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Abstract: This study aims at making a comparative study of various parallel programming models for a compute 
intensive application pertaining to Atmospheric modeling. Atmospheric modeling deals with predicting the behavior 
of atmosphere through mathematical equations governing the atmospheric fluid flows. The mathematical equations 
are nonlinear partial differential equations which are difficult to solve analytically. Thus fundamental governing 
equations of atmospheric motion are discretized into algebraic forms that are solved using numerical methods to 
obtain flow-field values at discrete points in time and/or space. Solving these equations often requires huge 
computational resource, which is normally available with high-speed supercomputers. Shallow Water equations 
provide a useful framework for the analysis of dynamics of large-scale atmospheric flow and for the analysis of 
various numerical methods that might be applied to the solution of these equations. In this study, Finite volume 
approach has been used for discretizing these equations that leads to a number of algebraic equations equal to the 
number of time instants at which the flow field values are to be evaluated. It is apparent that the application is 
embarrassingly parallel and its parallelization will suppress communication overhead. A High Performance 
Compute cluster has been employed for solving the equations involved in atmospheric modeling. Use of OpenMP 
and MPI APIs has paved the way to study the behavior of shared memory programming model and the message 
passing programming model in the context of such a highly compute intensive application. It is observed that no 
additional benefit can be enjoyed by creating too many software threads than the available hardware threads, as the 
execution resources should be shared among them. 
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INTRODUCTION 

 
Parallel Computing find its application in various 

disciplines. In Science and Engineering, parallel 
computing has been considered to be the high end of 
computing and has been used to model difficult 
problems in many areas such as Atmosphere, Earth, 
Environment Physics nuclear, particle, condensed 
matter, high pressure, fusion, photonics Bioscience, 
Biotechnology, Genetics Chemistry, Molecular 
Sciences, Geology, Seismology, Mechanical 
Engineering-from prosthetics to spacecraft, Electrical 
Engineering, Circuit Design, Microelectronics, 
Computer Science and Mathematics. In Industrial and 
Commercial discipline, commercial applications 
provide an equal or greater driving force in the 
development of faster computers. These applications 
require the processing of large amounts of data in 
sophisticated ways (Li et al., 2005). Such applications 
are Databases, data mining, Oil exploration, web search 
engines, web based business services, Medical imaging 
and diagnosis, Pharmaceutical design, Financial and 
economic modeling, Management of national and 
multi-national corporations, Advanced graphics and 
virtual reality, particularly in the entertainment 

industry, Networked video and multi-media 
technologies, Collaborative work environments. In the 
field of Atmospheric and Ocean Simulation, Climate 
Modeling and Weather Prediction also involves a lot of 
compute intensive and number crunching operations, 
which can be solved by way of parallel processing with 
great speed and high accuracy (Marowka, 2008). 
 
Shared memory model: In this model, there is one 
(large) common shared memory for all processors. The 
key feature is the use of a single address space across 
the whole memory system, so that all the processors 
have the same view of memory. The processors 
communicate with one another by one processor 
writing data into a location in memory and another 
processor reading the data. With this type of 
communications the time to access any piece of data is 
the same, as all of the communication goes through the 
bus. The advantage of this type of architecture is that it 
is easy to program as there are no explicit 
communications between processors, with the 
communications being handled via the global memory 
store. Access to this memory store can be controlled 
using techniques developed from multi-tasking 
computers, e.g., semaphores. However, the shared 
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memory architecture does not scale well. The main 
problem occurs when a number of processors attempt to 
access the global memory store at the same time, 
leading to a bottleneck. One method of avoiding this is 
memory access conflict is by dividing the memory into 
multiple memory modules, each connected to the 
processors via a high performance switching network. 
However, this approach tends to shift the bottleneck to 
the communications network (Bethune et al., 2013). 
OpenMP-Open Multi-Processing (OpenMP) is the API 
that supports shared memory (Quinn, 2003). In relation 
to other parallel programming techniques it lies 
between HPF (High Performance Fortran) and MPI in 
that it has the ease of use of HPF, in the form of 
compiler directives, combined with the functionality of 
MPI. 
 
Message passing model: In this model, each processor 
has its own (small) local memory and its content is not 
replicated anywhere else. Parallel tasks exchange data 
through passing messages to one another. These 
communications can be asynchronous or synchronous. 
MPI is a message-passing interface (Quinn, 2003), 
together with protocol and semantic specifications. It is 
supported on virtually all HPC platforms such as a 
cluster (Sterling, 2001) or a network of workstations. 
 
