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Abstract: In this study, we propose a model for the dynamics of magnetostrictive hysteresis in a thin rod actuator 
when mechanically the material works in his nonlinear domain. We derive two equations that represent magnetic 
and mechanical dynamics equilibrium. Our model results from an application of the energy balance principle. The 
numerical simulations of the model with sinusoidal periodic external fieldgenerate the hysteresis curve and show the 
equivalent mechanic model. By using the method of multiple scales we analyze the effects of the nonlinear 
parameter in the system response of magnetostrictive materials. With Routh-Hurwitz theorem, the stability and 
bifurcation analysis are carried out. Analytical and numerical methods are used to investigate the dynamics of the 
materials. 
 
Keywords: Actuator, hysteresis, magnetostriction, material, nonlinear 

 
INTRODUCTION 

 
Magnetostriction is the phenomenon of strong 

coupling between magnetic properties and mechanical 
properties of some ferromagnetic materials: 
displacements are generated in response to an applied 
magnetic field, while conversely, mechanical stresses in 
the materials produce measurable changes in 
magnetization. This phenomenon can be used for 
actuation and sensing. Figure 1 shows a schematic of a 
Terfenol-D actuator manufactured by Etrema Products 
Inc. The magnetic field generated by the coil current 
controls the strain in the Terfenol-D rod, which 
translates into displacement or force (if blocked) output 
of the actuator. Like other smart materials (e.g., 
piezoelectrics and shape memory alloys), such 
materials exhibit complex nonlinear and hysteretic 
responses. Modeling and control of their behavior is a 
challenge. We are interested in obtaining low 
dimensional models for magnetostriction actuators that 
show a constitutive coupling in their elastic and 
magnetic behaviors.  

Eddy current losses and magnetoelastic dynamics 
of the magnetostrictive rod were considered to be the 
origin of the rate-dependent hysteresis in Vankataraman 
and Manservisi (2006), Venkataraman and 
Krishnaprasad (1999, 2005) and Venkataraman et al. 
(1998), where the eddy current losses were modeled by 
placing a resist or in parallel with a hysteretic inductor 
and the magneto elastic dynamics was modeled by a 
second order linear system. Considering a low-
dimensional ferromagnetic hysteresis     model     led    

 
 
Fig. 1: Sectional view of a Terfenol-D actuator manufactured 

by Etrema 

 
to  an   overall   model     for magnetostrictive actuators 
described by a set of switching ordinary differential 
equations (Venkataraman et al., 1998). Tan and Baras 
(2002, 2004) the authors suggested using a cascade of a 
Preisach operator with a linear system to model 
magnetostrictive actuators. 

However, these previous authors have not taken 
into account the nonlinear aspect of the displacement in 
their modeling process. In practical situation the 
nonlinear terms exist in the displacement and can affect 
considerably the real dynamics of the material. Thus, 
our aim in this study is to derive a nonlinear equation 
for the displacement and use the methods of dynamical 
systems (lyapunov exponent, bifurcation diagram, 
Poincare section, spectral diagram), to study the 
obtained equation. 
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MATERIALS AND METHODS 
 

According to energy balance principle, the work 
done by external source (both magnetic and mechanic) 
is transformed in the change in the free energy of the 
rod, change in kinetic and losses in the 
magnetizationprocess and mechanical deformation. 
This energy balance principe is given by the following 
equation: 
 

{
energy kineticin  

energy internalin  

change

C

loss

elmag

change

elmagelmagmechbat

ELL

WWWWW

δδδ

δδδδδ

+++

++=+

43421

4444 34444 21

        

(1) 

 
In Eq. (1) 

batWδ  is work done by the battery, 

mechWδ
 
is work done by the external force, 

CEδ
 
is the 

work done in changing the kinetic energy of the system 

consisting of the magnetoelastic rod, 
magWδ

 
is the 

change in the magnetic potential energy, 
magelWδ

 
is the 

change in the magnetoelastic energy, 
elWδ  

is the 

change in the elastic energy, 
magLδ are the losses due to 

the change in the magnetization and 
elLδ  are the losses 

due to the elastic deformation of the rod. 
The deformation elastic energy is given by 

