
Research Journal of Applied Sciences, Engineering and Technology 11(6): 666-673, 2015

DOI: 10.19026/rjaset.11.2029

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: May 30, 2015 Accepted: July 8, 2015 Published: October 25, 2015

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

666

Research Article

An Evolutionary Algorithmic Approach for Single Machine Early Tardy
Scheduling Problem

R. Jayabhaduri
Department of Computer Science and Engineering, Sri Venkateswara College of Engineering,

Irungattukottai-602 117, Chennai, Tamilnadu, India

Abstract: Most of the real world scheduling problems incorporates Just-In-Time production philosophy which leads
to a growing interest in the development of various nature inspired metaheuristic algorithms. Single Machine Early
Tardy scheduling problem (SMETP) is one such problem in which jobs have to be scheduled on a single machine
against a restrictive common due date parameter and this problem is strongly a NP-hard combinatorial optimization
problem. As job sizes vary from 10 to 1000, problems of larger job sizes cannot be solved by exact algorithms.
Hence in this research study, we propose genetic algorithm with variations in local search to find an optimal
schedule which jointly minimizes the summation of earliness and tardiness cost penalties of ‘n’ jobs from a common
due date by satisfying the three SMETP scheduling properties. The performance of this evolutionary algorithm is
validated on the 280 benchmark instances proposed by Biskup and Feldmann for various job sizes and the results
show that genetic algorithm works well for smaller job sizes.

Keywords: Common due date, genetic algorithm, heuristics, local search, single machine scheduling

INTRODUCTION

Sequencing and scheduling are decision making

processes which play a crucial role in manufacturing
and production industries. Scheduling jobs on a Single
machine against a restrictive common due date to
Minimize Early and Tardy Penalties (SMETP) has been
studied by many researchers for nearly 3 decades with
the principles of Just-In-Time (JIT) inventory
management. SMETP problem belongs to a class of
scheduling problems formally defined as 1/d/� �

��� αiEi
+ βiTi.. Each job has three characteristics namely
processing time, earliness penalty cost and tardiness
penalty cost associated with it. In this study, we focus
on single machine restricted common due date
problems where some jobs may be completed before
the common due date which is referred to as earliness
penalty and after the common due date is referred to as
tardiness penalty respectively. Execution of jobs before
the common due date may lead to storage of products in
the industries, whereas execution of jobs after the
common due date may lead to loss of reputation of
customer’s goodwill. Hence the objective is to find an
optimal schedule which exactly finishes execution of
jobs on the common due date to jointly minimize the
summation of earliness and tardiness penalties costs.

Common due date scheduling problems are
categorized into restrictive and unrestrictive ones. In the
case of unrestricted common due date scheduling
problems, all jobs complete its execution before the

common due date. Hence there is no challenge in
optimizing algorithms. In our research study, we focus
on restrictive single machine common due date
scheduling problems.

In this study, we address the issues of minimizing
error offset for the evolutionary algorithms, applying
local improvement methods in the algorithms to reduce
the computation time and when to terminate the
algorithm.

Problem formulation and properties of SMETP:
Restrictive common due date scheduling problem is
formulated as follows:

• ‘n’ jobs are available for processing at time zero,
which have to be processed on a single machine.

• Each of the jobs needs exactly one operation. No
pre-emption of jobs is allowed.

• The processing times pj of the jobs 1...n are
deterministic, common due date ‘d’ is computed
as:

d = � pj * ℎ �
���

where h is the restrictive common due date
parameter.

• Completion time Cj of each job is computed by:

��

��� . p j -1 + pj

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

667

• A job is referred to as early if its completion time
falls below the common due date and the earliness
penalty of job j is given by Ej = max (0, d - Cj).

• A job is tardy if its processing time ends after
common due date and the tardiness penalty is
computed by Tj = max (Cj - d, 0) respectively for
all jobs j = 1..n.

