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Scheduling Problem 
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Irungattukottai-602 117, Chennai, Tamilnadu, India 
 

Abstract: Most of the real world scheduling problems incorporates Just-In-Time production philosophy which leads 
to a growing interest in the development of various nature inspired metaheuristic algorithms. Single Machine Early 
Tardy scheduling problem (SMETP) is one such problem in which jobs have to be scheduled on a single machine 
against a restrictive common due date parameter and this problem is strongly a NP-hard combinatorial optimization 
problem. As job sizes vary from 10 to 1000, problems of larger job sizes cannot be solved by exact algorithms. 
Hence in this research study, we propose genetic algorithm with variations in local search to find an optimal 
schedule which jointly minimizes the summation of earliness and tardiness cost penalties of ‘n’ jobs from a common 
due date by satisfying the three SMETP scheduling properties. The performance of this evolutionary algorithm is 
validated on the 280 benchmark instances proposed by Biskup and Feldmann for various job sizes and the results 
show that genetic algorithm works well for smaller job sizes. 
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INTRODUCTION 

 
Sequencing and scheduling are decision making 

processes which play a crucial role in manufacturing 
and production industries. Scheduling jobs on a Single 
machine against a restrictive common due date to 
Minimize Early and Tardy Penalties (SMETP) has been 
studied by many researchers for nearly 3 decades with 
the principles of Just-In-Time (JIT) inventory 
management. SMETP problem belongs to a class of 
scheduling problems formally defined as 1/d/�  �

��� αiEi 
+ βiTi.. Each job has three characteristics namely 
processing time, earliness penalty cost and tardiness 
penalty cost associated with it. In this study, we focus 
on single machine restricted common due date 
problems where some jobs may be completed before 
the common due date which is referred to as earliness 
penalty and after the common due date is referred to as 
tardiness penalty respectively. Execution of jobs before 
the common due date may lead to storage of products in 
the industries, whereas execution of jobs after the 
common due date may lead to loss of reputation of 
customer’s goodwill. Hence the objective is to find an 
optimal schedule which exactly finishes execution of 
jobs on the common due date to jointly minimize the 
summation of earliness and tardiness penalties costs. 

Common due date scheduling problems are 
categorized into restrictive and unrestrictive ones. In the 
case of unrestricted common due date scheduling 
problems, all jobs complete its execution before the 

common due date. Hence there is no challenge in 
optimizing algorithms. In our research study, we focus 
on restrictive single machine common due date 
scheduling problems. 

In this study, we address the issues of minimizing 
error offset for the evolutionary algorithms, applying 
local improvement methods in the algorithms to reduce 
the computation time and when to terminate the 
algorithm. 
 
Problem formulation and properties of SMETP: 
Restrictive common due date scheduling problem is 
formulated as follows: 
 

• ‘n’ jobs are available for processing at time zero, 
which have to be processed on a single machine.  

• Each of the jobs needs exactly one operation. No 
pre-emption of jobs is allowed. 

• The processing times pj of the jobs 1...n are 
deterministic, common due date ‘d’ is computed 
as: 

 

d = � pj * ℎ �
���  

 
where h is the restrictive common due date 
parameter.  

• Completion time Cj of each job is computed by: 
 
��

��� . p j -1 + pj 
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• A job is referred to as early if its completion time 
falls below the common due date and the earliness 
penalty of job j is given by Ej = max (0, d - Cj).  

• A job is tardy if its processing time ends after 
common due date and the tardiness penalty is 
computed by Tj = max (Cj - d, 0) respectively for 
all jobs j = 1..n. 
 
The objective in our study is to find an optimal 

schedule σ which jointly minimizes the earliness and 
tardiness penalties of all jobs closer to the due date is 
given as: 
 

σ = � ∝ 	
	 + �	 
	�
���  

 
For the restricted SMETP, an optimal schedule should 
satisfy the following three optimality properties. 
 
