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Abstract: In this study, a metaheuristic based on the Non-dominated Sorting Genetic Algorithm type II (NSGA-II) 
is proposed to solve the Multi-Criterions Job Shop Scheduling Problem (MCJSSP) under resources availability 
constraints. Availability periods and starting time of maintenance activities are supposed to be flexible. The 
MCJSSP requires, simultaneous minimization several antagonistic criteria, such as the maximum completion time of 
all jobs (Makespan), production cost and maintenance cost. To validate the proposed approach we tested it on forty-
four instances references. The results show that our approach is experimentally promising to solve practical 
problems. 
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INTRODUCTION 
 

Scheduling is a form of decision making, which 
plays a vital role in manufacturing and service 
industries (Zhang et al., 2008). The establishment of an 
effective and efficient scheduling has become a 
necessity as to maintain competitive advantages in 
markets increasingly fickles. Indeed, many 
investigations have been deployed so far, according to 
the configurations workshops: single machine (Hfaiedh 
et al., 2014), Parallel machine (Liao et al., 2005), Flow 
shop (Gao et al., 2013), Job shop, open shop 
(Abdelmaguid, 2014) and hybrid (Wei-ling and Jing, 
2013), the type or types of criteria to be optimized and 
the constraints to be considered (preemption, 
resumable, reentrant, etc.). 

The majority, of the literature dedicated to the 
scheduling problem, suppose the constant availability 
of resources. But in reality they may be unavailable for 
reasons provided (preventive maintenance,) or 
unexpected (corrective maintenance,). Therefore, the 
consideration of the unavailability remains one of the 
decisive and acute factors, in manufacturing systems. In 
order to overcome the negative effects caused by the 
unavailability, three scheduling strategies of production 
and maintenance tasks have been proposed in the 
literature. The first one is said to separate strategy 
where the production and maintenance activities are 
considered independent, which can cause conflicts 
between the two services (Moradi et al., 2011). The 
second is the sequential strategy, consist to schedule 
one of the two activities and use the other as a further 
constraint (Benbouzid-Sitayeb et al., 2006). In spite of 

the drawbacks, this strategy, it is still much better than 
the separate strategy. The Last is a strategy of 
integration of the two activities, which must be done in 
a simultaneous, in order to increase productivity and 
reduce costs (Chung et al., 2009; Mohamed-Chahir and 
Mustapha, 2014). The major part of the research has 
focused on the single criterion optimization and mainly 
the makespan. In reality, they must expand to multi-
criteria scheduling problems, since the objectives of the 
two services are complementary and contradictory 
(Bagchi, 1999, 2001; Garen, 2004). The Job-Shop 
Scheduling Problem (JSSP) is the most encountered in 
the industry. It is one of the most difficult problems of 
combinatorial optimization. Their complexity increases 
with the size of the search space, the number of 
constraints imposed and the number of targeted criteria. 
The membership of JSSP to NP-hard class is 
demonstrated (Garey et al., 1976; Garey and Johnson, 
1979; Lawler et al., 1993; Ombuki and Ventresca, 
2004; Al-Anzi et al., 2006). 

The investigation dedicated to the scheduling 
problems under constraints availability was limited 
initially to single machine, Adiri et al. (1996) and Leon 
and Wu (1992) and parallel machines (Schmidt, 1988; 
Lee, 1996; Ayten, 1999). Later, it extended to flow 
shop scheduling problem. In besides, the job-shop 
problem under constraints of availability was also 
considered, Aggoune (2002) proposed a branch and 
bound algorithm with lower bound based on two-job 
decomposition for the job shop problem with heads and 
tails and unavailability periods. Zribi et al. (2008) for 
solving the .JSSP with Availability Constraints, they 
propose in the first part, a heuristic, based on priority 
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rules to solve and improve the assignment problem. In 
the second part, they introduce a genetic algorithm to 
solve the sequencing problem. The integrated 
preventive maintenance scheduling and production 
planning was found in Ruiz and Stützle (2008). 
Integrated preventive maintenance and job shop 
scheduling problem for a single-machine discussed in 
Cassady and Kutangolu (2005) and Ping et al. (2014). 

