
Research Journal of Applied Sciences, Engineering and Technology 11(8): 902-909, 2015

DOI: 10.19026/rjaset.11.2102

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: June 24, 2015 Accepted: August 15, 2015 Published: November 15, 2015

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

902

Research Article
Bidirectional Virtual Bit-slice Synchronizer: A Scalable Solution for Hardware-level

Barrier Synchronization

Jamil Al Azzeh
Department of Computer Engineering, Al Balqa Applied University, Amman, 11134, Jordan

Abstract: In the study, a new distributed hardware-level method for barrier synchronization of parallel processes in
a mesh-connected parallel system is presented, which is based on the use of a virtually sliced barrier control network
timed by two bidirectional clock pulse waves originating from the corner processors of the mesh.

Keywords: Barrier synchronization, hardware-level barrier, mesh-connected parallel system, parallel processes

INTRODUCTION

Barrier synchronization is known to be a specific

form of massive interprocessor communication in
multicomputer and multiprocessor systems which
guarantees a given precedence relation between code
sections. It involves no data transfer, but highly affects
the computer system performance.

A barrier, a cornerstone entity of barrier

synchronization, is typically defined as a logical

delimiter in the control flow of a parallel program, at

which all or some processes (threads) must wait for

their peers to proceed simultaneously (Axelrod, 1986).

When a barrier is executed, two phases take place.

During the first phase (known as “reduction”), each

participating process reports of its arrival and starts

waiting for the barrier to complete. The second phase

(known as “distribution”) begins as soon as all the

participants have reached the barrier and it goes on until

all the peers are notified that they can resume. Barrier is

a fundamental collective communication procedure in

parallel programs developed using the MPI (Forum,

2012) and OpenMP (OpenMP Architecture Review

Board, 2011) parallel programming standards.

According to these standards, specific syntax to support

barrier synchronization on a process group or a thread

team is used (MPI_Barrier() and #pragma omp barrier

in C/C++, respectively).

In the four past decades, there have been developed

a wide range of methods for barrier synchronization.

Depending on the implementation level existing

methods can be divided into three classes: software

(Tsafrir and Feitelson, 2002; Li et al., 2004; Tzeng

et al., 2005), hybrid (Moh et al., 2001; Hindam, 2004;

Sampson et al., 2006) and hardware (Thinking

Machines, 1992; Delgado and Kofuji, 1996;

Ramakrishnan et al., 1999; Cohen et al., 2000; Johnson

and Hoare, 2001; Zotov, 2010; Ashraf et al., 2012; Al-

Azzeh, 2013). Hardware barriers have shown to be a

better solution in general because they are order-of-

magnitude faster than software methods and produce no

extra message traffic compared to hybrid solutions. At

the same time, the lack of flexibility is the main

problem of hardware-level methods. In most cases,

hardware barriers impose stringent limitations on the

barrier group configuration and/or the number of

barriers in an application and, therefore, the effective

use of these methods in practice is not possible.
In Zotov (2010), a new hardware-level distributed

barrier mechanism for mesh-connected parallel systems
has been presented to solve some flexibility issues. This
approach, called the Distributed Virtual Bit-Slice
Synchronizer (DVBSS), puts away the restrictions on
the configuration of barrier groups and, in theory, it
eliminates the limitations on the number of barriers in
the system. However, DVBSS requires multi-bit “long”
wraparound connections between corner processor units
of the mesh which are rather complicated to be
implemented and bring extra delay in the
synchronization latency. Yet, the addition of new
processor units to the mesh becomes an issue because
of the necessity to physically reconnect the wraparound
multi-bit channels.

In the study, we extend the DVBSS approach
presented in Zotov (2010). The objective of the study is
to present a modified distributed hardware barrier
architecture making it possible to transfer barrier state
signals through the mesh in two opposite directions
between two corner units thus eliminating the wrap
around connections of the DVBSS network and
providing better flexibility and scalability. We
demonstrate that our extended scheme accepts
dynamically defined (possibly overlapping) barrier
groups of arbitrary size and shape, allowing
noncontiguous group member allocations. Our

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

903

simulation study shows that barrier synchronization

duration in most cases is kept as low as O (10) µsec
depending on the peak number of instantiated barrier
groups which corresponds to DVBSS and existing
hybrid methods.