Property 1: No idle times are inserted between 
consecutive jobs (Cheng and Kahlbacher, 1991). 
 
Property 2: The optimal schedule is ‘V’ shaped around 
the common due date. But a straddling job may exist, 
i.e., a job whose execution starts before and finishes 
after the due date, (Baker and Scudder, 1989). 
 
Property 3: Either the processing time of first job starts 
at time zero or one job is completed at the due date in 
the optimal schedule (Hoogeveen and van de Velde, 
1991). 

Due to the complexity of SMETP, branch and 
bound techniques and several nature inspired 
metaheuristic algorithms like genetic algorithms, 
simulated annealing, tabu search, differential evolution, 
artificial bee colony optimization and hybrid 
evolutionary algorithms are addressed by various 
researchers to tackle this problem. 
 

LITERATURE REVIEW 
 

Many researchers have studied about the nature of 
SMETP which is strongly proved to be a NP hard 
combinatorial optimization problem. Baker and 
Scudder review the literature on scheduling models 
with Early Tardy penalties in 1989. The researchers 
pointed out that the single-machine scheduling problem 
with a restricted common due date has never been 
addressed in the literature. By that time, Hall et al. 
(1991) proved that this problem is NP-hard. Due to its 
complexity, many authors addressed this problem using 
nature inspired metaheuristic methods and compared 
their results with state-of-the-art metaheuristics. Lee 
and Kim (1995) developed a parallel genetic algorithm, 
while James (1997) used Tabu search approach to 
address this.  

Biskup and Feldmann (2001) presented 280 
benchmarks for the restrictive common due-date 
problem with general earliness and tardiness penalties. 
Feldmann and Biskup (2003) studied the restricted E/T 
problem postponing the schedule by applying different 

metaheuristics: Evolutionary Search (ES), Simulated 
Annealing  (SA)  and  Threshold Accepting (TA). Lin 
et al. (2007) used a sequential exchange approach while 
Liao and Cheng (2007) proposed a variable 
neighborhood search for minimizing single machine 
weighted earliness and tardiness with common due 
date. Nearchou (2008) used Differential Evolution 
algorithm. Le and Hong (2013) developed a hybrid 
metaheuristic Permutation-based Harmony search 
algorithm by incorporating Variable Neighborhood 
Search (PHVNS) and demonstrated that their algorithm 
shows high competitiveness by comparing with some 
state-of-the-art metaheuristics. 
 

MATERIALS AND METHODS 
 
Proposed algorithm: 
Genetic algorithm with local improvement for 
SMETP: John Holland’s invention of Genetic 
algorithm is a population-based metaheuristic 
evolutionary algorithm that evolves from one 
population of chromosomes to a new population by 
natural evolution such as reproduction, crossover and 
mutation and follows Charles Darwin’s “Survival of the 
fittest”. 
 
Sequence representation: We use permutation 
encoding mechanism to represent a sequence of jobs. A 
sequence is mapped into a chromosome with the alleles 
assuming different and non-negative integer values in 
the (1..n) interval. For a 5 jobs problem, the complete 
sequence is represented as ((1) (2) (3) (4) (5)) where [i] 
is the position of the i

th
 job in the sequence. The 

objective function is to find a sequence σ which jointly 
minimizes the sum of early and tardy cost penalties for 
single machine restrictive common due date scheduling 
problems. 
 

Initial population generation and fitness evaluation: 

Jobs are scheduled according to p/α heuristic for jobs 

that complete before the common due date and p/β 

heuristic for jobs that complete after the common due 

date respectively. This is used to generate the first 

individual in the initial population. The remaining 

sequences in initial population are generated by 

constructive heuristics which places [i] job in all 

possible combinations.  
 
Reproduction of chromosomes: We have used 

roulette wheel selection strategy to select the 

chromosome with minimum fitness value to evolve 

from current population to the new population. 
 