A number of papers discussed multi-objective 
scheduling problems; however, scheduling with 
multiple objectives is not investigated fully (Jian et al., 
2013). This study addresses robust scheduling for a 
flexible job-shop scheduling problem with random 
machine breakdowns. Two objectives makespan and 
robustness are simultaneously considered. Robustness 
indicated by the expected value of the relative 
difference between the deterministic and actual 
makespan. Jun-Qing et al. (2014) presents a novel 
discrete artificial bee colony algorithm for solving the 
multi-objective flexible job shop scheduling problem 
with maintenance activities. Performance criteria 
considered are the maximum completion time, the total 
workload of machines and the workload of the critical 
machine. Deming (2013) Solve a scheduling problem 
with uncertainty, preventive maintenance and multiple 
objectives are rarely investigated. Interval job shop 
scheduling problem with non-resumable jobs and 
flexible maintenance is considered and an effective 
multi-objective artificial bee colony is proposed, in 
which an effective decoding procedure is used to build 
the schedule and handle preventive maintenance 
operation. The objective is to minimize interval 
makespan and a newly defined objective called total 
interval tardiness. Demion (2011) study a fuzzy job 
shop scheduling problem with n resumable jobs 
processed on m machines are considered and an 
efficient swarm-based neighborhood search is 
proposed, in which an ordered operation-based 
representation and the decoding procedure 
incorporating preventive maintenance are given. 
Karthikeyan et al. (2014) presented a hybrid discrete 
firefly algorithm to solve the multi-objective flexible 
job shop scheduling problem with limited resource 
constraints. The main constraint of this scheduling 
problem is that each operation of a job must follow a 
process sequence and each operation must be processed 
on an assigned machine. These constraints are used to 
balance between the resource limitation and machine 
flexibility. They considered simultaneously three 
minimization objectives: the maximum completion 
time, the workload of the critical machine and the total 
workload of all machines. Azadeh et al. (2015) 
proposes a novel hybrid algorithm based on computer 
simulation and adaptive neuro-fuzzy inference system 
to select optimal dispatching rule for each machine in 
job shop scheduling problems under uncertain 
conditions so that makespan is minimized. They 
contributes in two important ways. First, the inherent 

uncertainty of JSSP is reflected in fuzzy processing 
times. Second, this is the first study that develops an 
approach based on computer simulation. Tian and 
Tomohiro (2010) consider a multi-objective job-shop 
scheduling problem. The machines are subject to 
availability constraints that are due to preventive 
maintenance, machine breakdowns or tool replacement. 
Two optimization criteria were considered; the 
makespan for the jobs and the total cost for the 
maintenance activities. 

To the present day, till now the MCJSSP under 
availability constraints, have been received 
considerable attention because of their importance both 
in the fields of manufacturing and combinatorial 
research. A vast number of these researches considers 
that availability duration and unavailability start time of 
machines, are known and fixed in advance. Sometimes, 
similar set of objectives are observed in more than ones. 
Although many researchers work in this field (Bahmani 
et al., 2015). However, this document has two 
important advantages, which makes it distinguished to 
our knowledge from the others. On the one hand, it 
provides a mathematical model to schedule 
simultaneously the production and maintenance 
activities within availability constraints, to minimize 
three different and antagonistic objective functions; 
Makespan (the maximum completion time of all jobs), 
production cost and maintenance cost, defined in the 
following. On the second hand, the availability duration 
considered variable, depending on the load of the 
engine. Likewise, the start date of unavailability may 
vary in a time window, limited by a lower time before 
which a penalty advance is imposed (the still usable is 
rejected) and an upper date after which a lateness 
penalty are approved (the machine may fail). The 
downtime is calculated and optimized via the 
probabilistic Weibull model (Fermin and Guardiola, 
2014) where the systematic preventive Maintenance 
Purpose (MPS) and corrective Maintenance (TM) are 
considered. The meta-heuristic algorithm NSGA-II 
(Non-dominated Sorting Genetic Algorithm type II), 
has been proposed to find the optimal and near-optimal 
solutions for the formulated problem. Finally, 44 
instances have been used to validate our approach. The 
results show that the proposed approach is 
experimentally promising to solve practical problems. 
 

