
Research Journal of Applied Sciences, Engineering and Technology 11(12): 1365-1377, 2015
DOI: 10.19026/rjaset.11. 2244
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.

Submitted: June 8, 2015 Accepted: September 5, 2015 Published: December 25, 2015

Corresponding Author: Ameen Alkasem, School of Computer Science and Technology, Harbin Institute of Technology, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1365

Research Article
A Survey of Fault-tolerance in Cloud Computing: Concepts and Practice

Ameen Alkasem and Hongwei Liu
School of Computer Science and Technology, Harbin Institute of Technology, China

Abstract: A fault tolerance is an important property in order to achieve performance levels for important attributes
for a system’s dependability, reliability, availability and Quality of Service (QoS). In this survey a comprehensive
review of representative works on fault tolerance in cloud computing is presented, in which general readers will be
provided an overview of the concepts and practices of a fault-tolerance computing. Cloud computing service
providers will rise and fall based on their ability to execute and deliver a satisfactory QoS in primary areas such as
dependability. Many enterprise users are wary of the public clouds' dependability limitations, but also curious about
the possibility of adopting the technologies, designs and best practices of clouds for their own data centers such as
private clouds. The situation is evolving rapidly with public, private and hybrid clouds, as vendors and users are
struggling to keep up with new developments.

Keywords: Availability, cloud computing, fault tolerance, MTBF, redundancy

INTRODUCTION

Cloud computing is one of today’s most exciting

technologies because of its capacity to lessen costs
associated with computing while increasing flexibility
and scalability for computer processes. During the past
few years, cloud computing has grown from being a
promising business concept to one of the fastest
growing sectors of the IT industry. On the other hand,
IT organizations have expressed concerns about critical
issues such as dependability that accompany the
widespread implementation of cloud computing.
Dependability in particular is one of the most debated
issues in the field of cloud computing and several
enterprises look warily at cloud computing due to
projected dependability risks. Moreover also, there are
three important attributes of reliability, availability and
QoS of the cloud, as show in Fig. 1. Although each of
those issues are associated with usage of the cloud, they
will have different degrees of importance. The careful
examination of the benefits and risks of cloud
computing is necessary of the viability of cloud
computing (Sabahi, 2011). The US NIST (National
Institute of Standards and Technology) defines the
concept of Cloud computing as follows (Mell and
Grance, 2011):

• Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources (e.g.,
networks, servers, storage, applications and
services) that can be rapidly provisioned and

released with minimal management effort or
service provider interaction.” This definition can be
represented as shown in Fig. 2.

Fault tolerant systems are a popular research area.

In recent years for grid computing and disturbed system
technologies are widely used in many research and
different applications in dependability. Especially for
fault tolerance and a monitoring systems. Naixue et al.
(2009) authors gave a survey on fault tolerant issue in
distributed systems. Jin et al. (2003) authors only
considered concentrate on fault-tolerant strategies in
computational grid. Xiong et al. (2009) considered
comparing all kinds of adaptive fault detection FD
schemes in different experimental environments. This
study presented a comprehensive survey on fault
tolerance in cloud computing, which will provide
general readers an overview of concepts and practice of
a fault-tolerance computing.

MATARIALS AND METHODOLOGY

Concepts of fault tolerance: Fault-tolerant computing
is a generic term describing redundant design
techniques with duplicate components or repeated
computations enabling uninterrupted (tolerant)
operation in response to component failure (faults).

There are many applications in which the reliability
of the overall system must be far higher than that of the
reliability of its individual components. In such cases,
designers devise mechanisms and architectures that
allow the system to either completely mask the effects
of a component failure or recover from it quickly

Res. J. Appl. Sci. Eng. Technol.,

Fig. 1: Cloud computing and dependability attributes

Fig. 2: Cloud computing system

Fig. 3: System relationship

enough so that the application is not seriously affected
(Koren and Krishna, 2010).

Dependability of the system: In the field of software
engineering, a system is often equated with software, or
perhaps with the combination of computer

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1366

Cloud computing and dependability attributes (Google trends)

enough so that the application is not seriously affected

In the field of software
engineering, a system is often equated with software, or

computer hardware

and software. Here, we use the term

sense. As shown in Fig. 3, a system

components, both computer related and non

related, that provides a certain service to a user. There

are two levels at which fault tolerance can be applied:

software. Here, we use the term system in a broader

system is the entire set of

components, both computer related and non-computer

related, that provides a certain service to a user. There

ce can be applied:

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1367

Hardware fault tolerance: Measures in hardware fault
tolerance include:

• Redundant communications

• Replicated processors

• Additional memory

• Redundant power/energy supplies

Software fault tolerance: Changes in program or data
structures due to transients or design errors are
examples of software fault tolerance. Mechanisms such
as checkpoint/restart, recovery blocks and multiple-
version programs are often used at this level (Qureshi
et al., 2004).

A system is considered dependable if it has a high
probability of successfully carrying out its specific
functions. This first presumes that the system is
available. Furthermore, in order to completely perform
a specific function of the system, it is necessary to
define all the environmental and operative requirements
for the system to provide the desired service.
Dependability is therefore a measurement of how much
faith there is in the service given by the system
(Lazzaroni, 2011).