Ordered crossover: We have implemented ordered 

crossover operator for the mating parents which are 

selected randomly from the mating pool. Two crossover 

points for the mating parents are randomly generated to 

determine the range for crossover. The length of the 

crossover is in the range with Lower Limit (LL) (1, n-1) 
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Fig. 1: Ordered crossover operation 

 

 
 

Fig. 2: Sliding mutation operation 

 

 
 
Fig. 3: Pair-wise random swap mutation operation 
 

 
 

Fig. 4: Adjacent pair-wise swap mutation operation 

 

job position and the Upper Limit (UL) (LL, n). Ordered 

crossover is explained with an example (Fig. 1): 

 

LL = 3, UL = 7 

O1 5 6 1 10 8 4

 9 7 2 3 

 

Offspring is generated by retaining the elements of 

the parent that falls within the crossover range and 

inheriting the remaining elements from the parent in the 

order in which they appear in that parent beginning 

from the first position following the second crossover 

point and the elements are skipped if they are already 

present in the newly generated offspring.  

 

Mutation: The resultant offspring represents the 

sequence σ and the value of the total early and tardy 

penalties z (σ) is calculated by using Eq. (1). We have 

implemented sliding mutation strategy followed by 

pair-wise random swap mutation. Two alleles in a 

parent are selected based on two randomly generated 

positions. The allele in position 2 is shifted to the allele 

in position 1 and the allele in position 1 is shifted right 

by 1 place and follows the sane order of alleles in the 

parent and results in new offspring (Fig. 2).  

The newly generated offspring again undergoes 

pair-wise random swap mutation and generates a new 

offspring σ1. Two alleles in a parent are selected 

randomly and their positions are swapped and result in 

a new offspring (Fig. 3).  

The fitness function z (σ1) is computed and 

checked with the fitness value of z (σ). If z (σ1) < z (σ), 

the newly generated offspring is added to the 

population set and the sequence with fitness value z (σ) 

is removed from the population set by applying elitism 

replacement strategy. If there is no improvement after 

several generations, the original offspring is added to 

the population set. 

 

Mutation with local improvement: Each resultant 
offspring of job size ‘n’ generated after mutation 
operation again undergoes adjacent pair-wise swap 
mutation and yields new sequences (Fig. 4).  

The fitness function is computed for all new 

offsprings and the offspring which returns minimum 

fitness value is added to the new population set.  

Finally out of n * n offsprings, ‘n’ offsprings are 

added to the new population set which form the 

chromosomes for the next generation. This undergoes 

roulette wheel selection, ordered crossover and 
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mutation with local improvement for subsequent 

generations. 

 

Algorithm 1:  

Algorithm for initial population generation and 

fitness evaluation: Procedure Init_Population 

 
Input: Number of instances, number of jobs, 
processing time for each operation, earliness penalty for 
each job, tardiness penalty for each job, common due 
date for the jobs 
 
Output: Schedule of jobs 
Encode each individual in population of size, indiv 
Generate initial population by calling Init_Population() 
method. 
While stopping criteria not met 
1. Sort jobs according to Shortest Processing Time 

heuristic to construct the initial sequence. 
2. Construction of remaining sequences by 

constructive heuristics. 
Repeat 

3. Compute processing time, completion time, 
earliness and tardiness cost penalties of all jobs in 
the sequence as 
a. ctime [j] = ctime [j-1] + ptime [j] 
b. ptm + = ptime [j] 
c. early [j] = cdd-ctime [j] 
d. tardy [i] = ctime [j] -cdd 

4. Place jobs to the left in ‘V’ shaped arrangement for 
the jobs with completion time less than the 
common due date value; otherwise place jobs to its 
right. 