THE PROPOSED METAHEURISTIC  

METHOD 

 
The JSP is the most difficult class of combinational 

optimization. Garey and et al. (1976) demonstrated that 
JSPs are Non-deterministic Polynomial-time hard (NP-
hard). Hence, we cannot always find an exact solution 
in a reasonable computation time. The small size 
instances of the JSS problem can be solved with 
reasonable computational time by exact algorithms such 
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as branch-and-bound (Carlier and Pison, 1989; 
Applegate and Cook, 1991) and the time orientation 
approach (Martin, 1996). However, when the problem 
size increases, the computational time of exact methods 
grows exponentially. Many approximate methods have 
been developed to overcome the limitations of exact 
enumeration techniques. The heuristic algorithm are 
usually resolved in a reasonable time and gives 
acceptable solutions, but do not guarantee optimality of 
the final solution, that is, a feasible solution is obtained 
which is likely to be either optimal or near-optimal. 
These algorithms can be broadly classified into two 
groups: local search type heuristics and meta-heuristics. 
The first one, include shifting bottleneck procedure 
(Adams et al., 1988; Huang and Yin, 2004), guided 
local search (Balas and Vazacopoulos, 1998), constraint 
propagation (Brinkkötter and Brucker, 2001; Dorndorf 
and Pesch, 1995) and parallel Greedy Randomized 
Adaptive Search Procedure (Aiex et al., 2003). The 
comprehensive survey of the JSS problem can be found 
in Aarts and Lenstra (1997), Blazewicz et al. (1996) 
and Jain and Meeran (1999). The latter consists of 
simulated annealing (Yamada and Nakano, 1996; 
Steinhöfel et al., 2002; Aydin and Fogarty, 2004), Tabu 
Search (Pezzella and Merelli, 2000; Murovec and 
Šuhel, 2004), Ant Colony Optimization (Colorni et al., 
1994; Blum and Sampels, 2004), Neural Network 
(Satake et al., 1999; Jain and Meeran, 1998), Particle 
Swarm Optimization and Genetic Algorithm (Ye and 
Yan, 2010; Yu-Yan et al., 2014). 

Since the early work of Schaffer (1985), a number 
of evolutionary multi-criteria optimization approaches 
have been proposed: MOGA, NPGA (Horn et al., 1994) 
and NSGA (Srinivas and Deb, 1994). The NSGA-II 
algorithm (Elitist Non-dominated sorting genetic 
algorithm) proposed by Deb (2001) and Nain et al. 
(2008) and described in Emmerich and Naujoks (2004) 
and Goal et al. (2007), appears as one of the most 
efficient algorithms to find the optimal set of Pareto 
with an excellent variety of solutions. It is based on the 
use of the principle of elitism, favoring non-dominated 
solutions and finally the use of a variety of explicit 
solutions. The application of NSGA-II starts with a 
random generation of an initial population P0 of N 
individuals parents. Search for non-dominated solutions 
makes it possible to classify the individuals of Rt in 
several fronts of different ranks,  provided  that:  R = 
{R1, Rm}, where; � �������  = 	 and 
 ������� = ∅. 
Each individual of Rt is compared to all the other 
individuals by the concept of predominance. The non-
dominated individuals belong to the front of rank one, 
the Pareto front. Eliminating temporarily the 
individuals of all search, the algorithm is iterated to 
provide the front of rank 2 and so on. The new relative 
parent population Pt+1 is then constructed with the N 
individuals belonging to the weakest fronts. For the last 
front, there are more solutions than remaining places in 

the new population Pt+1. Individuals are then sorted 
according to their crowding distance (Deb, 2001) and in 
ascending order. This choice will provide the best 
distribution of individuals in the front of the highest 
rank. The main steps of the NSGA-II algorithm are 
summarized by the following pseudo code: 