The objective in our study is to find an optimal

schedule σ which jointly minimizes the earliness and
tardiness penalties of all jobs closer to the due date is
given as:

σ = � ∝ 	
	 + �	
	�
���

For the restricted SMETP, an optimal schedule should
satisfy the following three optimality properties.

Property 1: No idle times are inserted between
consecutive jobs (Cheng and Kahlbacher, 1991).

Property 2: The optimal schedule is ‘V’ shaped around
the common due date. But a straddling job may exist,
i.e., a job whose execution starts before and finishes
after the due date, (Baker and Scudder, 1989).

Property 3: Either the processing time of first job starts
at time zero or one job is completed at the due date in
the optimal schedule (Hoogeveen and van de Velde,
1991).

Due to the complexity of SMETP, branch and
bound techniques and several nature inspired
metaheuristic algorithms like genetic algorithms,
simulated annealing, tabu search, differential evolution,
artificial bee colony optimization and hybrid
evolutionary algorithms are addressed by various
researchers to tackle this problem.

LITERATURE REVIEW

Many researchers have studied about the nature of
SMETP which is strongly proved to be a NP hard
combinatorial optimization problem. Baker and
Scudder review the literature on scheduling models
with Early Tardy penalties in 1989. The researchers
pointed out that the single-machine scheduling problem
with a restricted common due date has never been
addressed in the literature. By that time, Hall et al.
(1991) proved that this problem is NP-hard. Due to its
complexity, many authors addressed this problem using
nature inspired metaheuristic methods and compared
their results with state-of-the-art metaheuristics. Lee
and Kim (1995) developed a parallel genetic algorithm,
while James (1997) used Tabu search approach to
address this.

Biskup and Feldmann (2001) presented 280
benchmarks for the restrictive common due-date
problem with general earliness and tardiness penalties.
Feldmann and Biskup (2003) studied the restricted E/T
problem postponing the schedule by applying different

metaheuristics: Evolutionary Search (ES), Simulated
Annealing (SA) and Threshold Accepting (TA). Lin
et al. (2007) used a sequential exchange approach while
Liao and Cheng (2007) proposed a variable
neighborhood search for minimizing single machine
weighted earliness and tardiness with common due
date. Nearchou (2008) used Differential Evolution
algorithm. Le and Hong (2013) developed a hybrid
metaheuristic Permutation-based Harmony search
algorithm by incorporating Variable Neighborhood
Search (PHVNS) and demonstrated that their algorithm
shows high competitiveness by comparing with some
state-of-the-art metaheuristics.

MATERIALS AND METHODS

Proposed algorithm:
Genetic algorithm with local improvement for
SMETP: John Holland’s invention of Genetic
algorithm is a population-based metaheuristic
evolutionary algorithm that evolves from one
population of chromosomes to a new population by
natural evolution such as reproduction, crossover and
mutation and follows Charles Darwin’s “Survival of the
fittest”.

Sequence representation: We use permutation
encoding mechanism to represent a sequence of jobs. A
sequence is mapped into a chromosome with the alleles
assuming different and non-negative integer values in
the (1..n) interval. For a 5 jobs problem, the complete
sequence is represented as ((1) (2) (3) (4) (5)) where [i]
is the position of the i

th
 job in the sequence. The

objective function is to find a sequence σ which jointly
minimizes the sum of early and tardy cost penalties for
single machine restrictive common due date scheduling
problems.

Initial population generation and fitness evaluation:

Jobs are scheduled according to p/α heuristic for jobs

that complete before the common due date and p/β

heuristic for jobs that complete after the common due

date respectively. This is used to generate the first

individual in the initial population. The remaining

sequences in initial population are generated by

constructive heuristics which places [i] job in all

possible combinations.

Reproduction of chromosomes: We have used

roulette wheel selection strategy to select the

chromosome with minimum fitness value to evolve

from current population to the new population.