5. Compute fitness value of the sequence.  
Until the last sequence in initial population 

End while 
End procedure 
 
Algorithm 2:  
Genetic algorithm: Procedure ga () 
 
Input: Number of jobs, processing time for each 
operation, earliness penalty for each job, tardiness 
penalty for each job, common due date for the jobs 

 

Output: Schedule of jobs 

Perform Roulette wheel selection strategy 

Do ordered crossover to generate a new offspring 

Perform random swap and sliding mutation  

 

Algorithm 3:  

Local improvement: For all newly generated members 

in the population after mutation 

1. Choose a newly generated offspring (σ2) of job 

size n 

2. Generate new sequences for the offspring (σ2) by 

adjacent pair-wise swap mutation. 

3. Evaluate the fitness function for the newly 

generated offsprings. 

4. Retain the offspring with the minimum fitness 

value. 

5. Add this offspring to the new population set 

 

Termination criteria: We have generated 2n + n
2
 

individuals for all job sizes ‘n’ in each generation and 

the best 3n individuals are added to the population set. 

We run our genetic algorithm by fixing the number of 

generations as 1000. 

 

Materials: The benchmark instances of restricted 

single-machine common due date problems are 

proposed by Biskup and Feldmann (2001) on job sizes 

n = 10,  n = 20,  n = 50,  n = 100,  n = 200,  n = 500  

and  n = 1000. The common due date d is calculated by 

d = round (SUM_P * h) where round (X) gives the 

biggest integer which is smaller than or equal to X; 

Sum_P denotes the sum of the processing times of the n 

jobs and the parameter h is used to calculate more or 

less restrictive common due dates. For the following 

280 benchmarks we used h = 0.2, h = 0.4, h = 0.6  and  

h = 0.8. The instances are available at http:// 

people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html. 

 

RESULTS AND DISCUSSION 

 
Experiments conducted: The developed evolutionary 
algorithm is implemented in Java language on a 
computer with 2.27 GHz Intel (R) Core i5 CPU and 3 
GB RAM with main memory, running Windows 8.1 
operating system with Java NetBeans IDE 8.2. We 
solved 280 benchmark instances for the different sizes  
n = 10,  n = 20,  n = 50,  n = 100,  n = 200,  n = 500  
and  n = 1000 with h = 0.2, h = 0.4, h = 0.6 and h = 0.8. 
For all the 280 benchmark problems, parameters and its 
values chosen for our study are listed in Table 1. 
 
Case I: The benchmark instances considered from OR-

Library by J E Beasley has to schedule 10 jobs in a 

single machine for the values of common restrictive due 

date parameter ‘h’ taking h = 0.2, 0.4, 0.6 and 0.8. * 

indicates optimal objective function values. In the  

Table 2, the attributes UB represents known 

Upperbound function value, COSTGA represents the 

fitness cost value obtained by job scheduling. The 

deviation  in  cost  percentage  is  computed  as  %  

error = ((COST GA-UB) /UB) *100 and the results are 

tabulated and given below. 

Results in Table 3 shows that optimal objective 

function values are achieved for some instances for the 

value of h taking 0.6 and 0.8. 

 
Table 1: GA parameters and values 

Parameters Values 

Population size Job size 
Crossover rate pc 0.890 
Mutation rate pm 0.005 
Number of GA runs   10.000 
Number of generations (termination criteria) 1000 
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Table 2: Job size = 10, h = 0.2 and 0.4 

Instance 

N = 10, h = 0.2 
---------------------------------------------------------------------------- 

N = 10, h = 0.4 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 1936 1936 0.00 1025 1025 0.00 
k = 2 1042 1001 -3.93 615* 615* 0.00 
k = 3 1586 1586 0.00 917 917 0.00 
k = 4 2139 2139 0.00 1230 1180 -4.07 
k = 5 1187 1149 -3.20 630 619 -1.75 
k = 6 1521 1469 -3.42 908* 908* 0.00 
k = 7 2170 2102 -3.13 1374* 1374* 0.00 
k = 8 1720 1680 -2.33 1020 1003 -1.67 
k = 9 1574 1574 0.00 876* 876* 0.00 
k = 10 1869 1869 0.00 1136 1097 -3.43 