The design and implementation of "dependable"
systems necessitates the appropriate methodology for
identifying possible causes of malfunctions, commonly
known as "impediments." The technology to eliminate
or at least limit the effects of such causes is also
necessary. Consequently, in order to deal with the
problem of dependability, we need to know what
impediments may arise and the technologies to avoid
the consequences. Systems that utilize such techniques
are called Faults Tolerant (Lazzaroni et al., 2011).
Impediments to dependability assume three aspects:
fault, error and failure. A system is in failure when it
does not perform its specific function. A failure is
therefore a transition from a state of correct service to a
state of incorrect operation service. The periods of time
when a system is not performing any sort of service at
all are called outage periods. Inversely, the transition
from a period of non-service to a state of correct
functioning is deemed to be the restoration of service.
As shown in Fig. 4. Possible system failures can be
subdivided into classes of severity in respect to the
possible consequences of system failure and its effect
on the external environment. A general classification
used in which to separate failures into two categories:
benign and catastrophic/malicious (Lazzaroni, 2011).

Constructing a dependable system includes the

prevention of failures. To attain this, it is necessary to

understand the processes which may lead to a failure,

originating from a cause (failure) that may be inside or

outside the system. The failure may even remain

dormant for a period of time until its activation. The

activation of a failure leads to an error that is part of the

state of a system that can cause a successive failure.

Fig. 4: State of system

Fig. 5: Fault-error-failure chain

The failure is therefore the effect, externally
observable, of an error in the system. Errors are said to
be in a latent stat until they become observable and/or
lead to a state of failure, as shown in Fig. 5.

Similar failures can correspond to many different
errors, just as the same error can cause different failures
(Birolini, 2007). Systems are collections of
interdependent components (elements, entities) which
interact among themselves in accordance with
predefined specifications. The fault-error-failure chain
presented in Fig. 5 can therefore be utilized to describe
both the failure of a system and the failure of a single
component. One fault can lead to successive faults, just
as an error, through its propagation and thus causing
further errors. A system failure is often observed at the
end of a chain of propagated errors.

Dependability attributes: The attributes of
dependability express properties which are expected
from a system. Three primary attributes are:

• Reliability

• Availability

• Safety

Other possible attributes include:

• Maintainability

• Testability

• Performability

• Security

Depending on the application, one or more of these

attributes are needed to appropriately evaluate the

system behavior. For example, in an Automatic Teller

Machine (ATM), the duration of time in which system

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1368

Table 1: Availability and the corresponding downtime per year

Availability Downtime

90% 36.5 days/years
99% 3.65 days/years
99.9% 8.76 h/years
99.99% 52 min/years
99.999% 5 min/years
99.9999% 31 sec/years

is able to deliver its intended level of service (system

availability) is an important measure. However, for a

cardiac patient with a pacemaker, continuous

functioning of the device is a matter of life and death.

Thus, the ability of the system to deliver its service

without interruption (system reliability) is crucial. In a

nuclear power plant control system, the ability of the

system to perform its functions correctly or to

discontinue its function in a safe manner (system

safety) is of greater importance (Dubrova, 2013).

Dependability impairment: Dependability impairment

is usually defined in terms of faults, errors and failures.

A common feature of the three terms is that they give

us a message that something has gone wrong. These

faults, errors and failures can be differentiated by where

they have occurred. In the case of a fault, the problem

occurred on the physical level; in the case of an error,

the problem occurred on the computational level; and in

the case of a failure, the problem occurred on a system

level (Pradhan, 1996).

Reliability vs. availability: Reliability R(t) of a system

at time t is the probability that the system operates

without failure in the interval [0,t] given that the system

was performing correctly at time 0. Availability

expresses the fraction of time a system is operational. A

0.999999 availability means that the system is at most

not operational for one hour over a million hour

periods. Availability A (t) of a system at time t is the

probability that the system is functioning correctly at

the instant of time t.

Steady-state availability: Steady-state availability is

often specified in terms of downtime per year. Table 1

shows the values for availability and the corresponding

downtime. Availability is typically used as a

measurement for systems where short interruptions can

be tolerated. Networked systems, such as telephone

switching and web servers fall into this category

(Dubrova, 2013).

Availability is not equal to reliability: Availability

gives information about how time is used, where

reliability gives information about the failure-free

interval. Both are described in % values. Availability is

not equal to reliability except in a theoretical world of

no downtime and no failures. Availability, in the

simplest form (El-Damcese and Temraz, 2015), is:

A = Uptime/(Uptime+Downtime)
Ai = MTBF/(MTBF+MTTR)

Fault-tolerance vs. high availability: Fault tolerance

relies on specialized hardware to detect a hardware fault

and instantaneously switch to a redundant hardware

component whether the failed component is a

processor, memory board, power supply, I/O

subsystem, or storage subsystem. The fault tolerant

model does not address software failures, which are by

far the most common reason for downtime. High

availability views availability not as a series of

replicated physical components, but rather as a set of

system-wide, shared resources that cooperate to

guarantee essential services. High availability combines

software with industry-standard hardware to minimize

downtime by quickly restoring essential services when

a system, component, or application fails. While not

instantaneous, services are restored rapidly, often in

less than a minute. The difference between fault

tolerance and high availability is that a fault tolerant

environment has no service interruption yes has a

significantly higher cost, while a highly available

environment has minimal service interruption (Rohit,

2014).