Ordered crossover: We have implemented ordered

crossover operator for the mating parents which are

selected randomly from the mating pool. Two crossover

points for the mating parents are randomly generated to

determine the range for crossover. The length of the

crossover is in the range with Lower Limit (LL) (1, n-1)

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

668

Fig. 1: Ordered crossover operation

Fig. 2: Sliding mutation operation

Fig. 3: Pair-wise random swap mutation operation

Fig. 4: Adjacent pair-wise swap mutation operation

job position and the Upper Limit (UL) (LL, n). Ordered

crossover is explained with an example (Fig. 1):

LL = 3, UL = 7

O1 5 6 1 10 8 4

 9 7 2 3

Offspring is generated by retaining the elements of

the parent that falls within the crossover range and

inheriting the remaining elements from the parent in the

order in which they appear in that parent beginning

from the first position following the second crossover

point and the elements are skipped if they are already

present in the newly generated offspring.

Mutation: The resultant offspring represents the

sequence σ and the value of the total early and tardy

penalties z (σ) is calculated by using Eq. (1). We have

implemented sliding mutation strategy followed by

pair-wise random swap mutation. Two alleles in a

parent are selected based on two randomly generated

positions. The allele in position 2 is shifted to the allele

in position 1 and the allele in position 1 is shifted right

by 1 place and follows the sane order of alleles in the

parent and results in new offspring (Fig. 2).

The newly generated offspring again undergoes

pair-wise random swap mutation and generates a new

offspring σ1. Two alleles in a parent are selected

randomly and their positions are swapped and result in

a new offspring (Fig. 3).

The fitness function z (σ1) is computed and

checked with the fitness value of z (σ). If z (σ1) < z (σ),

the newly generated offspring is added to the

population set and the sequence with fitness value z (σ)

is removed from the population set by applying elitism

replacement strategy. If there is no improvement after

several generations, the original offspring is added to

the population set.

Mutation with local improvement: Each resultant
offspring of job size ‘n’ generated after mutation
operation again undergoes adjacent pair-wise swap
mutation and yields new sequences (Fig. 4).

The fitness function is computed for all new

offsprings and the offspring which returns minimum

fitness value is added to the new population set.

Finally out of n * n offsprings, ‘n’ offsprings are

added to the new population set which form the

chromosomes for the next generation. This undergoes

roulette wheel selection, ordered crossover and

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

669

mutation with local improvement for subsequent

generations.

Algorithm 1:

Algorithm for initial population generation and

fitness evaluation: Procedure Init_Population

Input: Number of instances, number of jobs,
processing time for each operation, earliness penalty for
each job, tardiness penalty for each job, common due
date for the jobs

Output: Schedule of jobs
Encode each individual in population of size, indiv
Generate initial population by calling Init_Population()
method.
While stopping criteria not met
1. Sort jobs according to Shortest Processing Time

heuristic to construct the initial sequence.
2. Construction of remaining sequences by

constructive heuristics.
Repeat

3. Compute processing time, completion time,
earliness and tardiness cost penalties of all jobs in
the sequence as
a. ctime [j] = ctime [j-1] + ptime [j]
b. ptm + = ptime [j]
c. early [j] = cdd-ctime [j]
d. tardy [i] = ctime [j] -cdd

4. Place jobs to the left in ‘V’ shaped arrangement for
the jobs with completion time less than the
common due date value; otherwise place jobs to its
right.

5. Compute fitness value of the sequence.
Until the last sequence in initial population

End while
End procedure

Algorithm 2:
Genetic algorithm: Procedure ga ()

Input: Number of jobs, processing time for each
operation, earliness penalty for each job, tardiness
penalty for each job, common due date for the jobs

Output: Schedule of jobs

Perform Roulette wheel selection strategy

Do ordered crossover to generate a new offspring

Perform random swap and sliding mutation

Algorithm 3:

Local improvement: For all newly generated members

in the population after mutation

1. Choose a newly generated offspring (σ2) of job

size n

2. Generate new sequences for the offspring (σ2) by

adjacent pair-wise swap mutation.

