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Abstract: Classifier ensemble techniques have been an active area of machine learning research in recent years. The 
aim of combining classifier ensembles is to improve the accuracy of the ensemble compared to any individual 
classifier. An ensemble can overcome the weakness of an individual classifier if its base classifiers do not make 
simultaneous errors. In this study, a novel algorithm for optimal classifier ensemble design called Coalition-based 
Ensemble Design (CED) is proposed and studied in detail. The CED algorithm aims to reduce the size and the 
generalization error of a classifier ensemble while improving accuracy. The underlying theory is based on the 
formation of coalitions in cooperative game theory. The algorithm estimates the diversity of an ensemble using the 
Kappa Cohen measure for multi base classifiers and selects a coalition based on their contributions to overall 
diversity. The CED algorithm is compared empirically with several classical design methods, namely Classic 
ensemble, Clustering, Thinning and Most Diverse algorithms. Experimental results show that the CED algorithm is 
superior in creating the most diverse and accurate classifier ensembles. 
 
Keywords: Classification, classifiers diversity, classifier ensemble, cooperative game theory, internet security, 

kappa cohen measure, machine learning 

 
INTRODUCTION 

 
Recently, classifier ensembles have attracted the 

attention of many researchers as they can in crease the 

accuracy of classification for many tasks, especially the 

complex ones (Banfield et al., 2003). The most 

important two factors when designing classifier 

ensembles are: how to select individual classifiers that 

are as diverse as possible and how to combine the 

different out puts in a way that enhances the ensemble 

accuracy (Alzubi, 2015). 
In literature it has been shown theoretically and 

proved through numerical result that classifier 
ensembles are efficient if and only if the base classifiers 
are of relatively high accuracy and don’t make 
simultaneous errors (Giacinto and Roli 2001a). Ji and 
Ma (1997) introduced an algorithm for combining weak 
classifiers (with an accuracy just little over 50%) in 
order to obtain a classification system whose 
generalization and efficiency are both good. The idea 
behind their algorithm is how to properly select the 
strength of the weak classifiers. Also a construction of 
multi version systems of artificial neural networks by 
calculating a diversity measure was discussed by 
Partridge and Yates (1995). A similar approach also has 
been adopted by Sharkey (1996) where an ensemble of 
artificial neural net works to be created in which nets 
exhibits no coincident errors. Furthermore, (Kuncheva 
et al., 2000) proved by artificial example that 
combining negatively dependent classifiers are 

preferable over independent ones and their combination 
will guarantee a better result. 

The just mentioned theoretical and empirical 
results agree on the role of diversity in improving the 
accuracy and effectiveness of classifier ensembles. 
However, this agreement is a companied by the 
observation that constructing an ensemble that is 
accurate and diverse is not an easy task (Partridge and 
Yates, 1995; Sharkey, 1996). This difficulty emerges 
from the fact that in real applications, classifiers tend to 
make the same errors. In other words, the yaccurately 
classified simple tasks and identically misclassified 
complicated ones. This motivates the need for a new 
method that takes both accuracy and diversity into 
consideration at the ensemble design level (Giacinto 
and Roli, 2001b). However, much of the research effort 
in the field of classifier ensembles has focused on the 
combination methods and little attention paid to the 
design of classifier ensembles. 

In this study, an approach to the automatic design 
of classifier ensemble formed by different types of 
classifiers is proposed. The aim of our approach is to 
choose the most effective subset of classifiers. The 
proposed approach is different from any previous work 
in this field as it uses cooperative game theory (in 
particular coalition formation) in the design stage of 
classifier ensembles. In addition, we will use Cohen’s 
Kappa as a measure of diversity between base 
classifiers and will compute the diversity for the whole 
ensemble in order to estimate the contribution of each 
base classifier. 
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LITERATUR REVIEW 
 

Many efforts have been made to find the optimal 
architecture of classifier ensembles. In the literature 
(Giacinto and Roli, 2001a; Sharkey, 1996), several 
methods have been suggested on how to create 
ensembles of neural networks in which they don’ tmake 
the same errors. In general, the main idea behind such 
methods is to vary the parameters that specifically 
related to neural networks design and training. So, it is 
not possible to generalize these methods to different 
types of classifiers. 

It has been found by Partridge (1996) that in order 
to create a diverse ensemble of networks- that are 
making different errors three important parameters 
should be tuned: training set, weight-space and number 
of hidden nodes. Partridge (1996) establishes a basis for 
engineering a diversity approach which started to be 
investigated by networks design researchers. Most of 
the work in that area falls under one of the following 
two categories: the “direct” and the “overproduce and 
choose.” 