MATERIALS AND METHODS

In the study, we consider d-dimensional mesh-

connected distributed memory parallel systems. A

target system is supposed to consist of
1 2 d
k k k× × ×K

processing units, where ki denotes the width of an ith

dimension of the mesh. Each unit
1 2, , , dx x xK is

connected to the corresponding neighbors by at most

2D bidirectional links. Each processing unit is supposed

to be capable of executing a single process of the

application, but there can be several applications

running in parallel in separate partitions of the system.

It is assumed that each processor is connected to a

router to send and receive messages. Two types of

messages are considered-barrier and non-barrier. Non-

barrier messages are those that perform all

communication operations, except barrier

synchronization. Barrier messages are those that

implement barrier synchronization and are transferred

to/from dedicated control network (synchronizer)

superposed on the main communication network of the

system.
We suppose that the parallel system under

consideration is programmed using the extended MPI
standard, version 3.x (Forum, 2012), but we do not
restrict our barrier mechanism to MPI-based
environment only. We assume that barrier groups are
instantiated and released at runtime and there is at least
one global barrier group in the application at any given
moment. It is supposed that processes can be
dynamically created and destroyed and that any process
may be a participant of several barrier groups at the
same time.

It is assumed that a collection of parallel

applications are running in parallel in the system, each

occupying a separate partition and having its own set of

barrier groups. No limitations on the size and shape of

partitions are set, yet partitions may be noncontiguous.

It is supposed that partitioning is dynamically defined,

meaning that a partition may change as new processes

are created or terminated. Each barrier group can be

synchronized at any number of barriers and any barrier

can be inside a loop which in turn can be nested. Thus,

multiple simultaneous barriers are allowed.

We suppose that a separate control network

consisting of identical barrier units is superposed on the

Fig. 1: Directed graph representing the topology of the control network (2D case)

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

904

system. Each barrier unit (which we denote

1 2, , , dx x xK) is connected to the corresponding router

with a separate channel and can receive/transmit
messages from/to the local processor. Barrier units are
connected to each other with multi-bit channels in such
a way that any unit has the same set of neighbors as that
of the corresponding local processor. Bidirectional
connections are used, therefore, any neighbor of a given
barrier unit can be both a receiver and a transmitter.

Figure 1 shows a directed graph representing the

topology of the control network constructed for a 2D

mesh parallel system. Circles denote barrier units, while

solid rectangles denote processing elements together

with their routers.

Each barrier unit is comprised of slices. A slice is a

single-bit “section” of the corresponding barrier unit.

The slices of a barrier unit are numbered consecutively

0, 1, 2, …, m and operate in parallel. Each slice of a

barrier unit is connected to the corresponding slices of

the neighbor barrier units according to the network

topology shown in Fig. 1. The set of slices having the

same number i in all barrier units together with their

connections make a single-bit physical control network

(which can also be understood as i
th

 control network

slice).

To make a single-bit physical control network

capable of performing concurrent synchronizations, we

apply a virtualization scheme based on time-division

channeling. We assume that there exists a set of p

single-bit virtual control networks in a physical one.

Also it is supposed that there is a distributed switching

mechanism capable of activating the virtual networks

one after another in a pipeline fashion. Barrier groups

are mapped onto virtual control networks in such a way

that parallel groups are assigned to different networks.

As a result of such virtualization, each physical slice

can be a participant of multiple barrier episodes

associated with appropriate virtual networks allocated

to different barrier groups. A physical slice includes p

virtual slices numbered 0, 1, 2, …, p, where p is

understood as the upper bound on the number of barrier

groups assignable onto a physical control network (i.e.,

the virtualization “depth” of the synchronization

mechanism).

Fig. 2: Logical configuration of a physical slice for the reduction phase (d-dimensional case)

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

905

Figure 2 shows the logical configuration of a

physical slice necessary to implement the reduction

phase of barrier synchronization according to our

method (reduction slice).

Hardwired inputs IN1.1, IN1.2, …, IN1.d are used

to connect the slice to the neighbor transmitter slices,

i.e. those slices whose coordinates are equal to or less

than those of the current unit by one at the only position

(note that if there is no neighbor along a certain

dimension j, e.g., node <1, 0> in Fig. 1 has no neighbor

above, input IN1.j should be constant high). The only

fan-out connection OUT is employed for wiring the

slice to the neighbor receiver slices, i.e., those slices

whose coordinates are equal to or greater than those of

the current unit by one at the only position (again, there

may be no neighbor along a certain dimension j, e.g.,

node <0, k2-1> in Fig. 1 has no neighbor below). Inputs

IN1.i and output OUT are necessary to receive barrier

state signals indicating the completion of the reduction

phase for different barrier groups.