Faults, errors and failures: As shown in Fig. 6, a fault

is a physical defect, imperfection, or flaw that occurs in

some hardware or software component (Belli and

Görke, 2012). Examples are short-circuiting between

two adjacent interconnects: Broken pin or a software

bug. An error is a deviation from correctness or

accuracy in computation, which occurs as a result of a

fault. Errors are usually associated with incorrect values

in the system state. For example, a circuit or a program

computed an incorrect value; or incorrect information

was received while transmitting data. A failure is the

non-performance of some action which is due or

expected. A system is said to have a failure if the

service it delivers to the user deviates from compliance

with the system specification for a specified period of

time. A system may fail either because it does not act in

accordance with the specification, or because the

specification did not adequately describe its function.

Not every fault causes an error and not every error

causes a failure. This is particularly evident in the case

of software. Some program bugs are very hard to find

because they cause failures only in very specific

situations. For example, in November 1985, a $32

billion overdraft was experienced by the Bank of New

York, leading to a loss of 5$ million in interest. The

failure was caused by an unchecked overflow of a 16-

bit counter. In 1994, the Intel Pentium I microprocessor

was discovered to compute incorrect answers to certain

floating-point division calculations.

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1369

Fig. 6: Faults, errors and failures

Fig. 7: Fault classifications diagram

Fig. 8: Fault categories

Practice for fault-tolerance: Fault tolerance is the

ability of a system to correctly perform its function

even in the presence of internal faults. The purpose of

fault tolerance is to increase the dependability of a

system. A complementary but separate approach to

increasing dependability is fault prevention. This

consists of techniques, such as inspection, which has

the intent to eliminate the circumstances by which the

faults have arised (Saha, 2003).

Fault classifications: Based on duration, faults can be

separated into two classifications which are timing and

state, as shown in Fig. 7:

• Permanent fault: Remains in the system until they

are repaired. For example, a broken wire or a

software design error.

• Transient fault: Starts at a particular time,

remains in the system for some period and then

disappears, For example, hardware components

which have an adverse reaction to radioactivity.

Also, many faults in communication systems are

transient.

• Intermittent fault: Transient faults that occur

from time to time. For example, a hardware

component that is heat sensitive meaning it works

for a time, stops working, cools down and then

starts to work again.

• Benign fault: A fault that just causes a unit to go
dead.

• Malicious fault: The component makes a
malicious act and sends different valued outputs to
different receivers.

A different way to classify faults is by their

underlying cause, as shown in Fig. 8.

• Design faults: The result of design failures, like
coding. While it may appear that in a carefully
designed system all such faults should be
eliminated through fault prevention, in practice this
is usually not realistic. For this reason, many fault-
tolerant systems are built with the assumption that
design faults are inevitable and theta mechanisms
need to be put in place to protect the system against
them.

• Operational faults: Faults that occur during the
lifetime of the system.

• Physical faults: Processor failures or disk crashes
(McKelvin Jr., 2011).

• Human faults (Errors): An inappropriate or
undesirable human decision or behavior that
reduces, or has the potential for reducing,
effectiveness, safety, or system performance.

Finally, based on how a failed component behaves

once it has failed, faults can be classified into the
following categories, as shown in Fig. 9.

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1370

Fig. 9: Fault classified

• Crash faults: The component either completely
stops operating or never returns to a valid state. For
example, a server halts but was working ok until
the O.S. failure.

• Omission faults: The component completely fails
to perform its service. For example, a server not
listening or buffer overflow.

• Timing faults: The component does not complete
its service on time. For example, a server response
time is outside its specification and a client may
give up. Response: Incorrect response or incorrect
processing due to control flow out of
synchronization.

Byzantine faults: These are faults of an arbitrary
nature. For example, server behaving erratically, like
providing arbitrary responses at arbitrary times. Server
output is inappropriate but it is not easy to determine
this to be incorrect. Duplicated message due to
buffering problem is an example. Alternatively, there
may be a malicious element involved (UK Essays,
2013).

Fault-tolerant systems:
Definitions:

• Ideally the system is capable of executing their
tasks correctly regardless of either hardware
failures or software errors.

• A system fails if it behaves in a way which is not
consistent with its specification. Such a failure is a
result of a fault in a system component.

What is the meaning of correct functionality in the

presence of faults?

The answer depends on the particular application
(on the specification of the system):

• The system stops and doesn’t produce any
erroneous (dangerous) result/behavior

• The system stops and restarts after a given time
without loss of information

• The system keeps functioning without any
interruption and (possibly) with unchanged
performance (Latchoumy and Khader, 2011).

Redundancy: Redundancy is at the heart of fault
tolerance. Redundancy is the incorporation of extra
components in the design of a system so that its
function is not impaired in the event of a failure. All
fault-tolerant techniques rely on extra elements
introduced into the system to detect and recover from
fault components and are redundant as they are not
required in a perfect system. They are often called
protective redundancy.

The aim of redundancy: Minimize redundancy while
maximizing reliability, which are subject to the cost and
size constraints of the system.