3. Evaluate the fitness function for the newly

generated offsprings.

4. Retain the offspring with the minimum fitness

value.

5. Add this offspring to the new population set

Termination criteria: We have generated 2n + n
2

individuals for all job sizes ‘n’ in each generation and

the best 3n individuals are added to the population set.

We run our genetic algorithm by fixing the number of

generations as 1000.

Materials: The benchmark instances of restricted

single-machine common due date problems are

proposed by Biskup and Feldmann (2001) on job sizes

n = 10, n = 20, n = 50, n = 100, n = 200, n = 500

and n = 1000. The common due date d is calculated by

d = round (SUM_P * h) where round (X) gives the

biggest integer which is smaller than or equal to X;

Sum_P denotes the sum of the processing times of the n

jobs and the parameter h is used to calculate more or

less restrictive common due dates. For the following

280 benchmarks we used h = 0.2, h = 0.4, h = 0.6 and

h = 0.8. The instances are available at http://

people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html.

RESULTS AND DISCUSSION

Experiments conducted: The developed evolutionary
algorithm is implemented in Java language on a
computer with 2.27 GHz Intel (R) Core i5 CPU and 3
GB RAM with main memory, running Windows 8.1
operating system with Java NetBeans IDE 8.2. We
solved 280 benchmark instances for the different sizes
n = 10, n = 20, n = 50, n = 100, n = 200, n = 500
and n = 1000 with h = 0.2, h = 0.4, h = 0.6 and h = 0.8.
For all the 280 benchmark problems, parameters and its
values chosen for our study are listed in Table 1.

Case I: The benchmark instances considered from OR-

Library by J E Beasley has to schedule 10 jobs in a

single machine for the values of common restrictive due

date parameter ‘h’ taking h = 0.2, 0.4, 0.6 and 0.8. *

indicates optimal objective function values. In the

Table 2, the attributes UB represents known

Upperbound function value, COSTGA represents the

fitness cost value obtained by job scheduling. The

deviation in cost percentage is computed as %

error = ((COST GA-UB) /UB) *100 and the results are

tabulated and given below.

Results in Table 3 shows that optimal objective

function values are achieved for some instances for the

value of h taking 0.6 and 0.8.

Table 1: GA parameters and values

Parameters Values

Population size Job size
Crossover rate pc 0.890
Mutation rate pm 0.005
Number of GA runs 10.000
Number of generations (termination criteria) 1000

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

670

Table 2: Job size = 10, h = 0.2 and 0.4

Instance

N = 10, h = 0.2
--

N = 10, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 1936 1936 0.00 1025 1025 0.00
k = 2 1042 1001 -3.93 615* 615* 0.00
k = 3 1586 1586 0.00 917 917 0.00
k = 4 2139 2139 0.00 1230 1180 -4.07
k = 5 1187 1149 -3.20 630 619 -1.75
k = 6 1521 1469 -3.42 908* 908* 0.00
k = 7 2170 2102 -3.13 1374* 1374* 0.00
k = 8 1720 1680 -2.33 1020 1003 -1.67
k = 9 1574 1574 0.00 876* 876* 0.00
k = 10 1869 1869 0.00 1136 1097 -3.43

Results show that optimal objective function value is obtained for h = 0.4 and indicated by *

Table 3: Job size = 10, h = 0.6 and 0.8

Instance

N = 10, h = 0.6

N = 10, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 841* 860 2.26 818* 1022 24.94
k = 2 615* 877 42.60 615* 1432 132.85
k = 3 793* 927 16.90 793* 1301 64.06
k = 4 815* 815* 0.00 803 952 18.56
k = 5 521* 521* 0.00 521* 820 57.39
k = 6 755* 770 1.99 755* 904 19.74
k = 7 1,101 1083 -1.63 1,083* 1083* 0.00
k = 8 610* 610* 0.00 540* 540* 0.00
k = 9 582* 582* 0.00 554* 596 7.58
k = 10 710 710 0.00 671* 822 22.50