The functions of the remaining terminals are as

follows. Single-bit input INC is used to receive clock

pulses from the distributed clocking mechanism

providing coordinated operation of the physical slices

across the d-dimensional mesh (detailed below). The

system reset input terminal INR allows to initially clear

the flip-flops and registers. Single-bit input IN2 is

required to check out a mask bit indicating if the current

processor unit is a participant of the current barrier

group (logical “0” stands for “yes” and logical “1” - for

“no”). Single-bit input IN3 is necessary to check out a

state bit indicating if the current processor has reached

the current barrier (taken into account if IN2 equals

“0”). [log2 p] -bit-wide input channel IN4 is introduced

to receive the target virtual slice numbers from the local

processor to indicate which slice is allocated to the next

barrier to arrive at. [log2 p] -bit-wide input channel IN5

is necessary to receive the virtual slice count, i.e., how

many virtual slices are currently allocated to barrier

groups in the entire system. The system clock input bus

IN6 is required to supply clock pulses from the local

processor.

In addition to the input and output terminals, the

slice in Fig. 2 contains a collection of p flip-flops, a p-to-

1 multiplexer MX, a 1-to-p demultiplexer DX, a target

virtual slice register, a slice count register, a counter, a

Fig. 3: Logical configuration of a physical slice for the distribution phase (d-dimensional case)

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

906

comparator CMP and gates 1 and 2 and an OR gate 1.

The flip-flops together with the counter, demultiplexer

DX and multiplexer MX are used to implement the

proposed virtualization scheme. Flip-flop i (1≤i≤p)

contains the state of the reduction phase for the current

barrier b (fi) of barrier group fi currently mapped onto

virtual slice i. If all the participants of group fi whose

coordinates are less or equal to those of the current one

have reached barrier b (fi), then flip-flop i is set to

logical “1”. Otherwise it is reset to “0”. Which state

should be the next is determined by the output of AND

gate 1.

AND gate 1 together with OR gate 1 AND gate 2

and comparator CMP are used to produce the state

signal for the current barrier b (fi). The output of AND

gate 1 may go high only if all the transmitter neighbors

of the current unit supply the signals of logical “1” to

inputs IN1.1, IN1.2, …, IN1.d. If the above condition

does hold, then the output of AND gate 1 starts

depending on the output of OR gate 1. OR gate 1 issues

“1”, if the current processor is not a participant of

barrier group fi (the mask bit IN2 = “1”) or if it is a

participant and AND gate 1 issues the signal of logical

“1”. Otherwise the OR gate’s output is held low

meaning that the current processor hasn’t yet arrived at

the current barrier. AND gate 1 produces high output

level, if the current processor has reached the current

barrier (the state bit IN3 = “1”) and the comparator’s

output is high which implies that the reduction phase

for the target virtual slice is in progress (i.e., the

counter’s content is the same as the target virtual slice

read from the corresponding register). If CMP issues

low logical level, then the state bit is not taken into

account because the current virtual slice is different

from the target virtual slice. Note that the counter is

zeroed as soon as it reaches the maximum virtual slice

number contained by the slice count register.

Figure 3 shows the logical configuration of a

physical slice necessary to implement the distribution

phase of barrier synchronization according to the

proposed method (distribution slice).

The diagram in Fig. 3 is similar to that in Fig. 2,

except that it contains d input invertors, a NAND gate 1

and it has no inputs IN2 and IN3. The function of its

elements and terminals is the same as that of the above

diagram. The only difference is that negated barrier state

signals are transferred and processed by this unit. The

negate operator is performed in hardware by units

1 21, 1, , 1dk k k− − −K and 0,0, ,0K
 as follows. Unit

1 21, 1, , 1dk k k− − −K
 directly transfers output OUT of its

reduction slices (Fig. 2) to all inputs IN1.1, IN1.2, …,

IN1.d of its distribution slices (Fig. 3), respectively.

Unit 0,0, ,0K
, in turn, directly transfers output OUT of

its distribution slices (Fig. 3) to all inputs IN1.1, IN1.2,

…, IN1.d of its reduction slices (Fig. 2), respectively.

This means that the reduction slices of unit

1 2
1, 1, , 1

d
k k k− − −K

are connected to its distribution

slices and the distribution slices of unit 0,0, ,0K
are

connected to its reduction slices, respectively (i.e., the

consecutive numbering of slices is strictly adhered to).

Note that the reduction slice of Fig. 2 and the

distribution slice of Fig. 3 may use the same slice count

and target virtual slice registers, while the counters and

the comparators must be separate because of the

distributed clocking scheme adopted.