Results show that optimal objective function value is obtained for h = 0.4 and indicated by * 
 

Table 3: Job size = 10, h = 0.6 and 0.8 

Instance 

N = 10, h = 0.6 
----------------------------------------------------------------------------- 

N = 10, h = 0.8 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 841* 860 2.26 818* 1022 24.94 
k = 2 615* 877 42.60 615*  1432 132.85 
k = 3 793* 927 16.90 793* 1301 64.06 
k = 4 815* 815* 0.00 803 952 18.56 
k = 5 521* 521* 0.00 521* 820 57.39 
k = 6 755* 770 1.99 755* 904 19.74 
k = 7 1,101 1083 -1.63 1,083* 1083* 0.00 
k = 8 610* 610* 0.00 540* 540* 0.00 
k = 9 582* 582* 0.00 554* 596 7.58 
k = 10 710 710 0.00 671* 822 22.50 
 

Table 4: Job size = 20, h = 0.2 and 0.4 

Instance 

N = 20, h = 0.2 
----------------------------------------------------------------------------- 

N = 20, h = 0.4 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 4,431 4394 -0.84 3,066 3073 0.23 
k = 2 8,567 8430 -1.60 4,897 4799 -2.00 
k = 3 6,331 6146 -2.92 3,883 3838 -1.16 
k = 4 9,478 9203 -2.90 5,122 5118 -0.08 
k = 5 4,340 4164 -4.06 2,571 2495 -2.96 
k = 6 6,766 6527 -3.53 3,601 3536 -1.81 
k = 7 11,101 10349 -6.77 6,357 6180 -2.78 
k = 8 4,203 3920 -6.73 2,151 2106 -2.09 
k = 9 3,530 3414 -3.29 2,097 2078 -0.91 
k = 10 5,545 4979 -10.21 3,192 2930 -8.21 
 

Table 5: Job size = 20, h = 0.6 and 0.8 

Instance 

N = 20, h = 0.6 
----------------------------------------------------------------------------- 

N = 20, h = 0.8 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 2,986 3230 8.17 2,986 4798 60.68 
k = 2 3,260 3206 -1.66 2,980 3417 14.66 
k = 3 3,600 3845 6.81 3,600 5534 53.72 
k = 4 3,336 3317 -0.57 3,040 3419 12.47 
k = 5 2,206 2215 0.41 2,206 3049 38.21 
k = 6 3,016 3107 3.02 3,016 4859 61.11 
k = 7 4,175 4131 -1.05 3,900 4368 12.00 
k = 8 1,638 1704 4.03 1,638 2118 29.30 
k = 9 1,992 2069 3.87 1,992 2819 41.52 
k = 10 2,116 2091 -1.18 1,995 2669 33.78 
 

Table 6: Job size = 50, h = 0.2 and 0.4 

Instance 

N = 50, h = 0.2 
----------------------------------------------------------------------------- 

N = 50, h = 0.4 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 42,363 40586 -4.19 24,868 23812 -4.25 
k = 2 33,637 30661 -8.85 19,279 17907 -7.12 
k = 3 37,641 34510 -8.32 21,353 20577 -3.63 
k = 4 30,166 27691 -8.20 17,495 16794 -4.01 
k = 5 32,604 32377 -0.70 18,441 18010 -2.34 
k = 6 36,920 34893 -5.49 21,497 20517 -4.56 
k = 7 44,277 42970 -2.95 23,883 23114 -3.22 
k = 8 46,065 43761 -5.00 25,402 24978 -1.67 
k = 9 36,397 34381 -5.54 21,929 19997 -8.81 
k = 10 35,797 33080 -7.59 20,048 19311 -3.68 
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Case II: The benchmark instances considered have to 
schedule 20 jobs in a single machine for the values of 
common  restrictive  due  date  parameter  ‘h’  taking   
h = 0.2, 0.4, 0.6 and 0.8, respectively. 