Table 4: Job size = 20, h = 0.2 and 0.4

Instance

N = 20, h = 0.2

N = 20, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 4,431 4394 -0.84 3,066 3073 0.23
k = 2 8,567 8430 -1.60 4,897 4799 -2.00
k = 3 6,331 6146 -2.92 3,883 3838 -1.16
k = 4 9,478 9203 -2.90 5,122 5118 -0.08
k = 5 4,340 4164 -4.06 2,571 2495 -2.96
k = 6 6,766 6527 -3.53 3,601 3536 -1.81
k = 7 11,101 10349 -6.77 6,357 6180 -2.78
k = 8 4,203 3920 -6.73 2,151 2106 -2.09
k = 9 3,530 3414 -3.29 2,097 2078 -0.91
k = 10 5,545 4979 -10.21 3,192 2930 -8.21

Table 5: Job size = 20, h = 0.6 and 0.8

Instance

N = 20, h = 0.6

N = 20, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 2,986 3230 8.17 2,986 4798 60.68
k = 2 3,260 3206 -1.66 2,980 3417 14.66
k = 3 3,600 3845 6.81 3,600 5534 53.72
k = 4 3,336 3317 -0.57 3,040 3419 12.47
k = 5 2,206 2215 0.41 2,206 3049 38.21
k = 6 3,016 3107 3.02 3,016 4859 61.11
k = 7 4,175 4131 -1.05 3,900 4368 12.00
k = 8 1,638 1704 4.03 1,638 2118 29.30
k = 9 1,992 2069 3.87 1,992 2819 41.52
k = 10 2,116 2091 -1.18 1,995 2669 33.78

Table 6: Job size = 50, h = 0.2 and 0.4

Instance

N = 50, h = 0.2

N = 50, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 42,363 40586 -4.19 24,868 23812 -4.25
k = 2 33,637 30661 -8.85 19,279 17907 -7.12
k = 3 37,641 34510 -8.32 21,353 20577 -3.63
k = 4 30,166 27691 -8.20 17,495 16794 -4.01
k = 5 32,604 32377 -0.70 18,441 18010 -2.34
k = 6 36,920 34893 -5.49 21,497 20517 -4.56
k = 7 44,277 42970 -2.95 23,883 23114 -3.22
k = 8 46,065 43761 -5.00 25,402 24978 -1.67
k = 9 36,397 34381 -5.54 21,929 19997 -8.81
k = 10 35,797 33080 -7.59 20,048 19311 -3.68

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

671

Case II: The benchmark instances considered have to
schedule 20 jobs in a single machine for the values of
common restrictive due date parameter ‘h’ taking
h = 0.2, 0.4, 0.6 and 0.8, respectively.

Results shown in Table 4 prove that proposed
algorithm has minimized the objective function fitness
value very well than the upper bound for most of the
instances (Table 5).

Case III: The benchmark instances considered have to
schedule 50 jobs in a single machine for the values of
common restrictive due date parameter ‘h’ taking
h = 0.2, 0.4, 0.6 and 0.8, respectively.

The proposed algorithm generated better results for
50 jobs and the results are listed in Table 6 and 7.

Case IV: The benchmark instances considered have to
schedule 100 jobs in a single machine for the values of
common restrictive due date parameter ‘h’ taking
h = 0.2, 0.4, 0.6 and 0.8, respectively.

The proposed algorithm has minimized the early

tardy penalty costs for all instances for h = 0.2 and 0.4

and shown in Table 8 while Table 9 shows % error

deviation to be high for h = 0.8.

Case V: The benchmark instances considered have to

schedule 200 jobs in a single machine for the values of

common restrictive due date parameter ‘h’ taking

h = 0.2, 0.4, 0.6 and 0.8, respectively.

The proposed algorithm has minimized the early

tardy penalty costs for all instances for h = 0.2 and

some instances for h = 0.4 and the results are tabulated

in Table 10.