 
Population Initialization P0 and Q0 of size N 
While the stopping criteria is not met, do 
Create �� = 	� ∪ �� 
Calculate all Fi of the population �� using a 
ranking algorithm  
set 	��� = � ��� � = 0 
While �	���� + ���� < � do 	��� = 	� ∪ �� � = � + 1 
End while 
Put into  	��� the (� − �	����) individuals of  �� the 
best distributed according to the crowding distance. 
Selection in 	��� and creation of ���� applying 
crossover and mutation operators 
End while 

 

Description of the problem: The considered 
scheduling problem MCJSSP is defined as a set of n > 1 different jobs � =  ��!�"��"#, that should be carried 
out over a set of $ > 1 machines, % =  %&!&"�&"� 
critical, provided that we cannot affect simultaneously 
two jobs to a single machine. Every job �� =
'(�)*)"�

)"#+ ∈ � is defined as a linear sequence of ni 

operations  ��!�"��"-, that can start at time ri (ri = 0 in this 
case) and should be terminated by the deadline di. 

Operation (�)  represents the jth operation of the ith 
job, it requires machine %&, to which is associated an 
operating time .�) ≤ 0�) − 1�)necessary for completing 
the operation, 1�) and 0�)  represent the start and the end 
dates respectively.To every %& ∈ % a set of operation 2& with different jobs is affected Eq. (1): 
 2& = � 3(�) × 5�)&6����#��)�#+

                                   (1) 

 
where, 5�)& = 1 if Oij is affected to Mk and 5�)& = 0, 
for otherwise.  

In order to be maintained according to the SPM, 
machines cannot be always available. The time of 
availability 7& of the machine is calculated on the basis 
of the historical of both the SPM and the CM, for this 
reason the Weibull probabilistic rule is chosen. This 
rule takes into account the preventive intervention time 7.&, the corrective intervention time  78&, the statistical  
parameter  like  9& > 1  and  the  scale  :&  Eq. (2): 
 

7& = :& ; �<=>?=@�A�B=C� ?=D
                             (2)
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Fig. 1: Availability evolution with respect to machine load 
 

The maintenance operation ($&B  is the rth 
intervention over the kth machine to which is associated 
a necessary operating time .$&B  to be accomplished. 
These operations are the maintenance job �� = ($&B!, which is associated to the production jobs. The 
intervention can start at date 1$&B ∈ EF1$&B , H1$&BI, 
without being a subject to penalties, or at date 1$&B ∉EF1$&B , H1$&BI with advance penalties �$&or delayed 
ones 8$&. �$&B  is the starting date of the desired 
intervention, to which the machine is normally not 
available. F1$&B = �$&B − F and H1$&B = �$&B + F, 
tolerance interval. �$&B  is determined according to 
machine %&and values of 7&, Fig. 1.  

During the scheduling the probable conflicts 
between the production operations and of those of the 
maintenance appear (1) according to the following 
pseudo code: 

 
For every machine  

While the availability level tdkr>0; 
Upgrade the availability level; 7�&B = 7.& − K .�L × 5�L&L")L"� ; 
If Tdkr<0 

Calculate7&B = 1�)ELI + �7�&B� 
Calculatethe limits of the time interval EH1$&B , F1$&BI; 
CalculateF = H1$&B − F1$&B; 
Calculatethe threshold displacement time 7M: 7M = 1�)ELI + N& × .�)ELI5�)& ; 
if  7&B − 7M ≥ 0 1$&B = 0�)ELI5�)&    ∶ (�)ELI ∈ 2&; Q&B = $�R>0, 1$&B − H1$&BA; 
otherwise 1$&B = 0�)EL@�I5�)& ∶ (�)EL@�I ∈ 2&; 

S&B = $�RT0, F1$&B − 1�)ELIU; 

0�)ELI = 1$&B + 7&; 
End if 

End if 
End while 

End For 

The operations' scheduling over the various 
machines must be carried out in order to optimize 
certain “regular” criteria. 
 