(Pérignon, 2004): 

 

,)(∫= duuFWelδ
   

             (2) 

 

where, u is the displacement in the rod and F the 

corresponding force. In the case of large displacement, 

the corresponding force takes the polynomial form 

(Chengying and Jin, 2010). When one restricts the 

development to the cubic order term, the corresponding 

force becomes:  

 

,)( 3

31 ukukuF +=                              (3) 

 

where, 
1k  is the elasticity linear coefficient and 

3k the 

cubic coefficient. The elastic energychange in one cycle 

of magnetization is given by (Venkataraman et al., 

1998): 

 

( ) .3

31 duukukW el ∫ +=δ
 

                           (4) 

 
The magnetoelastic energy writes (Venkataraman 

et al., 1998; Krzysztof and Szczyglowski, 2007; Wang 
and Zhou, 2010): 
 

,2ubMWmagel ν=
   

             (5) 

 
where, b is the magneto-elastic coupling constant, ν the 
volume of magnetostrictive rod and M the average 
magnetic moment of the rod. The magneto-elastic 

energy change in one cycle of magnetization is given 
by: 
 

.22∫ ∫+= dMuMbduMbW magel ννδ             (6) 

 

According to Jiles and Atherton postulate 

(Venkataraman et al., 1998; Xiaojing and Le, 2007; 

Jiaju et al., 2007), the losses due to hysteresis in one 

cycle is: 

  

∫ −= ,)1)((
.

irrmag dMcHsignkL νδ
              

(7) 

 

where, 

k = A non-negative parameter 

c  = Reversibility coefficient  

Mirr  = Irreversible magnetization 

 

The losses due to mechanical damping are assumed 

to be (Venkataraman et al., 1998; Chengying and Jin, 

2010; Jiaju et al., 2007): 

 

,
.

duucL lel ∫=δ
   

             (8) 

 

where, cl is the damping co efficient. 

The change in the kinetic energy is given by 

(Venkataraman et al., 1998; Jiaju et al., 2007): 

 

.
..

duumE effC ∫=δ
                             

(9) 

 

Let an external force 'F  in the u direction produce 

a uniform stress 
uσ

 
in the u direction within the 

actuator. Thus the mechanic work done by the external 

force in one cycle of magnetization is given by: 

 

.'∫= duFWmechδ
             

 (10) 

 

The work done by battery during one cycle of the 

magnetization process is (Venkataraman et al., 1998; 

Venkataraman and Krishnaprasad, 2005): 

 

∫= ,0HdMWbat µνδ                             (11) 

 

where, µ0 is the permeability of free space. 

Consider one cycle of magnetization like external 

change in [ ]T; 0  
interval, M(T)M(0) and )()0( == THH

then ∫ ∫ == .0MdMHdH
 
with this condition, Eq. (11) 

become: 

 

.

0

00∫ ∫+=
4434421

MdMHdMWbat αµνµνδ

            

(12) 
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Substituting Eq. (4), (6), (7), (8), (9), (10), (12) in 

to Eq. (1) we obtain the following equation: 
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We define effective field to be: 

 

,
2

0µ
α

uMb
MHH eff −+=

            

 (14) 

 

By integration of the first term of Eq. (13) over one 

cycle of magnetization, we have: 

 

∫ ∫ =−= .0effeff dHMdMH              (15) 

 

The magnetic potential energy for the lossless case 

is given by (Venkataraman et al., 1998; Calkins et al., 

2000): 

 

∫−= ,0 effanmag dHMW µνδ              (16) 

 

Thus Eq. (13) can be rewritten as: 
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(17) 

 

Note that the above equation is valid only if

u andu  M, , &H  
are periodic functions of time. We make 

the hypothesis that the following equation is valid when 

we go from one point to another point on this periodic 

orbit: 
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(18) 

 

This equation is assumed to hold only on the 

periodic orbit. Since du and dHeff
 

are independent 

variations arising from independent control of external 

prestress and applied magnetic field respectively, the 

integrands must be equal to zero: 

 

.
0

)1)((

'23

31

...