The warning of redundancy: The added components
inevitably increase the complexity of the overall
system. Thus it can lead to less reliable systems.
Therefore, it advisable to separate out the fault-tolerant
components from the rest of the system.

Types of redundancy: The types of redundancy are
shown in Fig. 10.

Hardware redundancy: Hardware redundancy is a
fundamental technique to provide fault-tolerance in
safety-critical distributed systems (Gray and Siewiorek,
1991):

• Aerospace applications

• Automotive applications

• Medical equipment

• Some parts of telecommunications equipment

• Nuclear centers

Fig. 10: Types of redundancy

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1371

• Military equipment, etc

Static redundancy: redundant components are used
inside a system to hide the effects of faults. For
example Triple Modular Redundancy TMR-3 identical
subcomponents and majority voting circuits. Outputs
are compared and if one differs from the other two, that
output is masked out and assumes that the fault is not
common (such as a design error), rather it transient or
due to component deterioration. To mask faults from
more than one component requires NMR.

Dynamic redundancy: Redundancy supplied inside a
component which indicates that the output is in error. It
provides an error detection facility and recovery must
be provided by another component.

Hybrid redundancy: A combination of static and
dynamic redundancy techniques.

Software redundancy: Software redundancy can be
divided into two groups:

Single-version techniques: Single version techniques
add a number of functional capabilities to a single
software module that are unnecessary in a fault-free
environment. Software structure and actions are
modified to be able to detect a fault, isolate it and
prevent the propagation of its effect throughout the
system. Here, we consider how fault detection, fault
containment and fault recovery are achieved in a
software domain:

• Fault detection techniques

• Fault containment techniques

• Fault recovery techniques

• Exception handling

• Checkpoint and restart

Multi-version techniques: Multi-version techniques

use two or more versions of the same software module,
which satisfy the design diversity requirements. For

example, different teams, different coding languages or
different algorithms can be used to maximize the

probability that all the versions do not have common

faults:

• Recovery blocks

• N-version programming

• N self-checking programming

• Design diversity

Information redundancy: Data are coded in such a
way that a certain number of bit errors can be detected
and, possibly, corrected (parity coding, checksum codes
and cyclic codes).

Time redundancy: The timing of the system is such
that if certain tasks have to be rerun and recovery

Fig. 11: Block diagram of an m-unit series system

operations have to be performed system requirements
are still fulfilled (Koren and Krishna, 2010).

Reliability evaluation of standard configurations: As
engineering systems can form various types of
configurations in performing reliability analysis, this
section presents reliability analysis of some standard
networks or configurations (Dhillon, 2007):

Series configuration: A series system is defined as a
set of N modules connected together so that the failure
of any one module causes the entire system to fail. As
shown in Fig. 11, the reliability of the entire series
system is the product of the reliabilities of its N
modules. Denoted by Ri(t), the reliability of the module
is i and Rs(t) the reliability of the whole system:

����� = � �����
��� (1)

where,
Rs : The series system reliability.
N : The total number of units in series.
Ri : The unit i reliability; for i = 1, 2, ……, m.

If module i has a constant failure rate, denoted by
λi, then, according to Eq. (1), Ri(t) = e�λ�� and
consequently:

����� = �� � �����
� = ����� (2)

where,
Rs(t) : The reliability of unit i at time t.
λs(t) : Unit i hazard rate.
λi : Unit i constant failure rate.

By substituting Eq. (2) into Eq. (1), we get:

����� = � ����� = �� � ����������� (3)

where,
Rs(t) = The series system reliability at time t.

Using Eq. (3) in Eq. (4) yields:

��� � = � �� � �������∞

! "� = �
� ������

 (4)

where,
MTTFs = The series system mean time to failure.

Parallel configuration: A parallel system is defined as
a set of N modules connected together so that it requires
the failure of all the modules for the system to fail. The
system block diagram is shown in Fig. 12. Each block
in the diagram represents a unit.

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1372

Fig. 12: A parallel systems with m units

The following expression for the reliability of a

parallel system is denoted by Rp(t):

�#��� = 1 − � �1 − ������
��� (5)

where,
Rp : The parallel system reliability.
N : The total number of units in parallel.
Ri : The unit i reliability; for i = 1, 2, ……, m.

If module i has a constant failure rate λi, then in Eq.

(6), we get:

�#��� = 1 − � �1 − ������
��� (6)

As an example, the reliability of a parallel system

consisting of two modules with constant failure rates λ1
and λ2 is given by:

�#��� = ����� + ���'� − ������(�'�� (7)

where,
Rp(t) : The parallel system reliability at time t.

Standby system: In the case of using a standby system,
only one unit operates and m units are kept in their
standby mode. As soon as the operating unit fails, a
switching mechanism detects the failure and turns on
one of the standbys. The system contains a total of (m-
+1) units and it fails when all the m standby units fail.
For a perfect switching mechanism and standby units,
independent and identical units, the unit's constant
failure rates and the standby system reliability is given
by:

������� = � �����)*+,
�!

���! (8)

where,
Rstd(t) : The standby system reliability at time t.
m : The total number of standby units.
λ : The unit constant failure rate.

Using Eq. (8) in (9) yields:

��� ��� = � .�����)*+,
�! /∞

! "� = ���
� (9)

where,
MTTFstd = The standby system mean time to failure.