MATHEMATICAL FORMULATION 
 

To address the MCJSSP; we started by modeling 
and optimizing three criteria: the makespan, the 
production cost and the maintenance cost: 
 
• Makespan is the completion time of  the  last  job.  

It is particularly interesting: it allows the 
determination of the critical path (bottleneck): Its 
minimization means the minimization of all the 
products' length of stay in the workshop, the 
outstanding and the idle Time. It is expressed by 
Eq. (1): 

 

V� = $��>W�XYA = min \$�R ��)�#����#]
30�)6^        (3) 

 
• Production cost is the sum of the costs of the raw 

material acquisition, launching, manufacturing, 
penalty and stocking. In this study we took into 
account neither the acquisition cost nor the 
launching cost (only the cost related to the 
operational  time  of the jobs is retained) (Bahmani 
et al., 2015). 

• Manufacturing cost Cfab: 
 W_X`� = K K TWab& × .�) × 5�)&U��)�#+��&��       (4) 

 Wab&: Manufacturing unit cost, 5�)& =  0,1!. 

• Stocking cost: 
 WM�d� = �.� × S�                              (5) 
 

S� = $�R����# T0, 3�� − 0�#+6U 

 �.�  : Advance unit penalty (of stocking). 
• Penalty cost:  
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W<e#� = 8.� × Q)>4A 
 

Q) = $�R��)�g h0, T0#]
) − �)Ui 

 8.�  : Delay penalty cost. 
Equation (2) + (3) + (4) = Eq. (5): 

 Vj = $�� ;K T8.� × Q� + �.� × S� +����#1≤k≤$1≤l≤��WVmk×.�l×5�lk                (6) 

  
• Maintenance cost is the sum of the spare parts' 

cost, the advance cost, the delay cost and the 
intervention cost. The acquisition cost of the spare 
parts is not taken into account: 

 Vn = $��3K K >�$&. S$&B +��B�#+��&��8$k.Q$k8+pk8.qk..$k8                (7) 
 S$&B = $�R30, >F1$&B − 1$&BA6 
 Q$&B = $�R30, >1$&B−H1$&BA6 

 �$& , 8$&  F7 q&: Advance unit cost, delay cost and 
the intervention cost over Mk. 

The optimization of these criteria (V�, VjF7Vn) is 
subject to several constraints. 
 
Execution uniqueness: The considered problem is 
without reentrant i.e., an operation cannot be carried out 
by more than one machine, Eq. (7): 
 0�) − 1�) ≥ K 3.�)& × 5�)&6��&��                (8) 
 
Sequence constraints: Operations of the same job 
must be carried out on various machines in a preset 
order specified by an operational range of each job,  Ost ≺ Os,>t��A Eq. (8): 
 1�>)��A − 0�) ≥ 0 ∀� = 1, … , �, ∀l = 1, … , >�� − 1A                                                 (9) 
 
Resource constraints (without overlapping): 
Resources Mk cannot be affected to two operations at 
the same time. Operations which use the same resource 
must obey the following conditions: let (�)  ��� (M� ∈
Φx be the start dates 1�)  and1M� respectively, if (M� is 
affected, then 1�) ∉ E1M� , 1M� + .M�I ≥ 0. i.e.: 
 1�) − 1M� + yz{�)M� + 31 − 5�)&6 + >1 − 5M�&A| ≥ .M�&  