Results shown in Table 11 shows that % error

deviation is high for larger values of h.

Case VI: The benchmark instances considered have to

schedule 500 jobs in a single machine for the values of

common restrictive due date parameter ‘h’ taking

h = 0.2, 0.4, 0.6 and 0.8, respectively.

We can infer from Table 12 and 13 that % error

obtained is high for 500 job size for all values of

common due date restrictive parameter ‘h’.

Table 7: Job size = 50, h = 0.6 and 0.8

Instance

N = 50, h = 0.6
--

N = 50, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 17,990 18090 0.56 17,990 22183 23.31
k = 2 14,231 14124 -0.75 14,132 17802 25.97
k = 3 16,497 16719 1.35 16,497 23331 41.43
k = 4 14,105 14527 2.99 14,105 20193 43.16
k = 5 14,650 14780 0.89 14,650 21548 47.09
k = 6 14,251 14383 0.93 14,075 18003 27.91
k = 7 17,715 17734 0.11 17,715 23955 35.22
k = 8 21,367 22042 3.16 21,367 30357 42.07
k = 9 14,298 14530 1.62 13,952 16617 19.10
k = 10 14,377 14538 1.12 14,377 19026 32.34

Table 8: Job size = 100, h = 0.2 and 0.4

Instance

N = 100, h = 0.2

N = 100, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 156,103 148073 -5.14 89,588 88410 -1.31
k = 2 132,605 126852 -4.34 74,854 75122 0.36
k = 3 137,463 131239 -4.53 85,363 81703 -4.29
k = 4 137,265 131510 -4.19 87,730 81527 -7.07
k = 5 136,761 126061 -7.82 76,424 73196 -4.22
k = 6 151,938 141307 -7.00 86,724 79707 -8.09
k = 7 141,613 137426 -2.96 79,854 79935 0.10
k = 8 168,086 162795 -3.15 95,361 97049 1.77
k = 9 125,153 118870 -5.02 73,605 71695 -2.59
k = 10 124,446 121117 -2.68 72,399 73563 1.61

Table 9: Job size = 100, h = 0.6 and 0.8

Instance

N = 100, h = 0.6
--

N = 100, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 72,019 75867 5.34 72,019 105626 46.66
k = 2 59,351 61542 3.69 59,351 82174 38.45
k = 3 68,537 72085 5.18 68,537 99500 45.18
k = 4 69,231 70863 2.36 69,231 90899 31.30
k = 5 55,291 57379 3.78 55,277 71491 29.33
k = 6 62,519 64064 2.47 62,519 84737 35.54
k = 7 62,213 64118 3.06 62,213 79569 27.90
k = 8 80,844 86108 6.51 80,844 122687 51.76
k = 9 58,771 61139 4.03 58,771 88749 51.01
k = 10 61,419 64503 5.02 61,419 88651 44.34

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

672

Table 10: Job size = 200, h = 0.2 and 0.4

Instance

N = 200, h = 0.2

N = 200, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 526,666 518411 -1.57 301,449 312439 3.65
k = 2 566,643 561642 -0.88 335,714 336499 0.23
k = 3 529,919 506860 -4.35 308,278 310671 0.78
k = 4 603,709 605475 0.29 360,852 367763 1.92
k = 5 547,953 536046 -2.17 322,268 323575 0.41
k = 6 502,276 497746 -0.90 292,453 296640 1.43
k = 7 479,651 475161 -0.94 279,576 289283 3.47
k = 8 530,896 514133 -3.16 288,746 295619 2.38
k = 9 575,353 548730 -4.63 331,107 324787 -1.91
k = 10 572,866 560805 -2.11 332,808 342565 2.93