Numerical example: A system has two independent
and identical units. One of these units is operating and
the other is on standby. Calculate the system mean time
to failure and reliability for a 200-h mission by using
Eq. (8) and (9), if the unit failure rate is 0.0001 failures
per hour.

Solution: By substituting the given data values into Eq.
(8), we get:

�����200�

= � 2�!.!!!���4!!�5�)*��.������'���
�! = 0.9998���!

Similarly, substituting the given data values into

Eq. (9) yields:

��� ��� = ��(��
�!.!!!�� = 20,000 hours

Thus, the system reliability and mean time to

failure are 0.9998 and 20,000 h, respectively.

M-of-N systems: An M-of-N system is a system that
consists of N modules and needs at least M of them for
proper operation. Thus, the system fails when fewer
than M modules are functional. The best-known
example of this type of systems is the triplex, as shown
in Fig. 13. It consists of three identical modules whose
outputs are voted on. This is a 2-of-3 system: So long as
a majority (2 or 3) of the modules produces correct
results, the system will be functional (Koren and
Krishna, 2010).
The system reliability is therefore given by:

�>?@A��� = � B

� C
��> ��D1 − ����E
�� (10)

where,

B

� C =
!

�
���!�!

The assumption that failures are independent is a

key to the high reliability of M-of-N systems. Even a
slight extent of positively correlated failures can greatly
diminish their reliability. For example, suppose qcor is
the probability that the entire system suffers a common
failure. The reliability of the system now becomes that
of a single module (voter failure rate is considered
negligible) to the general case of TMR. This is called
N-Modular Redundancy (NMR) and is an M-of-N
cluster with N being odd and M = [N/2]:

�>?@A
FGH ��� = �1 − IFGH� � B

� C
��> ��
D1 − ����E
�� (11)

Res. J. Appl. Sci. Eng. Technol.,

Fig. 13: A Triple Modular Redundant (TMR) structure

Fig. 14: Comparing NMR reliability (N = 3 and 5)

Fig. 15: Triplicated voters in aprocessor/memoery TMR

Fig. 16: Dynamic redundancy

A plot of the reliability of a simplex (a single
module), a triplex (TMR) and an NMR cluster with N =
5 is shown in Fig. 14. For high values of R(t), the
greater the redundancy, the higher the system reliability
(Koren and Krishna, 2010). As R(t)
advantages of redundancy become less marked. When
R(t) <0.5, redundancy actually becomes a disadvantage,
with the simplex being more reliable than either of the
redundant arrangements. This is also reflected in the
value of MTTFTMR, which (for R voter (t) = 1

and ���� = ����) can be calculated by the following
equation:

��� J>K =
�

BL�4 − 2�M���C
"� = � BL��4�� − 2��4��C"� =∞

!

∞

!
��� �N��#O)

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1373

A Triple Modular Redundant (TMR) structure

reliability (N = 3 and 5)

Triplicated voters in aprocessor/memoery TMR

A plot of the reliability of a simplex (a single
module), a triplex (TMR) and an NMR cluster with N =

values of R(t), the
greater the redundancy, the higher the system reliability

R(t) decreases, the
advantages of redundancy become less marked. When
R(t) <0.5, redundancy actually becomes a disadvantage,

simplex being more reliable than either of the
redundant arrangements. This is also reflected in the

, which (for R voter (t) = 1

) can be calculated by the following

C
C = P

Q�
R �

� =
 (12)

Voting techniques: a voter receives inputs x
from an M-of-N cluster and generates a representative
output. The simplest voter is one that does a
comparison of the outputs and checks if a majority of
the N inputs are identical variations on the N
Redundancy Unit-Level Modular Redundancy, as
shown in Fig. 15.

Dynamic redundancy: as shown in Fig. 16, the
reliability is given by:

��STN��F��� = ��HU���D�1 − �

where, R(t) is the reliability of each module and R
is the reliability of the detection and reconfiguration
unit. Failures to the active module occur at rate of λ.
The probability that a given such failure which cannot
be recovered from is 1-c. Hence, the rate at which
unrecoverable failures occur is (1
Krishna, 2010). The probability that no unrecoverable
failure occurs to the active processor over a duration
therefore given by e−(1−c)λt and the reliability of the
reconfiguration unit is given by R
equation is expressed as:

 ��STN��F��� = ��HU��������F�

Hybrid redundancy: an NMR system is capable of
masking permanent and intermittent failures, but as we
have seen, its reliability drops below that of a single
module for very long mission times if no repair or
replacements are conducted. Figure 17 depicts a hybrid
system consisting of a core of N proces
an NMR and a set of K spares (Koren
2010).

The reliability of a hybrid system with a TMR core
and K spares is:

�VSWH����� = �XG�)H����H)F����
��Y

where, m = K+3 is the total number

and Rrec(t) are the reliability of the voter and the

comparison and reconfiguration circuitry, respectively

(Koren and Krishna, 2010).

Sift-out modular redundancy: As in

modules in the Sift-out Modular Redundancy scheme

are active and the system is operational as long as there

are at least two fault-free modules, as shown in Fig. 18.

