n
 s
ec
o
n
d

MySQL

MongoDB

 0
5000

8

6

4

2

Res. J. Appl. Sci. Eng. Technol., 11(4): 434-439, 2015

438

Fig. 5: ERD for product and category entities

Fig. 6: Tables for product and category entities

Fig. 7: Graph visualizing retrieve speeds of MongoDB

(without and with relationship) and MySQL

Table 4: The results of retrieve members

 Number MySQL MongoDB
Relational
mongoDB

Number of
objects

1000 0.042 0.030 0.036
10000 0.093 0.077 0.092
100000 0.243 0.173 0.214
1000000 18.620 2.400 3.100

Average processing time in second

3aeGRQNcdLpLto9At”,
“quantitity” : 74,
“productCategory” : [“W1WPxLo”, “DGA”, “Atj”,
“5jSU7jRuWp”,
“Yiys”, “tp3PXAp4”, “brYYT3o2WVGZ”]
}

Scheme free is one of the characteristics of

NoSQL. NoSQL data model usually denormalize data.
In MongoDB, we can use references. To normalize
data, MongoDB stores references between two
documents to indicate a relationship between the data
represented in each document.
In general, use normalized data models:

• When embedding would result in duplication of
data but would not provide sufficient read
performance advantages to outweigh the
implications of the duplication

• To represent more complex many-to-many
relationships

• To model large hierarchical data sets

In this case, we divide the document into two

documents products and categories. Products has

embedded document to stores references. This

embedded document called product Category.

The following code represents the products

structure in “relational” MongoDB:

Product = {“_id”: objectId (“51704897d06858ec
020000c8”),
“title” : “MvcPFxMUuHNT”,
“description” : rj1MLU0r6I4prjV2fMO8
uJp4DfXHEVbk1RiPGE1x8nzj
1DFtKxwSmERRC5ThurmssNsguKU13o
WA7khh8E7z6Wb1siIeckp
XM6u3aeGRQNcdLpLto9At”,

“quantity” : 74,
“productCategory” :

[ObjectId (“51704896d06858ec0200004e”),
ObjectId (“51704896d06858ec0200006f”),
ObjectId (“51704896d06858ec02000026”),
ObjectId (“51704896d06858ec020000b2”),
ObjectId (“51704896d06858ec02000050”),
ObjectId (“51704896d06858ec02000070”),
ObjectId (“51704896d06858ec0200009d”)]

And this is the categories structure:

Category = {“_id”: objected (“51704896d06858ec
02000000”), “title” : “MzdBk8”}

18

16

14

12

10

8

6

4

2

0A
v
er
a
g
e
 p
ro
c
es
si
n
g
 t
im

e
in
 s
ec
o
n
d

1000 10000 100000 1000000

Number of objects

MySQL

Mongo
Relational MongoDB

Res. J. Appl. Sci. Eng. Technol., 11(4): 434-439, 2015

439

We designed a query which has “INNER JOIN”

and “OUTER JOIN” to prove our thinking that NoSQL

database has advantage over relational database.

The cost time of retrieval data from MongoDB

(with and without relationship) and MySQL were

recorded in the Table 4 according the different numbers

of rows/documents and different test cases Table 4.

Figure 7 clearly shows, MongoDB is a whole lot

faster than MySQL at inserting objects. The increase in

time for both DBMS seem to be linear. When we deal

with huge amount of data the difference is very big

between MongoDB and MySQL (e.g., when we retrieve

1 million objects, MongoDB is 6 times faster than

MySQL) Fig. 7.

The differences between MongoDB with and

without relationships is noticeable, but in this test case

was not particularly critical. In 1 million objects it

differs about 1 sec, which is not seen very much in

comparison to MySQL. So, we can implement our

applications with relationships where urgent need to use

structure data.

CONCLUSION AND RECOMMENDATIONS

In the Cases and circumstances they were covered

in this Study, we discovered that moving from MySQL

to MongoDB, it is possible to get a significantly faster

database with a relatively similar structure.

In the most of data insertion scenarios, MongoDB

is very good particularly in images insertion. In the data

retrieval scenarios, the test shows that MongoDB is

faster than MySQL in the most of test cases,

particularly when we deal with huge amount of data.

The experiments presented in this Study have

tested only on a single server, but with data shared

across clusters, things might look different. This should

take in consideration in the future work for an

interesting experiment. There are also a lots of

additional tests that can be done for future work such

as: Other types of queries and data models.

REFERENCES

Bhat, U. and S. Jadhav, 2010. Moving towards non-

relational databases. Int. J. Comput. Appl., 1(13):
40-46.

Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh,
D.A. Wallach, M. Burrows, T. Chandra, A. Fikes
and R.E. Gruber, 2006. Bigtable: A distributed
storage system for structured data. Proceeding of
the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’06).
Berkeley, CA, USA, pp: 15-15.

Chodorow, K. and M. Dirolf, 2010. MongoDB: The
Definitive Guide. O’Reilly Media, Sebastopol, CA,
USA.

Han, J., E. Haihong, G. Le and J. Du, 2011. Survey on
NoSQL database. Proceeding of the 6th
International Conference on Pervasive Computing
and Applications (ICPCA, 2011), pp: 363-366.

Harrington, J.L., 2009. Relational Database Design and
Implementation. 3rd Edn., Morgan Kaufmann,
Burlington,.

Hecht, R. and S. Jablonski, 2011. Nosql evaluation.
Proceeding of International Conference on Cloud
and Service Computing, pp: 336-41.

Plugge, E., T. Hawkins and P. Membrey, 2010. The
Definitive Guide to MongoDB: The NoSQL
Database for Cloud and Desktop Computing. 1st
Edn., Apress Berkely, CA, USA.

End notes:
1
: http://www.mongodb.org/

2
: https://www.mysql.com/

3
: A Bulk insert is a process or method provided by a
database management system to load multiple rows
of data into a database table

4
: https://github.com/mongodb/mongo-php-driver