In the former one, the objective is to have 
ensembles containing error-diverse nets directly. An 
example of this category is work done by Opitz and 
Shavlik (1996) where they present an algorithm called 
“ADDEMUP” which explicitly search for the highly 
diverse set of accurate trained nets to form ensembles. 
On the other hand, the idea behind the “overproduce 
and choose” category is firstly to produce a pool or a 
large set of nets followed by step of selecting the most 
error-diverse and accurate subset. However, many 
studies advocate the previous approach. Aksela (2003) 
discussed several methods to be used in the selection 
stage of classifiers. He concluded that the best two 
methods are the one based on penalizing classifiers that 
make the same error and the one that uses exponential 
error count as criterion. 

Many algorithms and methods have been 

introduced to achieve the just mentioned two 

approaches. It seems the main difference that 

distinguishes these algorithms is the way in which they 

calculate the diversity between the classifiers. In other 

words, the difference is based on the diversity measure 

used and how it is computed. Some of these algorithms 

apply a pair-wise diversity measure that only consider 

two classifiers at a time then average across all pairs to 

get a single diversity value. Other algorithms consider 

all classifiers in the ensemble and calculate one value 

for diversity. 

Giacinto and Roli (2001a) created a diversity 

matrix to represent the pair-wise diversity for the 

classifiers pool then select the most diverse ones. They 

applied double faultmeasure and Q statistics (Roli et 

al., 2001) as shown in the following equations 

respectively (Kuncheva, 2004): 

 

���,� = �                                                              (1) 

��,� =
	
��

	
��
                                                          (2)  

 
where, d represents the probability of both classifiers 
being incorrect. 

The selection process aims to obtain a desired 
number of classifiers by applying a search method that 
considers two pairs of classifiers at a time and choose 
the least related classifiers. The just mentioned 
approach is called “the most diverse ensemble.” 

A new diversity measure has been proposed by 
Banfield et al. (2003) which is called Percentage 
Correct Diversity Measure (PCDM). It takes into 
account only the proportion of classifiers who correctly 
classify an object. They declare “uncertainty points” as 
the data points where the correct votes fall between 0.1 
and 0.9. However, these points vary based on which 
base classifiers are selected to build the ensemble. 

Also Banfield et al. (2003) introduced their 
algorithm “thinning the ensemble” which is based on 
their proposed measure PCDM. It basically follows the 
backward selection process where it starts with a pool 
of classifiers then removes the classifier that is most 
often incorrect on the uncertainty points. It repeats this 
procedure until the predetermined number of classifiers 
is reached. They claimed that “thinning the ensemble” 
algorithm reduces the size without compromising the 
accuracy of the ensemble. 

Another different approach presented by Giacinto 
and Roli (2001a) which is “clustering and selection” 
method. It is obvious from the name that it consists of 
two main steps. The first one is forming clusters of 
classifiers and the second is choosing the most accurate 
classifier from each cluster. This approach uses the 
double fault measure of diversity to create the pair-wise 
diversity matrix which is called the distance matrix. 

Our proposed approach is different from the above 
methods as it calculates the diversity for the entire 
ensemble and then computes the diversity contribution 
of each individual base classifier which makes it 
possible to select only the classifiers with the most 
contribution. An empirical comparison between our 
algorithm and the three aforementioned approaches is 
conducted and the results are presented later. 
 
Coalition-based ensemble design algorithm: The 
rationale behind this algorithm is that we believe 
“direct” creation of ensemble from error-independent 
classifiers is a complicated task and can be 
computationally very expensive. This opinion appears 
to be shared by other researchers in the classifier 
ensembles field (Giacinto and Roli, 2001a; Partridge 
and Yates, 1995; Giacinto and Roli, 2001b): 

 

Algorithm 1: Coalition Based Ensemble Design 

Algorithm 

Input: 

L: is set of classifiers 
λ: Contribution value threshold 
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d:  The maximal permutation size for calculating the 
contribution values 
k: the number of classifiers selected in each phase 
Output: 

Optimal Coalition S where S ∈ L 
1: initialize S: = φ 

2: for each l ∈ L\S do 
3: Cl: = Diversity_Contribution (l, S, d) 
4: end for 
5: if max Cl > λ then 

6: S: = S ∪Classifiers_Selection ({Cf}, k, λ) 
7: goto 2 
8: else 
9: return S 
10: end if 
 

In our algorithm, we will transform the game 
theory concepts into the arena of ensemble design 
(more precisely to the computation of contribution 
phase of the algorithm), in which one attempts to 
estimate the diversity contribution of each classifier in 
generating an ensemble. The players N are represented 
by the candidate classifiers and the “payoff” is mapped 
to a real-valued function ν(S), which measures the 
diversity of the ensemble generated using the set of 
classifiers S. 