Duplex systems: A duplex system is the simplest

example of module redundancy. Figure 19 shows an

example of a duplex system consisting of two

processors and a comparator. Both processors execute

the same task and if the comparator finds that their

outputs are in agreement, the result is assumed to be

correct.

a voter receives inputs x1, x2, ..., xN

N cluster and generates a representative
output. The simplest voter is one that does a bit-by-bit
comparison of the outputs and checks if a majority of
the N inputs are identical variations on the N-Modular

Level Modular Redundancy, as

as shown in Fig. 16, the

����E
(� (13)

where, R(t) is the reliability of each module and Rdru(t)
is the reliability of the detection and reconfiguration
unit. Failures to the active module occur at rate of λ.

such failure which cannot
c. Hence, the rate at which

unrecoverable failures occur is (1-c)λ (Koren and
, 2010). The probability that no unrecoverable

failure occurs to the active processor over a duration t is
and the reliability of the

reconfiguration unit is given by Rdru(t). Therefore the

��� (14)

an NMR system is capable of
masking permanent and intermittent failures, but as we
have seen, its reliability drops below that of a single
module for very long mission times if no repair or
replacements are conducted. Figure 17 depicts a hybrid
system consisting of a core of N processors constituting
an NMR and a set of K spares (Koren and Krishna,

The reliability of a hybrid system with a TMR core

� ��1 − Y����D1 −
 (15)

where, m = K+3 is the total number of modules, Rvoter(t)

(t) are the reliability of the voter and the

comparison and reconfiguration circuitry, respectively

As in a NMR, all N

out Modular Redundancy scheme

are active and the system is operational as long as there

free modules, as shown in Fig. 18.

A duplex system is the simplest

dule redundancy. Figure 19 shows an

example of a duplex system consisting of two

processors and a comparator. Both processors execute

the same task and if the comparator finds that their

outputs are in agreement, the result is assumed to be

Res. J. Appl. Sci. Eng. Technol.,

Fig. 17: Hybrid redundancy

Fig. 18: Sift-out structure

Fig. 19: Duplex system

Assuming that the two processors are identical,

each with a reliability R(t), the reliability of the duplex

system is:

��U#O)Z��� = �FG�#��� [�4��� + 2
\1 − ��

where, Rcomp is the reliability of the comparator.

Assuming that there is a fixed failure rate of λ for each

processor and an ideal comparator (R

MTTF of the duplex system is:

��� �U#O)Z = �
4� + F

�

The main difference between a duplex and a TMR

system is that in a duplex, the faulty processor must be

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1374

Assuming that the two processors are identical,

each with a reliability R(t), the reliability of the duplex

2]����
���^ _ (16)

is the reliability of the comparator.

Assuming that there is a fixed failure rate of λ for each

processor and an ideal comparator (Rcomp(t) = 1), the

 (17)

The main difference between a duplex and a TMR
system is that in a duplex, the faulty processor must be

identified. Next the various ways in which the faulty
processor can be identified is discussed (Koren
Krishna, 2010).

Basic measures of fault tolerant:
mathematical an abstraction that expresses some
relevant fact of the performance of its object:

• Traditional measures: The system can be in one
of two states: Up or down. For examples
good or burned out and wire: connected or broken.

• Reliability measures: formal definitions are as
following:

o Failure rate: fraction of unit's failing/unit time,
e.g., 1000 units, 3 failed in 2 h, then the failure rate
= 3/1000*2 = 1.5*10-3 per hour.

o Mean Time to Failure (MTTF):
important reliability measure as it is the mean time
to failure (MTTF) which is the average time to the
first failure. It can be obtained from the mean of
the probability density of the time to failure

∫
∞

=
0

)(dtttfMTTF

With a constant hazard rate λt = const:

λλθ /1)exp(
0

=∫ −==
∞

dttMTTF

Numerical example: The mean time to failure of a
component characterized by a constant hazard rate is
MTTF = 50000 h. Calculate the probability of the
following events:

• The component will survive continuous service for
one year.

• The component will fail between the fifth and sixth
year.

identified. Next the various ways in which the faulty
processor can be identified is discussed (Koren and

Basic measures of fault tolerant: Measures is a
mathematical an abstraction that expresses some
relevant fact of the performance of its object:

system can be in one
examples, light bulb

rned out and wire: connected or broken.

formal definitions are as

fraction of unit's failing/unit time,
e.g., 1000 units, 3 failed in 2 h, then the failure rate

3 per hour.
Failure (MTTF): MTTF an

important reliability measure as it is the mean time
to failure (MTTF) which is the average time to the
first failure. It can be obtained from the mean of
the probability density of the time to failure f(t):

 (18)

const:

 (19)

The mean time to failure of a
component characterized by a constant hazard rate is

= 50000 h. Calculate the probability of the

The component will survive continuous service for

The component will fail between the fifth and sixth

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1375

• The component will fail within a year given that it

has survived the end of the fifth year. Compare this

probability with the probability that the component

will fail within a year given that is has survived the

end of the tenth year.