To guarantee correct operation of the proposed

barrier synchronization scheme, a suitable clocking

mechanism is required. For this purpose we adopt the

Distributed Circulating Wave clocking (DCW-clocking)

technique described in paper (Zotov, 2010). However,

the usage of the DCW-clocking “as is” isn’t possible

because of the difference in the control network logic,

topology and schemata. For this reason we build up an

extended distributed clocking mechanism applicable to

meshes of any dimension on the basis of the DCW-

clocking scheme. We call the new clocking mechanism

the Bidirectional Distributed Wave clocking (BDW-

clocking).

The basic idea of the BDW-clocking technique is

that two trains of clock pulses are simultaneously

injected into the control network at the opposite

“corners” of the mesh 0,0, ,0K and
1 21, 1, , 1dk k k− − −K

.The distribution of clock pulses in the barrier slices is

synchronized by adding the pulses that arrive from the

transmitter neighbors and issuing replica pulses to the

receiving neighbors of the current unit. This guarantees

synchronized virtual slice switching across the entire

mesh. The distribution of clock pulses through the

control network can be imagined as the propagation of

two series of waves of timed pulses. The first series

(forward pulse wave) is transferred from unit 0,0, ,0K

to unit
1 21, 1, , 1dk k k− − −K

to control the reduction phase

and the second series (backward pulse wave) propagates

from unit
1 21, 1, , 1dk k k− − −K

 to unit 0,0, ,0K
to control

the distribution phase. The frequency of clock waves can

be set by dividing the system clock frequency of

processor units 0,0, ,0K
 and

1 21, 1, , 1dk k k− − −K
.

Figure 4 schematically illustrates the clock pulse

distribution order for the control network of a 2D mesh

system according to the BDW-clocking technique. To

make the figure clear, separate units are indicated with

squares and linkages between them are not shown. Note

that the d-dimensional case can be understood in the

same way.

To implement the BDW-clocking technique, two

clocking networks are superposed on the control

network, one for the reduction phase and the other for the

distribution phase. The reduction and distribution

clocking networks are responsible for transferring

forward and backward pulse waves, respectively (Fig. 4).

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

907

Both these networks consist of identical cells, each cell
corresponding to a particular barrier unit.

A cell of a clocking network is diagrammed in

Fig. 5. The cell consists of a position D-type flip-flop and

gates 1 and 2, an OR gate 1 and a univibrator UV 1.

AND gate 1 has 1d + inputs at all and its first d inputs

are connected to the outputs of OR gates 1 of the

transmitter neighbors. The output of OR gate 1 is wired

to the corresponding inputs of AND gates 1 of the

receiver neighbors. The univibrator’s output is connected

to input INC of the local reduction and the distributed

slices (Fig. 2 and 3). The input terminals of the position

flip-flop and AND gate 2 are connected to the local

processor.

The position flip-flops remain clear across the

entire mesh, except that of unit 0,0, ,0K
in the forward

clocking network and that of unit
1 21, 1, , 1dk k k− − −K

 in

the backward clocking network; these two flip-flops are

set by unit position pulses received from the

corresponding local processors. Such configuration of

the position flip-flops in the forward clocking network

guarantees that clock pulses are injected into this

network by local processor 0,0, ,0K
 (AND gate 1 is

blocked and gate 2 is open). Analogously, in the

backward clocking network it is guaranteed that clock

pulses are injected into this network by local processor

1 21, 1, , 1dk k k− − −K
. At the same time, in the other cells

0,0

1 21, 1k k− −

Fig. 4: The clock pulse distribution order for the control network of a 2D mesh system

Fig. 5: The logical diagram of a cell of a clocking network (d-dimensional case)

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

908

Table 1: Comparison results

Barrier method Flexibility Scalability Applicability

The CM-5 barrier network

(Thinking Machines, 1992)

Low (barrier groups of powers of 2 in

size are acceptable only)

Poor: Physical reconfiguration of the barrier

network is necessary when new processors are
added to the system.

Not applicable to

mesh topologies

Delgado-Kofuji’s distributed

hardware synchronizer
(Delgado and Kofuji, 1996)

Low (barrier groups must be of

rectangular shape)

Fair: The number of concurrent barriers is the

key limitation.

Applicable to 2D

meshes only

The MDBS network

(Ramakrishnan et al., 1999)

Low (barrier groups must be mapped

onto neighboring processors only)

Good: The number of barriers in the system is a

limiting factor.