0

.










=++++

=
−

−−

FbMukukucum

dH

dMcHsignk
MM

leff

eff

irr
an

ν

µ

                

(19) 

 

Jiles and Atherton relate the irreversible and the 

reversible magnetization as follows (Krzysztof and 

Szczyglowski, 2007; Xiaojing and Le, 2007): 

 

,irrrev MMM +=               (20) 

 

( ),irranrev MMcM −=               (21) 

 

Thus: 
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where, 
Mδ  is defined by: 
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Finally after some algebraic manipulations, the 

equations of our model can be obtained as follows: 
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where, 
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RESULTS AND DISCUSSION 

 

Mechanical part of the model: The material using in 

this analysis is Terfenol-D rod, for his best 

magnetostrictive performance. The parameters given by 

Venkataraman et al. (1998), Venkataraman and 

Krishnaprasad (1999), Dapino et al. (1998), Tan and 

Baras (2004), Jiaju et al. (2007),
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Fig. 2: Magnetic hysteresis loops under different exciting frequency for kVU 700;57.38 0 ==β  

 

 
 
Fig. 3: Magnetic hysteresis loops under different exciting amplitude for 57.38;160 == βHzf  

 

Sturos et al. (1995) and Willams et al. (2006) are: 

length )5,11( cml = ; diameter )7,12( mmD = ; mass

)5,0( kgm l = ; damping coefficient )/10( 3 mNsc l = ; 

Young’s modulus )1030( 9 PaE ×= ; magnetostriction 

coefficient )101000(
6−×=sλ :
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Taking periodic excitative external field in the form: 

  

,cos0

.

tUH ω=
              

(26) 

 

Figure 2 and 3 show that the frequency and 

amplitude of exciting field have remarkable influence 

on the magnetic hysteresis loops. Figure 4 on his part 

shows that, the mechanical nonlinear parameter does 

not have remarkable influence on the magnetic 

hysteresis loops. Figure 5, the magnetization take the 

sinusoidal form with some parameter.  

According to Willams et al. (2006) and Kalmar-

Nagy and Shekhawat (2009) and Fig. 5 the 

magnetization takes the sinusoidal form with some 

amplitude and frequency exciting. In that case: 

 

.sinmax tMM ω=               (27) 

 

If we suppose that the material is not submitted to 

any external force ),0( ' =f  after some manipulation, 

the mechanical part of the model takes Duffing type 

equation in form:  

 

,sin2 2

0

3
.

0

2

0

..

tQuuuu ωβξωω −−−=+             (28) 

 

We non dimensionalise the time scale t by set 

nondimensional time ,tΩ=τ  
where Ω is the natural 

frequency; and order the equation by introducing the 

small parameter ε. 
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Fig. 4: Mechanical nonlinear effect on the magnetic hysteresis loops for HzfkVU 160;7000 ==

 
 

 
 
Fig. 5: Magnetization response versus time for 57.38;160;7000 === βHzfkVU  

 
The equation of motion become: 
 

,sin2
2

0

3'

0

2

0

'' ϖτεβεεξωω Quuuu −−−=+           (29) 

 
where, 
 

 

 
Approximate solution: An approximate solution is 
generally obtained as follows (Chengying and Jin, 
2010; Lévine, 2004; Nayfeh and Mook, 1979): 
 

...),(),(),( 101100 ++= TTuTTuu εετ             
(30) 

 

where, ),( 10 TTu
 

are functions of time scale Tn for

,...1,0=n  yet to be determined and ε is arbitrarily 

small parameter. The derivative perturbations rely on 

the notion that the real time τ, can be expressed in the 

form of set of successively independent time scales, Tn 

given by: 