Algorithm 1 presents the pseudo code of CED. It is 

obvious that CED has an iterative nature and it adopts a 

forward selection approach. In addition, it is clear that 

CED consists of two main processes which are 

represented by functions in our implementation code. 

The first one is the diversity_contribution which 

performs sorting of each candidate classifier according 

to its diversity contribution value. The second main 

process is the Classifier_Selection which mainly selects 

a specific number of classifiers k with the highest 

diversity contribution values. The process of computing 

the diversity contribution values will be repeated for the 

remaining candidate classifiers given those already 

were selected. 
The process of selecting a new classifier also will 

be repeated as long as the candidate classifier’s 
diversity contribution is larger than the threshold λ. 

The first glance at algorithm 1 without further 

exploring the details of diversity contribution, one 

might get the impression that this algorithm is a 

generalization of filter method. However, the main idea 

of CED is that the Diversity_contribution function, 

unlike any other filter methods, returns a contribution 

value for each classifier according to its assistance in 

increasing the ensemble diversity and in conjunction 

with other classifiers. 
The natural question to ask here is, how to 

calculate the contribution of each classifier to the 
coalition? Game theory provides the answer by 
constructing a value function, which assigns a real 
value for each classifier in the coalition. The value 
represents the contribution of the classifier in achieving 

a high payoff. Shapley value provides a way to 
calculate each classifier contribution. 

 

Definition: A coalitional game (N, ν), the Shapley 

value of player i is given by (Cohen et al., 2005): 

 

�� =
�
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Equation (3) computes the average marginal 

contribution of player i, where it averages over all the 

different permutations according to which the grand 

coalition might be built from the empty coalition. It is 

obvious from Eq. (3) that the calculation of Shapley 

value requires summing over all possible subset of 

player. However, if the number of players is larger than 

these calculations become computationally intractable 

and in  this case an approximation is required. Keinan 

et al. (2004) proposed an estimator which uses 

uniformly sampled subsets instead of the full set of 

subsets. However, a further reduction on the size of the 

subsets suggested by Cohen et al. (2005) where they 

bounded the permutation size into some constant d 

where d is less than N. Now, the Shapley value 

calculation equation with d-bounded permutations will 

be: 
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*
 Denotes the set of d-bounded permutation, 

where d represents the number of interactions to be 

considered between classifiers. For instance when d =1, 

it means classifiers to be considered independently and 

no interactions between them matter. 

By applying the cooperative game theory notations, 

more specifically referring to Eq. (4), the function 

Diversity_Contribution computes the d-bounded 

estimated diversity contribution values.  

It should be kept in mind here that the goal is to 

optimize the overall diversity level of the suggested 

ensemble. The Diversity_Contribution function 

performs its calculations of contribution values based 

on the following payoff function ν (S): 

 

• Train: Generate an ensemble and train on the 

training set of the data. 

• Validation: Classifying the validation set data. 

• Return the diversity level defined as ν (S) which 

can be calculate by finding Kappa Cohen measure 

for multi base classifiers (Cohen, 1960; Berry and 

Mielke Jr., 1988; Landis and Koch, 1977). 

 

Now, let us explain the effect of varying the values 

of the parameters that were utilized in the CED 

algorithm: 
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• In each iteration of CED the number of selected 

classifier sk for the Classifiers_Selection function 

controls the redundancies of the selected 

classifiers. If we would like to increase the chance 

of classifiers with similar diversity contribution to 

be selected then we will set k to a higher value and 

vice versa. In our experiments, we chose k = 1 

which means that we minimize the redundancy 

dependencies of the classifiers. It is evident that k 

has a direct relationship with the convergence of 

the CED. Decreasing k will cause the CED’s 

convergence to be slow. 

• Another parameter that must be tuned is λ as it 

represents a trade-off between the number of 

selected classifiers and the overall diversity of the 

ensemble. A high value of λ has direct effect on the 

ensemble size which that CED selects a small sets 

of classifiers. Setting λ = 0 yields that CED will 

choose classifiers as long as there exist a classifier 

that is likely to increase the diversity of the 

ensemble, as λ increases a smaller set of classifier 

will be selected. For this study experiments, λ 

value has been set to zero which means that any 

base classifier that has positive contribution to 

ensemble diversity will be has the chance to be 

selected. It is obvious that the halting criterion of 

CED depends on λ. 

