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Research Article 

Theoretical Calculation of Critical Values of Technological Residual Stresses 
 

T. Mendebayev, A. Gabdullina, Y. Shayakhmetov, R. Ibragimova and Sh. Rakisheva 
Department of Standardization, Certification and Technology of Machine Tool Building, Kazakh 

National Technical University Named after K.I. Satpayev, Almaty, Kazakhstan 
 
Abstract: In the present article the analysis of deformations when processing low-rigid and thin-walled products is 
carried out, calculation of values of critical values of residual stresses is made. The principles of creation of 
technological processes for such details, the called "stabilizing technologies" are offered. 
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INTRODUCTION 

 
In the construction process for the machining of 

thin-walled parts is extremely important picture 
diagrams circumferential residual stress getting such 
that the amount of deformation of the shell of their 
action does not exceed the tolerance on the diametrical 
size. Character diagrams district residual stresses 
determined by the conditions of the machining 
operation and is caused mainly removing irregular 
allowances, uneven texture, changes in the shape and 
size of the grains, as well as violations of the integrity 
of the material surface layer. 

Diagrams of residual stresses are experimentally 
measured investigated and widely used in mechanical 
engineering technology the method of Davidenkova-
Zaks, by electromechanical etching strained parts of the 
surface layer (Burtsev et al., 1999; Isaev and 
Malinovski, 2001; Mendebayev, 1995; Suslov, 2000; 
Sinopalnikov and Grigoryev, 2003; Timiryazev et al., 
2011; Vasilyev et al., 2005). 

These factors lead to the localization of the surface 
layer parts of significant quantities of residual stresses. 
For certain values of these variables, even uniformly 
distributed around the circumference of the stress, thin-
walled shells may lose its stable circular shape and go 
to another intermediate equilibrium state. Since the 
field of residual stresses discrete, the resulting 
equilibrium state is maintained.  

Theoretical and practical calculations of the critical 
values of technological residual stresses are given in the 
works (Burtsev et al., 1999; Isaev and Malinovski, 
2001; Mendebayev, 1995; Suslov, 2000; Sinopalnikov 
and Grigoryev, 2003; Timiryazev et al., 2011; Vasilyev 
et al., 2005). 

Vasilyev et al. (2005) and Burtsev et al. (1999) 
experimentally checked that residual stresses affect the 
stability of the form of thin-walled of cylindrical shells. 
They pointed out that the sign and quantities of residual 
stresses influence the cutting conditions and the 
geometric parameters of cutting tools. It is assumed that 
a scientifically substantiated process technology should 
be optimal. It must provide a predetermined quality of 
the machines and it should save to the long time, which 
in turn depends on the critical values of residual stress 
in the surface layer. 

Therefore the aim of this study is the theoretical 
definition of the relationship between the residual 
stresses and distortions of the form of thin-walled of 
cylindrical shells. 
 

MATERIALS AND METHODS 
 

In theory, the task of establishing the relationship 
between the district and the residual voltage distortion 
of the shell performed using the energy method of 
resolving equations of elastic stability of cylindrical 
shells (Mendebayev, 1995). 

For a more complete scientific study of this 
important theoretical concepts necessary to clarify 
another aspect of the problem associated with the 
critical value of the residual stress, which takes the 
form of a shell or out of balance leads to hardening and 
cracking of the treated surface of the part again. 

These critical levels of residual stresses established 
theoretical calculation must undergo tested in a 
production environment and to find their practical 
confirmation. If they really are true, the concept of 
building manufacturing processes little hard and thin-
walled parts must be completely based on scientific 
principles  and  other  provisions than the existing basic 
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Fig. 1: Thin-walled casing of an underwater torpedo 
 

 
 
Fig. 2: Pipeline roller. 1 shell of a roller of the pipeline 
 
principles and provisions of the construction of 
traditional technologies.  

The similar concept claiming for the basic 
principles of development of stabilizing technologies is 
supposed   in   case   of   manufacture of the thin-
walledcasing of underwater torpedoes (Fig. 1), shells of 
rollers of pipelines (Fig. 2) etc. Mechanical engineering 
details. The casing of torpedoes is made of hot-rolled 
sheet steel of brand 1H16N4B of a martensit class. 
 

RESULTS AND DISCUSSION 
 

The theory of Biot (Bozhanov, 1997) within 
Kirchhoff-Lyava's hypothesis is applied to 
establishment of value of critical value of residual stress 
and the task of stability of a jacket from residual 
stresses is considered. 

After obtaining the equations of stability for any 
shell make the transition to a semi-infinite cylindrical 
shell,  as  a  special case and the problem is solved 
using the Bubnov-Galerkin (Bozhanov, 1997; Vlasov, 
1994). 

The expression defining critical value of 
environing effort (tension) depending on the form of 
loss of stability is found. 

For receiving the equation of the perturbed status 
we use the equilibrium equations received in operation 
(Bozhanov, 1997), assuming that lengthenings and shift 
are small in comparison with unit. 