Solution:

• Since MTTF = 50000 h = 5.7 years, the hazard rate

of the component is λ = 1/5.7 years. Reliability is

determined from R(t) = exp(-λt) and the probability

of surviving one year is:

��1� = `�� > �� = ���/P.c ≈ 0.84

• The probability that the component will fail

between the end of the fifth and end of the sixth

year can be obtained from the cumulative

distribution function of the negative exponential

distribution:

 ��5 R � ≤ 6� = �6� − �5� = exp k− P
P.cl −

exp � Q
P.c� ≈ 0.07

• Because of the memory less property of the

negative exponential distribution, the probability

that the component will fail within a year, given

that it has survived the end of the fifth year, is

equal to the probability that the component will fail

within a year after having been put in use:

��5 R � ≤ 6� = `�0 R � ≤ 1�

= 1 − exp �− 1
5.7� ≈ 0.16

Similarly, the probability that the component will

fail within a year given that it has survived the end of

the tenth year is obtained from:

��10 R � ≤ 11 > 10� = `�0 R � ≤ 1� = 1 −
exp �− �

P.c� ≈ 0.16

This probability is equal to the probability from the

previous, because of the memory less property of the

negative exponential distribution (Todinov, 2005).

Mean Time to Repair (MTTR): MTTR is the

expected time until repaired. If we have a system of N

identical components and the ith component requires

time ti to repair, then MTTR is given by:

∑
=

∗=
N

i
tiN

TTR

1

1
M

(20)

Mean Time Between Failures (MTBF): The mean
time between failures can be defined in two ways:

• MTBF is the MTTFs in repairable devices.

• MTBF is the sum of the mean time. of MTTFs of
the device plus the MTTR (Mean time to
repair/restore):

n = >JJK
>Jop = >JJp

>JJp(>JJK (21)

A related measure, called point availability,

denoted by Ap(t) is the probability that the system is up
at the particular time instant t. It is possible for a low-
reliability system to have high availability. Consider a
system that fails on average every hour but comes back
up after only a second, (MTTF). Such a system has an
MTBF of just 1 h (60 m*60 s = 3600 s) and,
consequently, a low reliability however, its availability
is high and is expressed as, A = MTTF/MTBF =
3599/3600 = 0.99972.

MTBF and MTTR: An estimation of system
availability from MTBF and MTTR is given by:

nqrstrusts�v = >Jop
>Jop(>JJK (22)

If the mean MTBF or MTTF is very large as

compared to the MTTR, then you will see high
availability. This simple equation is easily understood
by considering Fig. 20. MTTR is the time to return a
system to service and MTBF is the time the system is
expected to be up or online before it fails (again). This
means that the system will nominally be online and the
system is formally defined by [TL9000] as, “A
collection of hardware and/or software items located at
one or more physical locations where all of the items
are required for proper operation. No single item can
function by itself.” (Bauer and Adams, 2012).

Service availability: Service availability can be
quantified by using Eq. (23) (basic availability formula)
as service uptime divided by the sum of service uptime
and service downtime:

Downtime Uptime

 Uptime
tyAvailabili

+
= (23)

Equation (24) (practical system availability

formula) calculates the availability based on service
downtime, as well as the total time the target system (s)
was expected to be in service(i.e., the minutes during
the measurement period that systems were expected to
be online so planned downtime is excluded):

iceTimeTotalInSev

Downtime-iceTimeTotalInSev
tyAvailabili = (24)

Res. J. Appl. Sci. Eng. Technol.,

Fig. 20: MTBF and MTTR

Fig. 21: Fault tolerance in cloud computing platform

where, Total In Service Time is: the sum of minutes per
month (or other reporting periods) that the systems in
the population were expected to be operational.

Downtime: Is the minutes of service unavailability
prorated by the percentage of capacity or functionality
impacted during the outage (Bauer and

RESULTS AND DISCUSSION

Cloud computing has quickly become the de facto

means to deploy large scale systems in a robust and cost
effective manner. The combination of elasticity and
scale poses a series of challenges to a number of areas,
including fault-tolerance. This survey a comprehensive
review of representative works on fault tolerance in
cloud computing is presented, in which general readers
will be provided an overview of the concepts and
practices of a fault-tolerance computing.

CONCLUSION

In this study, we surveyed the use of fault tolerance
in cloud computing. Cloud computing is position
itself as a new platform for delivering information

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1376

Fault tolerance in cloud computing platform

the sum of minutes per
month (or other reporting periods) that the systems in
the population were expected to be operational.

Is the minutes of service unavailability
prorated by the percentage of capacity or functionality

and Adams, 2012).

RESULTS AND DISCUSSION

Cloud computing has quickly become the de facto
scale systems in a robust and cost

effective manner. The combination of elasticity and
scale poses a series of challenges to a number of areas,

tolerance. This survey a comprehensive
review of representative works on fault tolerance in

d computing is presented, in which general readers
will be provided an overview of the concepts and

tolerance computing.

In this study, we surveyed the use of fault tolerance
in cloud computing. Cloud computing is positioning
itself as a new platform for delivering information

infrastructures and a range of computer applications for
businesses and individuals as IT services and
developing them in the future works
Fig. 21. Cloud customers can then provision and deploy
these services in a pay-as-you-go fashion and in a
convenient way while saving huge capital investment in
their own IT infrastructures. Clouds are evoking a high
degree of interest both in developed and emerging
markets though challenges such as security, reliability
and availability remains to be fully addressed to
achieved full fault tolerance services in the cloud
platform.