 1M� − 1�) + yz31 − {�)M�6 + 31 − 5�)&6 + >1 − 5M�&A| ≥.�)&  
 ∀�, 1 =  1, … , �!, ∀l, 7 =  1, … , ��!, ∀k =  1, … , $! 
 ∀(�) ��� (M� ∈ �&, with {�)M� = 1 if (�) ≺ (M� 

and  {�)M� = 0 otherwise and G is a big number: 
 y = K K .�)��)�#+����#   

 
Constraints on the resource’s unavailability: 
Production operations can never been executed over an 
unavailable machine, i.e.: 
 z1�) , 1�) + .�)| ∩ E1$&B , 1$&B + 7.&BI = ∅ 
 

The SPM policy is adopted in order to reduce the 
failure rate of the machines; this is justified by the 
shape parameter βk > 1. Assume that after every 
intervention, the machine is restored to its optimal 
performance. 
 

EXPERIMENTS AND COMPARISON  
OF RESULTS 

 
In this study, for ratified the obtained results, using 

NSGA-II metaheuristic algorithm during the 
benchmarking of the proposed approach (MCJSSP), we 
have used 44 instances that are taken from the OR-
Library Beasley (1990), belonging to the three class of 
JSP instances: the class of Lawrence (1984) (from La01 
to La32), the class of Fisher and Thompson (1963) (ft6, 
ft10 and ft20) and the class of Applegate and Cook 
(1991) (from orb1 à obr9). All the results were obtained 
using a PC with an Intel Pentium IV processor, 2 GHz 
CPU and 1 GB of RAM, with Windows XP 32 bits as 
an operating system. The algorithm was implemented 
using MATLAB programming language. 

Mutation operator OX (Order operator crossover) 
proposed by Kumar et al. (2013) and of mutation PMX 
(Partially Mapped Crossover) Deep and Mebrahtu 
(2012) are chosen at the end of many trials on the 
proposed models. The population size is calculated 
using the empirical formula Tp = m × Nj + 100 (where 
m: machines' number and Nj: jobs number) and the 
generation number is chosen between 200 et 400. Other 
trials set the crossover probability to 68% and mutation 
to 1.5%.  

Ten independent experiments were carried out, on 
each instance. The majority of the 44 adopted instances 
require at least 300 iterations; the others can go up to 
400 iterations. 

Initially we have compared the makespan values 
obtained by our algorithm with those provided by the 
most recent specialized publications (Ziaee, 2014), in 
which sufficient information is offered to allow a more 
quantitative comparison. In Table 1: The first and the 
second column indicate respectively, the size and the 
name of each instance, the third column shows the Best 
Solution named (BKS) by other research works, the 
fourth column shows the best average solution obtained 
using our approach and the fifth column Presents the 
Relative variation (RPD) compared to BKS, which is 

calculated as follows: RPD1 = BSM@BKS

BKS
× 100. The
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Table 1: Experimental results 
Makespan 
------------------------------------------- 

Without maintenance 
------------------------------- 

With maintenance 
------------------------------------------------ 

RPD2 RPD3 Instances BKS Our BSM RPD1 
Makespan 
(M1) 

Prod. cost 
(PC1) 

Makespan 
(M2) 

Prod. cost 
(PC2) 

Maint. cost 
(MC2) 