Results shown in Table 4 prove that proposed 
algorithm has minimized the objective function fitness 
value very well than the upper bound for most of the 
instances (Table 5). 
 
Case III: The benchmark instances considered have to 
schedule 50 jobs in a single machine for the values of 
common  restrictive  due  date  parameter  ‘h’  taking   
h = 0.2, 0.4, 0.6 and 0.8, respectively. 

The proposed algorithm generated better results for 
50 jobs and the results are listed in Table 6 and 7.  
 
Case IV: The benchmark instances considered have to 
schedule 100 jobs in a single machine for the values of 
common  restrictive  due  date  parameter  ‘h’  taking   
h = 0.2, 0.4, 0.6 and 0.8, respectively. 

The proposed algorithm has minimized the early 

tardy penalty costs for all instances for h = 0.2 and 0.4 

and shown in Table 8 while Table 9 shows % error 

deviation to be high for h = 0.8. 

 

Case V: The benchmark instances considered have to 

schedule 200 jobs in a single machine for the values of 

common  restrictive  due  date  parameter  ‘h’  taking   

h = 0.2, 0.4, 0.6 and 0.8, respectively. 

The proposed algorithm has minimized the early 

tardy penalty costs for all instances for h = 0.2 and 

some instances for h = 0.4 and the results are tabulated 

in Table 10. 

Results shown in Table 11 shows that % error 

deviation is high for larger values of h. 

 

Case VI: The benchmark instances considered have to 

schedule 500 jobs in a single machine for the values of 

common  restrictive  due  date  parameter  ‘h’  taking   

h = 0.2, 0.4, 0.6 and 0.8, respectively. 

We can infer from Table 12 and 13 that % error 

obtained is high for 500 job size for all values of 

common due date restrictive parameter ‘h’. 
 
Table 7: Job size = 50, h = 0.6 and 0.8 

Instance 

N = 50, h = 0.6 
------------------------------------------------------------------------------ 

N = 50, h = 0.8 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 17,990 18090 0.56 17,990 22183 23.31 
k = 2 14,231 14124 -0.75 14,132 17802 25.97 
k = 3 16,497 16719 1.35 16,497 23331 41.43 
k = 4 14,105 14527 2.99 14,105 20193 43.16 
k = 5 14,650 14780 0.89 14,650 21548 47.09 
k = 6 14,251 14383 0.93 14,075 18003 27.91 
k = 7 17,715 17734 0.11 17,715 23955 35.22 
k = 8 21,367 22042 3.16 21,367 30357 42.07 
k = 9 14,298 14530 1.62 13,952 16617 19.10 
k = 10 14,377 14538 1.12 14,377 19026 32.34 

 

Table 8: Job size = 100, h = 0.2 and 0.4 

Instance 

N = 100, h = 0.2 
------------------------------------------------------------------------------- 

N = 100, h = 0.4 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 156,103 148073 -5.14 89,588 88410 -1.31 
k = 2 132,605 126852 -4.34 74,854 75122 0.36 
k = 3 137,463 131239 -4.53 85,363 81703 -4.29 
k = 4 137,265 131510 -4.19 87,730 81527 -7.07 
k = 5 136,761 126061 -7.82 76,424 73196 -4.22 
k = 6 151,938 141307 -7.00 86,724 79707 -8.09 
k = 7 141,613 137426 -2.96 79,854 79935 0.10 
k = 8 168,086 162795 -3.15 95,361 97049 1.77 
k = 9 125,153 118870 -5.02 73,605 71695 -2.59 
k = 10 124,446 121117 -2.68 72,399 73563 1.61 

 
Table 9: Job size = 100, h = 0.6 and 0.8 

Instance 

N = 100, h = 0.6 
------------------------------------------------------------------------------ 