Table 11: Job size = 200, h = 0.6 and 0.8

Instance

N = 200, h = 0.6

N = 200, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 254,268 274825 8.08 254,268 375591 47.71
k = 2 266,028 286505 7.70 266,028 398791 49.91
k = 3 254,647 274743 7.89 254,647 371561 45.91
k = 4 297,269 314016 5.63 297,269 419893 41.25
k = 5 260,455 284769 9.34 260,455 386855 48.53
k = 6 236,160 259425 9.85 236,160 363254 53.82
k = 7 247,555 268765 8.57 247,555 369427 49.23
k = 8 225,572 245431 8.80 225,572 325683 44.38
k = 9 255,029 275624 8.08 255,029 366687 43.78
k = 10 269,236 289384 7.48 269,236 356555 32.43

Table 12: Job size = 500, h = 0.2 and 0.4

Instance

N = 500, h = 0.2

N = 500, h = 0.4
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 3,113,088 3305047 6.17 1,839,902 1977577 7.48
k = 2 3,569,058 3699342 3.65 2,064,998 2218344 7.43
k = 3 3,300,744 3429027 3.89 1,909,304 2063522 8.08
k = 4 3,408,867 3545740 4.02 1,930,829 2092647 8.38
k = 5 3,377,547 3433645 1.66 1,881,221 1996460 6.13
k = 6 3,024,082 3091570 2.23 1,658,411 1832905 10.52
k = 7 3,381,166 3502586 3.59 1,971,176 2119823 7.54
k = 8 3,376,678 3490985 3.39 1,924,191 2043356 6.19
k = 9 3,617,807 3704822 2.41 2,065,647 2162955 4.71
k = 10 3,315,019 3437760 3.70 1,928,579 2056772 6.65

Table 13: Job size = 500, h = 0.6 and 0.8

Instance

N = 500, h = 0.6
--

N = 500, h = 0.8
--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 1,581,233 1843663 16.60 1,581,233 2537261 60.46
k = 2 1,715,332 1967986 14.73 1,715,322 2617714 52.61
k = 3 1,644,947 1938258 17.83 1,644,947 2616006 59.03
k = 4 1,640,942 1921048 17.07 1,640,942 2627574 60.13
k = 5 1,468,325 1675408 14.10 1,468,325 2205653 50.22
k = 6 1,413,345 1678722 18.78 1,413,345 2276736 61.09
k = 7 1,634,912 1953055 19.46 1,634,912 2554413 56.24
k = 8 1,542,090 1805264 17.07 1,542,090 2361021 53.11
k = 9 1,684,055 1964242 16.64 1,684,055 2630581 56.21
k = 10 1,520,515 1762533 15.92 1,520,515 2338440 53.79

Table 14: Job size = 1000, h = 0.2 and 0.4

Instance

N = 1000, h = 0.2

N = 1000, h = 0.4

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 15,190,371 16053614 5.68 8,570,154 10730700 25.21
k = 2 13,356,727 14250523 6.69 7,592,040 9749841 28.42
k = 3 12,919,259 14170251 9.68 7,313,736 9701558 32.65
k = 4 12,705,290 13753833 8.25 7,300,217 9507948 30.24
k = 5 13,276,868 14595085 9.92 7,738,367 10069800 30.13
k = 6 12,236,080 13533622 10.60 7,144,491 9441817 32.16
k = 7 14,160,773 15072351 6.43 8,426,024 10427617 23.75
k = 8 13,314,723 14041803 5.46 7,508,507 9797581 30.49
k = 9 12,433,821 13900636 11.79 7,299,271 9723774 33.22
k = 10 13,395,234 14278128 6.59 7,617,658 9912807 30.13