FT06 55 55 00.00 68 273.5 71 277.3 62.4 4.41 1.39 
LA01 666 666 00.00 851 3308.2 853 3311.3 706.1 0.24 0.09 
LA02 655 655 00.00 894 3193.3 896 3201.6 755.5 0.22 0.26 
LA03 597 597 00.00 842 2754.4 843 2756.0 662.4 0.12 0.06 
LA04 590 595 00.85 731 2629.1 734 2634.7 589.8 0.41 0.21 
LA05 593 593 00.00 749 2701.6 750 2705.9 565.6 0.13 0.16 
LA06 926 928 00.22 1296 4259.9 1301 4263.8 945.0 0.39 0.09 
LA07 890 890 00.00 1136 4228.1 1138 4231.9 1004.9 0.18 0.09 
LA08 863 863 00.00 1147 4263.3 1148 4268.8 939.4 0.09 0.13 
LA09 951 951 00.00 1209 4546.3 1214 4549.6 957.4 0.41 0.07 
LA10 958 965 00.73 1213 4322.3 1219 4327.8 945.9 0.49 0.13 
LA11 1222 1222 00.00 1556 5845.5 1561 5855.0 1386.3 0.32 0.16 
LA12 1039 1040 00.10 1409 4824.4 1414 4830.2 1164.9 0.35 0.12 
LA13 1150 1150 00.00 1413 5636.0 1417 5641.4 1323.6 0.28 0.10 
LA14 1292 1292 00.00 1680 5852.0 1685 5859.2 1232.5 0.30 0.12 
LA15 1207 1210 00.25 1503 5456.7 1509 5459.6 1274.9 0.40 0.05 
FT20 1165 1201 03.09 1662 5591.9 1668 5596.5 1300.8 0.36 0.08 
LA16 945 946 00.11 1160 4243.6 1166 4245.9 962.4 0.52 0.05 
LA17 784 784 00.00 972 3629.6 980 3631.3 874.5 0.82 0.05 
LA18 848 855 00.83 1186 4070.6 1189 4072.0 965.2 0.25 0.03 
LA19 842 842 00.00 1142 4192.1 1149 4193.3 899.9 0.61 0.03 
LA20 902 908 00.67 1165 4049.8 1170 4053.3 881.5 0.43 0.09 
FT10 930 978 05.16 1371 4542.2 1378 4548.6 981.7 0.51 0.14 
ORB01 1059 1156 09.16 1447 5479.0 1458 5492.1 1160.3 0.76 0.24 
ORB02 888 924 04.05 1197 4411.1 1208 4418.4 960.8 0.92 0.17 
ORB03 1005 1131 12.54 1557 5568.2 1572 5584.3 1329.3 0.96 0.29 
ORB04 1005 1064 05.87 1446 4770.9 1453 4777.3 1119.3 0.48 0.13 
ORB05 887 938 05.75 1249 4351.5 1258 4358.9 972.6 0.72 0.17 
ORB06 1010 1058 04.75 1384 4994.4 1390 4999.0 1134.6 0.43 0.09 
ORB07 397 421 06.05 558 2055.8 564 2064.0 496.8 1.08 0.40 
ORB08 899 1016 13.01 1408 4809.7 1425 4824.4 1083.4 1.21 0.31 
ORB09 934 991 06.10 1193 4602.7 1204 4611.1 1108.5 0.92 0.18 
LA21 1046 1055 00.86 1273 5064.3 1277 5067.8 1130.6 0.31 0.07 
LA22 927 927 00.00 1152 4625.6 1155 4632.9 1029.6 0.26 0.16 
LA23 1032 1047 01.45 1377 5210.5 1386 5217.9 1113.4 0.65 0.14 
LA24 935 941 00.64 1178 4486.7 1183 4492.5 1096.8 0.42 0.13 
LA25 977 977 00.00 1368 4454.1 1376 4458.7 1059.4 0.58 0.10 
LA26 1218 1218 00.00 1486 5577.2 1491 5582.1 1354.5 0.34 0.09 
LA27 1235 1240 00.40 1519 6068.2 1523 6079.0 1342.7 0.26 0.18 
LA28 1216 1216 00.00 1498 5799.7 1506 5803.1 1367.5 0.53 0.06 
LA29 1152 1164 01.04 1627 5244.5 1636 5246.3 1094.0 0.55 0.03 
LA30 1355 1355 00.00 1759 6337.0 1765 6344.4 1371.1 0.34 0.12 
LA31 1784 1791 00.39 2514 8285.3 2521 8289.4 1760.4 0.28 0.05 
LA32 1850 1850 00.00 2598 9196.8 2604 9207.7 2185.5 0.23 0.12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2: Evolution of DPR 
 
BKS values and the obtained results using our approach 
offer an average SPR equals to 1.91%. This means that  

our results are statistically satisfactory because if we 
observe Table 1, particularly columns 3 and 4, we 
notice that our metaheuristic have no difficulties in 
finding the BKS values for the instances of size 10×5, 
except the instance LA04, to which the obtained value 
is very close to the corresponding value of BKS. The 
behavior of our approach is similar to the majority of 
the other instances in spite of the increase in their size, 
Fig. 2. 