N = 100, h = 0.8 
-------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 72,019 75867 5.34 72,019 105626 46.66 
k = 2 59,351 61542 3.69 59,351 82174 38.45 
k = 3 68,537 72085 5.18 68,537 99500 45.18 
k = 4 69,231 70863 2.36 69,231 90899 31.30 
k = 5 55,291 57379 3.78 55,277 71491 29.33 
k = 6 62,519 64064 2.47 62,519 84737 35.54 
k = 7 62,213 64118 3.06 62,213 79569 27.90 
k = 8 80,844 86108 6.51 80,844 122687 51.76 
k = 9 58,771 61139 4.03 58,771 88749 51.01 
k = 10 61,419 64503 5.02 61,419 88651 44.34 
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Table 10: Job size = 200, h = 0.2 and 0.4 

Instance 

N = 200, h = 0.2 
----------------------------------------------------------------------------- 

N = 200, h = 0.4 
---------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 526,666 518411 -1.57 301,449 312439 3.65 
k = 2 566,643 561642 -0.88 335,714 336499 0.23 
k = 3 529,919 506860 -4.35 308,278 310671 0.78 
k = 4 603,709 605475 0.29 360,852 367763 1.92 
k = 5 547,953 536046 -2.17 322,268 323575 0.41 
k = 6 502,276 497746 -0.90 292,453 296640 1.43 
k = 7 479,651 475161 -0.94 279,576 289283 3.47 
k = 8 530,896 514133 -3.16 288,746 295619 2.38 
k = 9 575,353 548730 -4.63 331,107 324787 -1.91 
k = 10 572,866 560805 -2.11 332,808 342565 2.93 

 
Table 11: Job size = 200, h = 0.6 and 0.8 

Instance 

N = 200, h = 0.6 
----------------------------------------------------------------------------- 

N = 200, h = 0.8 
---------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 254,268 274825 8.08 254,268 375591 47.71 
k = 2 266,028 286505 7.70 266,028 398791 49.91 
k = 3 254,647 274743 7.89 254,647 371561 45.91 
k = 4 297,269 314016 5.63 297,269 419893 41.25 
k = 5 260,455 284769 9.34 260,455 386855 48.53 
k = 6 236,160 259425 9.85 236,160 363254 53.82 
k = 7 247,555 268765 8.57 247,555 369427 49.23 
k = 8 225,572 245431 8.80 225,572 325683 44.38 
k = 9 255,029 275624 8.08 255,029 366687 43.78 
k = 10 269,236 289384 7.48 269,236 356555 32.43 

 
Table 12: Job size = 500, h = 0.2 and 0.4 

Instance 

N = 500, h = 0.2 
----------------------------------------------------------------------------- 

N = 500, h = 0.4 
---------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 3,113,088 3305047 6.17 1,839,902 1977577 7.48 
k = 2 3,569,058 3699342 3.65 2,064,998 2218344 7.43 
k = 3 3,300,744 3429027 3.89 1,909,304 2063522 8.08 
k = 4 3,408,867 3545740 4.02 1,930,829 2092647 8.38 
k = 5 3,377,547 3433645 1.66 1,881,221 1996460 6.13 
k = 6 3,024,082 3091570 2.23 1,658,411 1832905 10.52 
k = 7 3,381,166 3502586 3.59 1,971,176 2119823 7.54 
k = 8 3,376,678 3490985 3.39 1,924,191 2043356 6.19 
k = 9 3,617,807 3704822 2.41 2,065,647 2162955 4.71 
k = 10 3,315,019 3437760 3.70 1,928,579 2056772 6.65 

 
Table 13: Job size = 500, h = 0.6 and 0.8 

Instance 

N = 500, h = 0.6 
------------------------------------------------------------------------------ 