• The maximal permutation size d plays an important 

role in determining the diversity contribution 

values of different classifiers. When choosing the 

value of d must take into considerations that 

different classifiers combinations are represented. 

 

EXPERIMENTAL DATA 

 

 Performance of the algorithms (CED, Classic and 

Clustering) is evaluated by running experiments on 15 

representative data sets from the UCI repository 

(Newman et al., 1998). These data sets were used in 

similarstudies (Webb, 2000; Quinlan, 1996). 

Table 1 presents a summary of these data sets. 

When choosing these data sets we took into 

consideration that a binary and multi class data sets to 

be included. In addition, a variation in the number of 

the attributes and examples (data items) are also 

considered. 

Two sets of experiments were conducted in order 

to compare the performance of CED algorithm with 

clustering algorithm and the classic ensemble. The 

results of the latter one served as the baseline in our 

experiments. In each set of the of the experiments CED, 

Clustering and classic ensemble design were compared 

on 15 data sets using the MATLAB implementation of 

these algorithms. 

In classic ensemble design all base classifiers are 

included in the ensemble, whereas in the Clustering 

ensemble    the    target     ensemble     size     must     be  

Table 1: Summary of data sets 

Name  Examples  Classes  Attributes  

Blog spam 56000 2 547 

Breast cancer  699 2 9 

Letter recognition  20000 26 16 

Iris  150 9 4 

Segment  2310 7 19 

Ionospere 315 2 34 

Statle (vehicle silhouetts) 946 4 18 

Haberman’s survival  946 2 3 

Contraceptive method choice  1473 2 3 

Isolet  1559 26 617 

Glass 214 6 9 

Colic 368 2 22 

Heart-c 303 2 13 

Splice 3190 3 62 

Anneal  898 6 38 

 

Table 2: Summary of base classifiers 

Name of classifies  Abbreviation  

k-nearest neighbor classifier  knnc 

Binary decision tree classifiers  treec 

Naïve bayes classifier  naivebc 

Support vector classifier  svc 

Normal densities based linear classifier  ldc 

Linear perceptron perlc 

Normal densities based quadratic classifier  qdc 

Logistic linear classifier  loglc 

Train neural network classifier by back-propagation bpxnc 

Nearest mean classifier nmc 

Train radial basis neural network classifier rbnc 

k-centers clustering kcentres 

Radial basis SV classifier  rbsvc 

Parzen classifier  parzenc 

Minimum least square linear classifier fisherc 

 

predetermined in advance. In our experiments the target 

ensemble size for these algorithms was set to 5 which 

we find out experimentally to be the most accurate 

ensemble size. Our algorithm (CED) bypasses this 

requirement by setting the desired ensemble diversity 

value instead of setting the target size of the ensemble. 

CED may terminate with a smaller ensemble size if the 

number of iterations generates a diverse ensemble that 

exceeds the specified value. However, CED could be 

easily adjusted to return a predetermined number of 

classifiers if we desire. This is one of the advantages of 

our approach which will be demonstrated latter in the 

results section of this study. 

To ascertain that no algorithm was being 

disadvantaged by small number of base classifiers, we 

ran our experiments with 15 classifiers for all 

algorithms. In addition, the type of classifiers used in 

all experiments was the same. Table 2 shows the list of 

the classifiers that were implemented (Duin et al., 

2007). 
For the purpose of comparing CED with other 

algorithms across all domains, we implemented 
statistics used in (Webb, 2000), specifically the 
win/draw/loss record and the geometric mean error 
ratio. The simple win/draw/loss record computed by 
calculating the number of data sets for which CED 
obtained better, equal, or worse performance than any 
of the other algorithm with respect to the ensemble 
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classification accuracy. In addition to that, we 
computed another record representing the statistically 
significant win/draw/loss, according to this record 
win/loss is only computed if the difference between two 
values is greater than 0.05 level which was determined 
to be significant by computing the student paired t-test. 
 

EXPERIMENTAL RESULTS 
 

Table 3 and show the performance results of the 
CED compared to classic ensemble and Clustering 
ensemble designs. In our experiments, the training set 
sizes are varied from10 to 40% of the total available 
data. Those points on the learning curve are chosen 
because it is expected that the most difference in the 
performance of the algorithms will occur at these 
points. 