When this is not considered a deformation of the 
middle surface. If the subcritical state of the shell 
considered momentless, then the equilibrium equations 
are of the form: 
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Here, 
,ଵܣ  ଶ : Parameters to Lyamaܣ
 ଶ : Principal curvatureܭ,ଵܭ
 
The critical state of the shell of torque and equilibrium equation have the form: 
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where, ௜ܺ ,  ௜ -проекции векторов projections of vectors of external effort and the moment to the direction of axesܮ
 .ଶߙ	and	ଵߙ
Change of curvature is taken as in operation (Amandosov and Bozhanov, 1975): 
 

௜ܭ ൌ ݇௜ ൅
డమௐ

డఈ೔
మ                                                                                                                   (3)  

 
According to Bio theory, the body is in the perturbed status under the influence of initial stresses of Sij and the 

perturbed status is characterized by a small increment of tension Sij and full tension in the perturbed status is defined 
by the following formula: 
 

௜௝ߪ ൌ ௜ܵ௝ ൅  ௜௝                                                                                                                  (4)ݏ
 

Then internal forces and the moments of ݐ௜௝, ௜ܰ௝, ݉௜௝, which are logging in (2) and arising in connection with 
transition from one status to another, are defined as follows: 
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These internal forces and the moments arising owing to transition from one status to another are so small that 

their levels above the first and works can be neglected. 
Comparing system of Eq. (2) and (1), we find two groups of the equations: 
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From which the Eq. (6) -the balance of power equation and the Eq. (6) -the equation of equilibrium points. 
Solving them together, we get the condition of critical state of the shell: 
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Communication "tension-deformation" According to Bio theory in relation to the two-dimensional task will 
register the following formula: 
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where, 
ߝ ,Lame constant = ߤ ,ߣ ൌ ଵଵߝ ൅  .ଶଶߝ
 

Deformation of any layer of the characteristics of deformation of the middle surface of the shell to define 
(Geier, 1973): 
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In  considering  the  problems  of  stability  of  the  shell  can  take  the  assumption  of  "non-stretchable" 

middle surface (9) and assume a massive body shell in his "plane". Then, at a constant value of Lame parameters 
(9), we obtain: 
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In expression (10) is omitted index "n". Knowing (10) and (8) can establish a connection between the forces, 

moments and deflection "W". 
Substituting it into (7) we can obtain the equation of the perturbed state relative deflection "W". 

According to Vlasov (1994), Ymamoto et al. (1969) and Volmir (1967) the residual stresses are purely elastic 
regardless of the causes. Considering the above statement, Eq. (7) with the law (8), with the symbols (5) yields the 
critical value of the residual stress forces. 

Consider a semi-infinite resistance cylindrical shell (Fig. 1), the radius R, the wall thickness h coordinate 
system z, φ, R, where the z axis is directed along the axis of the cylinder parallel to the generator. Parameters 
,ଵܣ  :and Lame curvature in a coordinate system z, φ, R have the following meanings	ଶܣ
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Rewrite (10) with (11): 
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Equation (7) in cylindrical coordinates has the form: 
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Substituting (8) and (5) determine the forces and moments: 
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Substituting Eq. (14), (15) in Eq. (13), we obtain the equation of state of the perturbed cylindrical shell relative 

deflection. 
If we assume now that: 
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We solve the resulting equation by specifying its solution in the form: 
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where, n-number of waves 
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Integrating (20) with (19), we find the value of the efforts of the district: 
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Fig. 3: Different kinds of distortions of the body from the roundness. A tetrahedron, in-cut, with oval 
 

Substituting the value of ߪఏ௞௣ ൌ 0,01ሺߣ ൅
 :obtain ,2ݒ−21ݒ1൅ܧൌߤ൅2ߣ	;߮߮ܶߤ2
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Here 
 ఏ௞௣ = Critical circumferential residual stress, MPaߪ
R, h = The radius and the wall thickness of the 

cylinder, mm 
E  = Modulus of elasticity of the first kind, MPa 
v  = Poisson's ratio 
 

From the analysis of formula (23) can be seen that 
the critical voltage depends on the physical-mechanical 
properties of cladding material (E, v) and the ratio of 
shell wall thickness to the radius h/R. When h/R = 
const, the critical value of the stress is the number of 
waves distortion. From Eq. (23) it follows that for an 
ellipsoid shape distortion (n = 2) for the studied steels 
1H16N4B, 10H15N27, 16H20K6N2 σокр = 520 for a 
three-sided shape (n = 3) σокр = 230 MPa for tetrahedral 
(n = 4) σокр = 130 МРа (Fig. 3).  
 

CONCLUSION 
 

These critical levels of residual stresses 
Establishing theoretical calculations have been tested in 
a production environment and have found their 
practical confirmation. Therefore, the concept of 
building manufacturing processes little hard and thin-
walled products, which are named as "stabilizing 
technology" should be based on scientific principles 
and other provisions than the existing basic principles 
and provisions of the construction of traditional 
technologies. However, authors continue to work on 
this subject and additions to the existing findings and, 
as a consequence, the development of this direction of 
research are possible in the future. 
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