Applicable to 2D

meshes only
The BTM network (Moh

et al., 2001)

High (no limitations on barrier group

configuration)

Good: The number of barrier registers is a

limiting factor.

Applicable to 2D

meshes only

DVBSS (Zotov, 2010) High (no limitations on barrier group
configuration)

Fair: Hardwired wraparound connections
between corner units of the mesh need

reconnection when new units are added.

Applicable to d-
dimensional

meshes

BVBSS (the proposed
solution)

High (no limitations on barrier group
configuration)

Good: The number of physical slices is a
limiting factor. The local memory mapping

scheme can alleviate the problem.

Applicable to d-
dimensional

meshes

AND gate 2 remains blocked and the pulses issued by
the local processors are ignored. Oppositely, in these
cells AND gate 1 is maintained open, therefore the
clock pulses from the transmitter neighbors are Added,
the output of AND gate 1 eventually goes high and
makes the univibrator UV produce a replica pulse. Thus
the clock pulse wave is relayed to reach the next
receiver neighbors in the forward/backward clocking
network and affect the corresponding barrier units. This
provides the clock pulse distribution order illustrated in
Fig. 4.

RESULTS AND DISCUSSION

The results of comparison of the proposed method to
well-known hardware-level barriers are summarized in
Table 1.

Table 1 shows that the proposed method is a more
flexible alternative compared to the peers to barrier
synchronize mesh-connected parallel systems of any
dimension.

Taking into account the hardware-level
implementation of the proposed method, we have
estimated the BVBSS hardware-level complexity. We
calculated the minimum number of generic logic gates
(AND, OR, NOR, NAND) necessary to build up the
barrier synchronization hardware depending on d, m, p,

1 2, , , dk k kK
. Table 2 summarizes some calculation

results regarding the 2D case (d = 2). To simplify
calculations (with no loss of generality) we assumed
that k1 = k2 and m = p. Based on Table 2, one can see
that hardware complexity limitations (VLSI limitations,
in particular) are satisfied even in large meshes with
high m and p. For example, in a 32×32 mesh with
m = p = 32

the hardware-level complexity of a barrier

unit will be as low as 26024 logic gates (including the
complexity of the clocking networks).

The synchronization latency of the proposed
barrier synchronization method was evaluated through
simulation. We conducted a series of simulation studies

on a 32×32 mesh synthetic parallel system. The
examined system was supposed to run a number of
parallel applications, each having a dynamically

Table 2: Hardware-level complexity of a 2D control network

m, p

k1 = k2

--

4 8 16 32

4, 4 9792 39168 156672 626688
8, 8 31872 127488 509952 2039808

16, 16 112192 448768 1795072 7180288

32, 32 416384 1665536 6662144 26648576

changing set of processes. We assumed the “one-

process-to-a-processor” allocation model during our

experiments. During our simulation, barrier groups

were instantiated and released randomly (the

participants of barrier groups were picked at random).

Synchronized groups were also randomly picked from

the set of existing ones. Several synchronized groups

were possible at the same time. The number of barrier

episodes for each group was also taken at random. In

our experiments, we measured the time required for a

barrier state signal to travel from the last completed

process of a barrier group to the last resumed

participant of the same group. By summing up the

startup and wakeup delays and average signal travel

time, we calculated the synchronization latency of the

proposed barrier mechanism. Resulted from our

simulation, we found out that the synchronization

latency stays as short as O (10) µsec depending on the

number of instantiated barrier groups and slightly

increasing with the virtual slice count p (subject to the

average gate delay is 5 nsec). This is known to be not

worse than the latency of known hardware barriers.

CONCLUSION

In the present study, we have presented a

distributed hardware-level barrier synchronization
method for d-dimensional mesh-connected parallel
systems, the Bidirectional Virtual Bit-Slice
Synchronizer (BVBSS). The proposed method is based
upon a specific virtualization scheme making it possible
to have p virtual control networks (slices) superposed
on a physical one, while there may be up to m physical
slices operating in parallel. Each virtual slice can be

Res. J. App. Sci. Eng. Technol., 11(8): 902-909, 2015

909

dynamically allocated to any barrier group. Our method
employs a specific wave clocking technique to switch
between virtual slices in a parallel pipeline fashion,
sending two series of pulse waves originating from two
corner processors across the mesh to provide faster
barrier operation.