The best known solutions as well as the solutions 
for which our algorithm has reached such values appear 
in bold characters. Figure 3, shows the solutions' 
distribution of the first, the second and the third rank in 
the vicinity of the first Pareto font. 

Some experiments were carried out in order to 
compare the optimal values of three criteria (f1, f2 and 
f3). On Table 1, the results of the experiments without 
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Fig. 3: Pareto front distribution of optimal solutions obtained by NSGA-II 
 

 
 
Fig. 4: Progress of the solutions found by NSGA-II 
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Fig. 5: Makespan, before and after availability 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Production cost, before and after availability 

and with resources' unavailability constraints are 
represented respectively on the columns 6, 7, 8, 9 and 
10, respectively. Comparison results are displayed on 
columns 11 and 12, where: 
 

RPD2 = M2@M1

M1
× 100  

 

and RPD3 = PC2@PC1

PC1
× 100  

 
In Fig. 4, the instance Ft06 under the unavailability 

constraint is taken as an example to show the evolution 
of the compromise minimum values as well as the 
maximum values that can be taken by every retained 
criterion, Eq. (1), (5) et (6). The obtained curves show 
the correctness of the results and the insignificant gap 
between the compromised value and the minimal one of 
every criterion. 

The experiment results presented in columns 11 
and 12 of Table 1 are schematized in Fig. 5 and 6, 
where we can see that 38.64% of the instances offer an 
increase of the makespan from 0.2 to 0.4% and that the 
makespan of 75% of the instances do not evolve more 
than 0.6%. We can also notice that the production cost 
of 75% of the instances do not exceed 0.16%. These 
results are encouraging and proves the importance of 
the suggested approach. 

Figure 7 shows the Gantt chart of the same instance 
for an optimal compromise solution of the three criteria, 
where the maintenance operations Om is scheduled 
according the pseudo-code of Description of the 
Problem section. 

 

 
 

Fig. 7: Gantt chart of Ft06 instance under availability stress 
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CONCLUSION AND RECOMMENDATIONS 

 
In this study we have studied the scheduling 

integration of production and maintenance in a job shop 
workshop, under resources unavailability constraint and 
to minimize simultaneously the makespan, the 
production costs and the cost of maintenance. The aim 
was to find a compromise solution of the three criteria 
in a reasonable computing time. A metaheuristic 
(NSGA-II) was used to solve the MCJSSP, where the 
maintenance operations are regarded as jobs associated 
with those of production with two characteristics: the 
flexibility of the start date and the flexibility of the 
availability duration. 

This research field has a supreme interest in the 
resolution of the multi-criteria problems. For practical 
reasons in decision making domain, the search for a set 
of optimal Pareto solutions is just the first step to solve 
the MCJSSP, which must be followed by the choice of 
an appropriate solution among the obtained ones. For 
this reason, the TOPSIS sorting method is associated 
with our algorithm, at the level of optimal Pareto 
solutions of the first rank. 

In order to validate the results of this approach, two 
comparisons were carried out. In the first one the 
makespan is compared with the BKS values and in the 
second one the makespan values are compared with the 
production costs without considering the maintenance 
cost. 

The proposed algorithm is tested on several 
benchmarks. The primary obtained results show that the 
algorithm provides good quality solutions with little 
effort of calculation. The solution of the suggested 
problem can be regarded as an alternative to solve the 
MCJSSP. Other researches are under way to improve 
the quality of these solutions and to extend the range of 
this research to treat the case of pre-emption and 
breakability. 
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