ACKNOWLEDGMENT

Thanks Chinese High-tech R and D(863) program
project "Cloud Computer Test and Evaluation Syst
Development (2013AA01A215)" for supporting of this
research.

REFERENCES

Bauer, E. and R. Adams, 2012. Reliability and

Availability of Cloud Computing. John Wiley
Sons, New York.

infrastructures and a range of computer applications for
businesses and individuals as IT services and

works as shown in
provision and deploy

go fashion and in a
convenient way while saving huge capital investment in
their own IT infrastructures. Clouds are evoking a high
degree of interest both in developed and emerging

es such as security, reliability
and availability remains to be fully addressed to
achieved full fault tolerance services in the cloud

ACKNOWLEDGMENT

tech R and D(863) program
project "Cloud Computer Test and Evaluation System
Development (2013AA01A215)" for supporting of this

REFERENCES

, 2012. Reliability and
Availability of Cloud Computing. John Wiley and

Res. J. Appl. Sci. Eng. Technol., 11(12): 1365-1377, 2015

1377

Belli, F. and W. Görke, 2012. Fehlertolerierende
rechensysteme/fault-tolerant computing systems.
Proceedings of the 3rd International GI/ITG/GMA-
Fachtagung/Conference Bremerhaven, September
9-11, ISBN: 978-3-540-18294-8.

Birolini, A., 2007. Reliability Engineering: Theory and
Practice. Springer, Berlin, Heidelberg.

Dhillon, B.S., 2007. Applied Reliability and Quality:
Fundamentals, Methods and Procedures. Springer-
Verlag, London Ltd.

Dubrova, E., 2013. Fault-tolerant Design. Springer
Science+Business Media, New York, pp: 185.

El-Damcese, M. and N. Temraz, 2015. Analysis of
availability and reliability of k–out–of–n: F model
with fuzzy rates. Int. J. Comput. Sci. Eng., 10(1-2):
192-201.

Gray, J. and D.P. Siewiorek, 1991. High-availability
computer systems. Computer, 24(9): 39-48.

Jin, H., D. Zou, H. Chen, J. Sun and S. Wu, 2003.
Fault-tolerant grid architecture and practice. J.
Comput. Sci. Technol., 18(4): 423-433.

Koren, I. and C.M. Krishna, 2010. Fault-tolerant
Systems. Morgan Kaufmann.

Latchoumy, P. and P.S.A. Khader, 2011. Survey on
fault tolerance in grid computing. Int. J. Comput.
Sci. Eng. Surv., 2(4): 97-110.

Lazzaroni, M, 2011. Reliability Engineering: Basic
Concepts and Applications in ICT. Springer-
Verlag, Berlin, Heidelberg.

Lazzaroni, M., L. Cristaldi, L. Peretto, P. Rinaldi and
M. Catelani, 2011. Repairable Systems and
Availability. In: Reliability Engineering. Springer,
Berlin, Heidelberg, pp: 85-92.

McKelvin Jr., M.L., 2011. A methodology and tool
support for the design and evaluation of fault
tolerant, distributed embedded systems. Ph.D.
Thesis, University of California, Berkeley.

Mell, P. and T. Grance, 2011. The NIST Definition of
Cloud Computing. Retrieved from: http://csrc.nist.
gov/publications.

Naixue, X., Y. Yan, C. Ming, H. Jing and S. Lei, 2009.

A survey on fault-tolerance in distributed network

systems. Proceeding of the IEEE International

Conference on Computational Science and

Engineering (CSE, 2009). Vancouver, BC, pp:

1065-1070.

Pradhan, D.K., 1996. Fault-tolerant Computer System

Design. Prentice-Hall, Upper Saddle River, NJ.

Qureshi, A.A., M.H. Levine and J.K. Shim, 2004. The

International Handbook of Computer Networks.

Global Professional Publishi, Barming, Kent,

ISBN: 1858820596, pp: 302.

Rohit, S., 2014. Fault Tolerance Vs High Availability.

Retrieved from:

https://www.ibm.com/developerworks/community/

blogs/RohitShetty/entry/fault_tolerance_vs_high_a

vailability?lang=en.

Sabahi, F., 2011. Cloud computing Reliability,

Availability and Serviceability (RAS): Issues and

challenges. Int. J. Adv. ICT Emerg. Regions, 4(02):

12-23.

Saha, G.K., 2003. Fault management in mobile

computing. Ubiquity, 2003(October), Article No. 1

DOI: 10.1145/948943.948944.

Todinov, M., 2005. Reliability and Risk Models:

Setting Reliability Requirements. John Wiley &

Sons, New York.

UK Essays, 2013. The Fault Tolerance in Distributed

Systems Information Technology Essay. Retrieved

from:

http://www.ukessays.com/essays/information-

technology/the-fault-tolerance-in-distributed-

systems-information-technology-essay.php?cref=1.

Xiong, N., A.V. Vasilakos, L.T. Yang, L. Song, Y. Pan,

R. Kannan and Y. Li, 2009. Comparative analysis

of quality of service and memory usage for

adaptive failure detectors in healthcare

systems. IEEE J. Sel. Area. Comm., 27(4):

495-509.