,...1,0 == nT n

n τε
                          

(31) 

 
In Eq. (30) T0 

is nominally considered as a fast 
time-scale and T1 

as slower time scale, such that

εττ == 10 T  ,T  as from Eq. (31). It follows that the 

derivatives with respect to τ become expansions in 
terms of the partial derivatives with respect to the Tn 
according to: 
 

...10 ++= DD
d

d
ε

τ               

(32) 
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d
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 (33) 

 
Substituting Eq. (30), (32), (33) into Eq. (29)

 
and 

collecting the coefficients of like order of ,nε  
and 

equating them to zero in order to construct the 
perturbation equations, leads to: 
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• Ordre ε
0 
:  
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Harmonic solution of the zeroth order perturbation is: 
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(36) 

 

Substitutingzeroth order perturbation solution into 

the first order perturbation give:  
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To include near-resonant terms within the secular 

term, a detuning parameter σ is introduced by: 

 

.2 0 εσϖϖ +=                             
(38) 

 

The secular condition become: 

 

.0
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(39) 

 

In Eq. (39) the complex amplitude � can be 

expressed in polar form: 

 

,
2

ϕj
e

a
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(40) 

Substituting Eq. (40) in to Eq. (39) and then 

separating out the real and imaginairy parts of the 

resulting equation, we obtained: 
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where, 

 

.1 ϕσγ −= T  
 

For steady-state conditions, the slowly varying 

amplitude and phase are set to zero ).0(
11

==
dT

d

dT

da γ

Then Eq. (41) become: 
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(42) 

 

Which give the amplitude of response a as function 

of the detuning parameter σ. 

 

Different parameters effect to system response: 

Figure 6 to 8 show that nonlinear parameter, amplitude 

force and damping parameter affect the amplitude 

response of the system. 

Figure 9 shows that, with some value of detuning 

parameter σ the amplitude response is simple and for 

other the amplitude response is multiple.  

 

Stability analysis for vibration system: Let us take 

Eq. (41) in the follows: 

 
 

Fig. 6: Nonlinear effect on the system response for 1;3627.0;35.0 00 === Qξϖ
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Fig. 7: Amplitude force effect to system response for 57.38;3627.0;35.00 === βξϖ
 

 

 
 

Fig. 8: Damping coefficient effect to system response for 1 ;57.38 ;35.0 00 === Qβϖ  

 

 
 

Fig. 9: Amplitude response versus the amplitude of excitative force for 57.38;3627.0;35.00 === βξϖ
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The solution of Eq. (41) is given in the following form: 
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Eq. (44) in Eq. (43) gives: 
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The transformation of Eq. (45) in sin and cos terms with the fact that δγδγ →sin  and 1cos →δγ  
and consider 

only the linear terms in aδ and δγ , Eq. (45) becomes: 
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The left hand side of Eq. (46) is equal to zero at the equilibrium point. Eq. (46) becomes: 
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The solution of Eq. (47) is follows as: 
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where, ∗aδ  and ∗δγ  
are small perturbation of amplitude and phase respectively.  

Eq. (48) in Eq. (47) give Eq. (49) in the follows form: 
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where, the stability matrix is given as the follows expression: 
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Fig. 10: Variation of the amplitude of the response according to the parameter of perturbation for ;57.38;3627.0;35.00 === βξϖ
 

 10 =Q  

 

 
 

Fig. 11: Variation of the amplitude of the response according to the amplitude of the excitation force for  

4;57.38;3627.0;35.0 00 ==== Qβξϖ
 

 

The characteristic equation of Eq. (50) is follows as: 
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                       (51) 

 

According to the stability criterion of Routh-

Hurwitz (Lacheisserie and Cyrot, 2000; Lakshmanan 

and Rajaseekar, 2003), the characteristic equation must 

have real solutions or with negative real parts. What 

stipulates that: 
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(52) 

Figure 10 and 11, we have the domain of stability 

in blue and field of instability in red. 