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015

673

Table 15: Job size = 1000, h = 0.6 and 0.8

Instance

N = 1000, h = 0.6

N = 1000, h = 0.8

--

UB COSTGA Error (%) UB COSTGA Error (%)

k = 1 6,411,581 9774296 52.45 6,411,581 11049760 72.340

k = 2 6,112,598 9248383 51.30 6,112,598 10794675 76.590

k = 3 5,985,538 9443837 57.78 5,985,538 11136987 86.060
k = 4 6,096,729 9210923 51.08 6,096,729 11110292 82.230

k = 5 6,348,242 9425506 48.47 6,348,242 11951954 88.270

k = 6 6,082,142 9115155 49.87 6,082,142 11138921 83.140
k = 7 6,575,879 9677090 47.16 6,575,879 11565517 75.877

k = 8 6,069,658 9096604 49.87 6,069,658 10578145 74.270

k = 9 6,188,416 9274358 49.87 6,188,416 10990477 77.590
k = 10 6,147,295 9580148 55.84 6,147,295 11021781 79.290

Case VII: The benchmark instances considered have to

schedule 1000 jobs in a single machine for the values

of common restrictive due date parameter ‘h’ taking

h = 0.2, 0.4, 0.6 and 0.8, respectively.

Percentage error obtained is high for 1000 jobs for

all values of h can be inferred from Table 14 and 15.

CONCLUSION

In this study, we have carried out several

experiments to determine the best crossover rate.

Results show clearly that genetic algorithm works well

for smaller job sizes 10, 20, 50, 100 and 200,

respectively for restrictive common due date parameter

h = 0.2 and 0.4 but fails to work for larger job sizes 500

and 1000 for larger values of h. This algorithm can be

further extended by incorporating local search

techniques to minimize the penalty cost as well as error

value.

ACKNOWLEDGMENT

The researcher would like to thank the

management of SSN College of Engineering for

funding the High Performance Computing Lab (HPC

Lab) to carry out this research. The author expresses

sincere gratitude to Dr. Chandrabose Aravindan,

Professor, Department of CSE, SSN College of

Engineering for his valuable guidance throughout the

research work.

REFERENCES

Baker, K.R. and G.D. Scudder, 1989. On the

assignment of optimal due dates. J. Oper. Res.

Soc., 40: 93-95.

Biskup, D. and M. Feldmann, 2001. Benchmarks for

scheduling on a single-machine against restrictive

and unrestrictive common due dates. Comput.

Oper. Res., 28: 787-801.

Cheng, T.C.E. and H.G. Kahlbacher, 1991. A proof for
the longest-job-first policy in one-machine
scheduling. Nav. Res. Logist., 38: 715-720.

Feldmann, M. and D. Biskup, 2003. Single-machine
scheduling for minimizing earliness and tardiness
penalties by meta-heuristic approaches. Comput.
Ind. Eng., 44: 307-3233.

Hall, N.G., W. Kubiak and S.P. Sethi, 1991. Earliness-
tardiness scheduling problems II: Weighted
deviation of completion times about a restrictive
common due date. Oper. Res., 39(5): 847-856

Hoogeveen, J.A. and S.L. van de Velde, 1991.
Scheduling around a small common due date. Eur.
J. Oper. Res., 55: 237-242.

James, R.J.W., 1997. Using tabu search to solve the
common due date early/tardy machine scheduling
problem. Comput. Oper. Res., 24: 199-208.

Le, L. and Z. Hong, 2013. Hybridization of harmony
search with variable neighborhood search for
restrictive single machine earliness/tardiness
problem. Inform. Sciences, 226: 68-92.

Lee, C.Y. and S.J. Kim, 1995. Parallel genetic
algorithms for the earliness-tardiness job
scheduling problem with general penalty weights.
Comput. Ind. Eng., 28: 231-243.

Liao, C.J. and C.C. Cheng, 2007. A variable
neighborhood search for minimizing single
machine weighted earliness and tardiness with
common due date. Comput. Ind. Eng., 52:
404-413.

Lin, S.W., S.Y. Chou and K.C. Ying, 2007. A
sequential exchange approach for minimizing
earliness-tardiness penalties of single-machine
scheduling with a common due date. Eur.
J. Oper. Res., 177: 1294-1301.

Nearchou, A.C., 2008. A differential evolution

approach for the common due date early/tardy job

scheduling problem. Comput. Oper. Res., 35(4):

1329-1343.