In each table, the row represents the data set and 
the column represents the percentage of the data that is 
used for training. Each cell entry contains two numbers; 
the number on the left refers to the accuracy of CED 
while the number on the right refers to the accuracy of 
the algorithm under consideration. If the difference is 
statistically significant, which is determined by 
calculating the student paired t-test and the confidence 
intervals at the 0.05 level and then the larger of the two 

is shown in bold. The bottom of each table contains a 
summary of the statistics for the various points on the 
learning curve. 

Figure 1 and 2 are scatter-plots representing the 
results showed in the Table 3. Each plot shows a 
comparison between CED and another algorithm for 
one point on the learning curve. Each one of the 15 data 
sets is denoted by a point on the scatter plots. If the 
point is located above the diagonal then it means that 
the accuracy of CED is higher than the accuracy of the 
algorithm under comparison, a point on the diagonal 
indicates that both accuracies are equal, otherwise the 
accuracy of CED is lower. 

The general trend that is noticed when performing 

these experiments is the fact that the accuracy of any 

ensemble design outperforms the best individual base 

classifier. 

The results in Table 3 confirm the fact that the 

ensemble accuracy is correlated with its diversity. So 

increasing the diversity between base classifiers yields 

an increase in the ensemble diversity. The table shows 

that CED outperforms the Classic Ensemble at all data 

sets using various training sizes and it also illustrated 

by the scatter-plot in Fig. 1 where it shows all points are 

above the diagonal. 
 
Table 3: CED Vs. classic ensemble 

Date set  10% 20% 30% 40% 

Breast cancer  90.26/85.31 94.48/90.93 95.36/92.28 95.73/93.43 
Lonosphere  88.64/82.40 89.55/82.94 89.91/83.57 90.20/86.51 
Auto (statlog) 70.20/59.21 75.74/68.10 77.84/69.63 77.17/71.78 
Haberman’s survival 67.23/60.04 76.77/67.00 80.00/69.24 81.17/73.68 
Contraceptive  45.89/37.40 55.20/46.95 62.86/51.23 67.77/55.45 
Blog spam  91.83/85.37 93.88/88.69 94.94/90.50 96.47/91.27 
Letter recognition  86.53/74.23 88.20/75.49 89.20/80.20 89.73/82.95 
Iris  86.53/74.33 88.24/81.33 90.47/83.73 91.84/85.01 
Segment  85.48/79.39 86.70/80.22 87.81/82.16 85.02/80.52 
Isolet  81.54/74.20 83.33/76.16 84.47/79.68 85.02/80.52 
Glass  53.40/44.52 59.77/5016 64.01/55.23 66.07/57.88 
Colic  74.05/61.94 76.66/65.71 77.34/67.33 78.09/69.12 
Heart-c 71.06/61.17 83.14/69.54 86.27/72.10 88.22/78.38 
Splice  75.42/64.41 84.09/70.13 87.62/77.06 90.46/81.57 
Anneal  87.09/74.89 88.38/78.51 88.68/79.04 89.22/80.95 
Win/draw/loss  15/0/0  15/0/0 15/0/0 15/0/0 
sig. W/D/L 15/0/0 15/0/0 15/0/0 15/0/0 
GM error ration  0.6799 0.6365 0.6253 0.6405 
 

Table 4: CED Vs. clustering algorithm 

Date set  10% 20% 30% 40% 

Breast cancer  90.26/87.87 94.48/93.67 95.36/94.89 95.73/95.34 
Lonosphere  89.64/86.21 89.55/87.09 89.91/87.36 90.20/87.85 
Auto (statlog) 70.20/67.21 75.74/69.79 77.84/72.58 77.17/73.53 
Haberman’s survival 67.23/61.77 76.77/67.07 80.00/71.68 81.17/72.17 
Contraceptive  45.89/44.22 55.20/53.53 62.86/56.92 67.77/62.68 
Blog spam  91.83/88.34 93.88/91.20 94.94/92.37 96.47/94.34 
Letter recognition  86.53/79.33 88.20/86.33 89.20/87.73 89.73/87.81 
Iris  86.55/86.58 88.24/88.24 90.47/90.93 91.84/91.97 
Segment  85.48/84.25 86.70/84.61 87.81/84.63 85.02/85.35 
Isolet  81.54/81.94 83.33/84.97 84.47/85.41 85.02/85.55 
Glass  53.40/44.62 59.77/52.16 64.01/58.63 66.07/59.38 
Colic  74.05/61.94 76.66/72.44 77.34/73.61 78.09/73.78 
Heart-c 71.06/61.17 83.14/72.49 86.27/79.59 88.22/82.78 
Splice  75.42/64.41 84.09/74.59 87.62/79.84 90.46/84.11 
Anneal  87.09/74.89 88.38/84.49 88.68/85.59 89.22/86.41 
Win/draw/loss sig.  13/0/2 13/1/1 13/0/2 14/0/2 
W/D/L 11/4/0 12/2/1 12/2/0 12/3/0 
GM error ration  0.8386 0.8137 0.8020 0.8006 
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The results in III are expected based on the fact 