 

Bifurcation and chaotic analysis for vibration 

system: Let us take Eq. (28) in form:  
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
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(53) 

 

System (53) is solved numerically to define routes 

to chaos in our model using the standard fourth-order 

Runge-Kutta algorithm. For the set of parameters used 

in this work, the time step is always 005.0≤∆t  and 

computations are performed using variables and 

constants parameters in extended mode. For each 

parameters combination, the system is integrated for 
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sufficiently long time and transient is discarded. Two 

indicators are used to identify the type of transition 

leading to chaos (Lévine, 2004; Mabekou, 2008; Zeng 

et al., 2008). The first indicator is the bifurcation 

diagram and the second is the largest one dimensional 

(1D) numerical Lyapunov exponent defined by: 

 

,))(ln(
1

limmax 




= ∞→ td
t

tλ
                                

(54) 

 

where,  

 

.)( 2

2

2

1 δδ +=td   
                         (55) 

 

And computed from following variational equation 

obtained by perturbing the solutions of Eq. (53) as 

follows: 
111 δ+→ uu  and 

222 δ+→ uu  is the distance 

between neighbouring trajectories; asymptotically

)exp()( maxtt λδ = . Thus, if 0max fλ , neighbouring 

trajectories diverge and the state of the system is 

chaotic. For 0max pλ , these trajectories converge and 

the state of the system is non-chaotic. The case 

0max =λ , corresponds to the torus state of the system. 

We now focus on the effects of biasing on the 

dynamics of the system modelled by Eq. (53). To 

achieve this goal, ��0  is chosen as control parameter and 

the rest of system parameters are assigned the following 

values: 

 

1;57.38;3627.0;35.00 ==== ωβξϖ  

 

Figure 12 shows the bifurcation diagram and the 

corresponding lyapounov function. Therefore the 

scanning process is performed to investigate the 

sensitivity of the system to tiny change in 
0Q . The 

range 10000.0 0 ≤≤ Q is considered to monitor the 

bifurcation control parameter. It is found that the 

system can exhibit complex dynamic motions including 

periodic, multiperiodic and chaos states. Indeed, for the 

values of system parameters defined above, various 

scemarios/routes to chaos are observed such as period 

doubling and crisis scemarios to chaos. Sample results 

are provided in Fig. 13 where we show a bifurcation 

diagram associated with the corresponding graph of 

largest 1D numerical lyapunov exponent. This 

bifurcation diagram is obtained by plotting the 

displacement in the material in terms of the control 

parameter 
0Q  

whereas the lyapunov exponent graph is 

obtained by simultaneously integrating Eq. (53) and Eq. 

(54) -Eq. (55). The positive value of λmax is signature of 

chaotic behaviour. Figure 14 shows the Poincare 

section. Figure 13 shows a sample result of the scenario 

 
 

 
 

Fig. 12: Bifurcation diagram of the system (a) and the graph 
of 1D largest Lyapunov exponent (b) for 

 
57.38;3627.0;35.00 === βξϖ

 
 

 
 

 
 

 
 
Fig. 13: Numerical phase portraits of the system (left) and the 

corresponding FS spectra (right). (a) period-1 for 

10 =Q , (b) period-2 for 70 =Q  (c), Chaotic attractor 

for 140 =Q  
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Fig. 14: Poincare section for for ;3627.0;35.00 == ξϖ
 

14;57.38 0 == Qβ  

 

to chaos. We observed it by plotting phase portraits 

with their corresponding power spectrum. 

 

CONCLUSION 

 

In this study we have used the energy principle 

balance to obtain the equation of model by taking into 

account the nonlinear effect of material. The 

mathematical model of the material is presented. Using 

the multiple time scale method, the approximate 

solution of our model is obtained. The numerical results 

present the effect of the nonlinearity of the material, 

damping and the amplitude of the magnetic force on the 

stability and chaotic response of the system. In the 

future work we aim to extend the nonlinearity order 

five and consider the eddy current, temperature and 

external force effect. 
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