The BVBSS scheme has been shown to be more

flexible than the existing hardware barriers; it accepts

dynamically defined (possibly overlapping) barrier

groups of arbitrary size and shape and noncontiguous

group member allocation is possible. Our simulation

study has proved the BVBSS to be as fast as the other

hardware barrier synchronization models making it

possible to synchronize arbitrary processes in O (10)

µsec in a 32×32 mesh parallel system.

NOMENCLATURE

d : The number of dimensions in the mesh

ik
:

The width of an i
th

 dimension of the

 mesh

1 2, , , dx x xK

:

The coordinates of a unit along the

 dimensions

m : The number of physical barrier slices in

 a unit

p : The number of virtual slices in each

 physical slice

i, j : Indices

fi
: The current barrier group for virtual

 slice i

()ib f

:

The current barrier for barrier group
i
f

IN1.i, IN2 : The input terminals of the barrier unit

OUT : The fan-out output of the barrier unit

REFERENCES

Al-Azzeh, J.S., 2013. Review of methods of distributed

barrier synchronization of parallel processes in

matrix VLSI systems. Int. Rev. Comput. Softw.,

8(4): 927-932.

Ashraf, A.K., I.V. Zotov, A.M. Hazem and

D.E. Skopin, 2012. Distributed barrier

synchronization procedure with the dynamic

limitation of the coordinating signal propagation

area. Int. Rev. Comput. Softw., 7(3): 991-995.

Axelrod, T.S., 1986. Effects of synchronization barriers

on multiprocessor performance. Parallel Comput.,

3: 129-140.

Cohen, W.E., D.W. Hyde and R.K. Gaede, 2000. An

optical bus-based distributed dynamic barrier

mechanism. IEEE T. Comput., 49(12): 1354-1365.
Delgado, M. and S.T. Kofuji, 1996. A distributed

barrier synchronization solution in hardware for
2D-mesh multicomputers. Proceeding of the 3rd

International Conference on High Performance
Computing, pp: 368-373.

Forum, M.P.I., 2012. MPI: A Message-passing
Interface Standard. Version 3.0, Message Passing
Interface Forum. Retrieved from:
//http://www.mpi-forum.org/docs/docs.html.

Hindam, T., 2004. Connecting the distributed hardware
agents for barrier synchronization operation.
Proceeding of the International Conference on
Electrical, Electronic and Computer Engineering,
pp: 261-264.

Johnson, T.A. and R.R. Hoare, 2001. Cyclical cascade
chains: A dynamic barrier synchronization
mechanism for multiprocessor systems. Proceeding
of the 15th International Parallel Distributed
Processing Symposium, pp: 2061-2068.

Li, J., J.F. Martinez and M.C. Huang, 2004. The thrifty
barrier: energy-aware synchronization in shared-
memory multiprocessors. Proceeding of the 10th
International Symposium on High Performance
Computer Architecture, pp: 14-23.

Moh, S., C. Yu, D. Lee, H.Y. Youn, D. Han and D.
Lee, 2001. Four-ary tree-based barrier
synchronization for 2D meshes without
nonmember involvement. IEEE T. Comput., 50(8):
811-823.

OpenMP Architecture Review Board, 2011. OpenMP
Application Program Interface Version 3.1.
Retrieved from: //http://www.openmp.org/mp-
documents/OpenMP3.1.pdf.

Ramakrishnan, V., I.D. Scherson and R. Subramanian,
1999. Efficient techniques for nested and disjoint
barrier synchronization. J. Parallel Distr. Com.,
58(8): 333-356.

Sampson, J., R. González, J.F. Collard, N.P. Jouppi,
M. Schlansker and B. Calder, 2006. Exploiting
fine-grained data parallelism with chip
multiprocessors and fast barriers. Proceeding of the
39th Annual IEEE/ACM International Symposium
Microarchitecture, pp: 235-246.

Thinking Machines, 1992. The Connection Machine
CM-5 Technical Summary. Thinking Machines
Corporation, Cambridge, MA.

Tsafrir, D. and D.G. Feitelson, 2002. Barrier
synchronization on a loaded SMP using two-phase
waiting algorithms. Proceeding of the International
Parallel Distributed Processing Symposium, pp:
80-87.

Tzeng, N.F., B. Kasula and H. Wu, 2005. Efficient
barrier synchronization on wireless computing
systems. Proceeding of the 11th International
Conference on Parallel Distributed Systems, pp:
782-788.

Zotov, I.V., 2010. Distributed virtual bit-slice
synchronizer: A scalable hardware barrier
mechanism for n-dimensional meshes. IEEE
T. Comput., 59(9): 1187-1199.