that CED algorithm selects the optimal number of 

classifiers with the highest diversity contribution. These 

results are encouraging as the classic or traditional 

Ensemble constitutes the base line or reference 

ensemble for our further comparisons. The results also 

affirm the scalability of CED design concept. 

Again by looking at Table 3, we could see that the 

CED outperforms the classical Ensemble in every entry 

of the table. 

This means that the gain in accuracy is always 

statistically significant. The statistics at the bottom of 

the table further confirm these results. In particular, the 

geometric mean error ratio values show the higher 

magnitude of the gain in all percentages of training data 

sets sizes. 

Now the experiment moves into comparing the 

CED with the clustering algorithm. From Table 4 it is 

clear that the CED outperforms the Clustering 

algorithm on almost all data sets and on most training 

sizes. Moreover, the gain in accuracy is significant in 

most of the training sizes, in particular, when training 

sizes and the accuracy are low and that is supported by 

the  values  of  the  geometric  mean  error  ratio. This is  

stemming from the fact that training data sizes are high 

and the base classifier errors are low yielding less 

diverse ensembles. 

The scatter plot in Fig. 2 represents the 

comparisons between CED and Clustering algorithm 

over various sizes of training data sets. Figure 2 shows 

few points are slightly under the diagonal line which 

suggests that even in cases where Clustering beats CED 

the gain is significantly less than CED’s gain over 

Clustering on the rest of the data sets and training data 

sizes. 

Again, regarding Clustering Ensembles case, the 

number of selected classifiers by the CED across all 

datasets and all domains is always less than or equal to 

the number selected by the Clustering Ensemble. This 

is very imperative advantage that facilitates the 

reliability of the CED design in ensuring high 

performance and suitability to the data set in question 

and application used. Interestingly, the performance 

gain difference is observed to be higher when the 

performance of the Clustering Ensemble is in the low 

accuracy ranges. For example, in the Glass data set at 

10 and 20 training sizes, the CED performance gain is 

8.8 and 7.61, respectively compared to 3.49 and 2.68 
 

 
 

Fig. 1: Computing the performance of CED with classic ensemble on 15 data sets given: a) 10% b) 20% c) 30% d) 40% of the 

data for training 
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Fig. 2: Computing the performance of CED with clustering algorithm on 15 data sets given: a) 10% b) 20% c) 30% d) 40% of the 

data for training 
 
for the Clustering Ensemble for the blog Spam data set 

at the same training sizes. Looking at other data sets, 

the same trend can be observed. 

 

CONCLUSION 

 

It is worth mentioning here that it was not our aim 

throughout this study to establish a theoretical link 

between diversity and overall accuracy of ensemble in 

the classification tasks, nor to prove this relationship as 

it has been established and validated by many previous 

studies in this field. Our goal was to develop a 

technique that takes advantage of these facts and 

optimizes its applicability in the design process of 

ensembles. 

In this study we proposed CED, a new algorithm 

for creating classifier ensembles. CED differs from 

other ensemble methods such as bagging and boosting 

in that it explicitly tries to foster ensemble diversity. 

There have been many approaches that used diversity to 

guide the ensemble creation. Here we compared CED 

with Clustering algorithm. 

The effectiveness of the CED algorithm was 

investigated and exploited as a type of ensemble 

designing technique that encourages diversity 

explicitly. The goal of our algorithm was to find the 

optimal coalition in the set of base classifiers in the 

ensemble based on their value of contribution in the 

overall ensemble diversity. 

Extensive experiments with a wide variety of data 

sets have demonstrated that CED effectively captures 

the diversity contribution of base classifiers and 

particularly allows us to identify the base classifiers that 

significantly improve the ensemble diversity. In 

particular, we showed that when CED is used, it 

produces substantial improvements over using other 

ensemble approaches such as the ones mentioned 

above. 
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