N = 500, h = 0.8 
---------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 1,581,233 1843663 16.60 1,581,233 2537261 60.46 
k = 2 1,715,332 1967986 14.73 1,715,322 2617714 52.61 
k = 3 1,644,947 1938258 17.83 1,644,947 2616006 59.03 
k = 4 1,640,942 1921048 17.07 1,640,942 2627574 60.13 
k = 5 1,468,325 1675408 14.10 1,468,325 2205653 50.22 
k = 6 1,413,345 1678722 18.78 1,413,345 2276736 61.09 
k = 7 1,634,912 1953055 19.46 1,634,912 2554413 56.24 
k = 8 1,542,090 1805264 17.07 1,542,090 2361021 53.11 
k = 9 1,684,055 1964242 16.64 1,684,055 2630581 56.21 
k = 10 1,520,515 1762533 15.92 1,520,515 2338440 53.79 

 
Table 14: Job size = 1000, h = 0.2 and 0.4 

Instance 

N = 1000, h = 0.2 
----------------------------------------------------------------------------- 

N = 1000, h = 0.4 
----------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 15,190,371 16053614 5.68 8,570,154 10730700 25.21 
k = 2 13,356,727 14250523 6.69 7,592,040 9749841 28.42 
k = 3 12,919,259 14170251 9.68 7,313,736 9701558 32.65 
k = 4 12,705,290 13753833 8.25 7,300,217 9507948 30.24 
k = 5 13,276,868 14595085 9.92 7,738,367 10069800 30.13 
k = 6 12,236,080 13533622 10.60 7,144,491 9441817 32.16 
k = 7 14,160,773 15072351 6.43 8,426,024 10427617 23.75 
k = 8 13,314,723 14041803 5.46 7,508,507 9797581 30.49 
k = 9 12,433,821 13900636 11.79 7,299,271 9723774 33.22 
k = 10 13,395,234 14278128 6.59 7,617,658 9912807 30.13 



 

 

Res. J. App. Sci. Eng. Technol., 11(6): 666-673, 2015 

 

673 

Table 15: Job size = 1000, h = 0.6 and 0.8 

Instance 

N = 1000, h = 0.6 

----------------------------------------------------------------------------- 

N = 1000, h = 0.8 

---------------------------------------------------------------------- 

UB COSTGA Error (%) UB COSTGA Error (%) 

k = 1 6,411,581 9774296 52.45 6,411,581 11049760 72.340 

k = 2 6,112,598 9248383 51.30 6,112,598 10794675 76.590 

k = 3 5,985,538 9443837 57.78 5,985,538 11136987 86.060 
k = 4 6,096,729 9210923 51.08 6,096,729 11110292 82.230 

k = 5 6,348,242 9425506 48.47 6,348,242 11951954 88.270 

k = 6 6,082,142 9115155 49.87 6,082,142 11138921 83.140 
k = 7 6,575,879 9677090 47.16 6,575,879 11565517 75.877 

k = 8 6,069,658 9096604 49.87 6,069,658 10578145 74.270 

k = 9 6,188,416 9274358 49.87 6,188,416 10990477 77.590 
k = 10 6,147,295 9580148 55.84 6,147,295 11021781 79.290 

 
Case VII: The benchmark instances considered have to 

schedule 1000 jobs in a single machine for the values  

of common  restrictive  due  date  parameter  ‘h’  taking 

h = 0.2, 0.4, 0.6 and 0.8, respectively.   

Percentage error obtained is high for 1000 jobs for 

all values of h can be inferred from Table 14 and 15. 

 

CONCLUSION 

 

In this study, we have carried out several 

experiments to determine the best crossover rate. 

Results show clearly that genetic algorithm works well 

for smaller job sizes 10, 20, 50, 100 and 200, 

respectively for restrictive common due date parameter 

h = 0.2 and 0.4 but fails to work for larger job sizes 500 

and 1000 for larger values of h. This algorithm can be 

further extended by incorporating local search 

techniques to minimize the penalty cost as well as error 

value. 
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