MPI-OpenMP model: The nodes of the Clusters today 
are at least dual-processor Symmetric Processing 
(SMP) systems. So, each node may have more than one 
core within it. Parallel programming may combine the 
distributed memory parallelization on the node 
interconnect with the shared memory parallelization 
inside of each node. Hybrid MPI and OpenMP (Shan, 
2011) approach is deployed to work with such clusters 
whereby OpenMP is used for data sharing among the 
multi-cores that comprise a node and MPI is used for 
communication between nodes (Artés et al., 2013). 
These various models can be deployed for solving 
highly compute intensive applications especially the 
equations describing the atmospheric fluid flow. Thus 
to begin with, simpler two-dimensional system of 
governing equations of atmospheric fluid flow, termed 
as shallow water equations have been implemented in 
these various models. 
 
Shallow water equations: Any fluid flow (including 
air) is characterized by the properties such as velocity, 
density, pressure, temperature and its space and time 
derivatives. Equations describing any fluid flow 
characteristics are referred to as governing equations of 
motion. Many of the mathematical and computational 
properties of these governing equations can be 
embodied in a simpler two-dimensional system of 
equations known as shallow water equations (Jacobson, 
2005). The shallow water equations consider the fluid 
to be rotating, homogeneous, incompressible and 
hydrostatic with a finite free surface height. They are 
derived by assuming that the horizontal length scale is 

much greater than the vertical length scale. (i.e., by 
approximating the atmosphere to a fluid of limited 
depth). This assumption implies that the density as well 
as the horizontal velocity field is constant throughout 
the depth of the fluid (Hack and Jakob, 1992). 

Shallow Water equations provide a useful 

framework for the analysis of the dynamics of large-

scale atmospheric flow and for the analysis of various 

numerical methods that might be applied to the solution 

of these equations. Moreover, Situations in fluid 

dynamics where the horizontal length scale is much 

greater than the vertical length scale are common, so 

the shallow water equations are widely applicable. 

Particularly, the horizontal momentum (dV/dt) and 

mass continuity (dф/dt) equations of the shallow water 

system have been considered for implementation in this 

project. The horizontal velocity field can be represented 

in terms of the vertical component of the relative 

velocity, ζ and horizontal divergence, δ. 

 

Vorticity: It refers to the vertical component of the curl 

of the wind and is a measure of the “spin” of the wind 

about a vertical axis, with counter clockwise spin being 

positive. Including the effect of the Earth’s rotation to 

the relative vorticity, gives the absolute vorticity, η 

(Hack and Jakob, 1992; Jacobson, 2005). Thus the 

absolute vorticity has two contributing terms: the 

vorticity associated with the wind and the vorticity 

associated with the spin of the Earth. They are called 

the relative vorticity and the planetary vorticity 

respectively. The planetary vorticity is exactly equal to 

the Coriolis parameter f. Hence, the absolute vorticity η 

= ζ+f.  

 

Horizontal divergence: It is the fractional rate of 

increase of an element of area of a marked fluid particle 

(Jacobson, 2005). 

 

Geopotential: Free surface Geopotential, ф is the 

potential of the Earth's gravity field. Ф = gh, where ф is 

the geopotential at height, h and g is the gravitational 

constant. Therefore, the following equations related to 

Vorticity, Horizontal Divergence, rate of change of 

Vorticity, rate of change of Divergence, rate of change 

of Geo-potential Height will be considered for further 

implementation (Jacobson, 2005): 
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The first two equations are termed diagnostic 

equations as they do not involve any time derivatives. 

The last three equations are termed prognostic 

equations as they include time derivatives and hence 

used for forecasting. 

 

METHODOLOGY 

 

Discretization: Finite Volume method is as efficient as 

the finite element method for its application in irregular 

grids too. However, it is as simple as the Finite 

Difference method in formulating the equations.  

Other advantages of the Finite volume method are: 

 

• Do not require any coordinate transformations for 

irregular shapes unlike the finite difference 

method. 

• Treats arbitrary geometries efficiently. Hence, well 

suited for two and three dimensional flow 

computation 

• Use of Integral formulation provides more natural 

treatment of boundary conditions 

• Naturally applied to PDEs for expressing 

conservation laws. 

 

Hence FDM can be considered to be superior to 

other elementary discretization methods such as the 

Finite Difference Method, FDM and the Finite Element 

Method, FEM. 

 

Finite volume discretization: Discretization refers to 

replacing the partial derivatives in the governing 

equations of motion with the algebraic terms. The 

equations of vorticity, divergence and geopotential 

mentioned above, are nonlinear partial differential 

equations. Analytical solutions of PDEs provide the 

variation of the dependent variables continuously 

throughout the domain. But solving the PDEs over a 

huge domain such as the atmospheric domain 

analytically is very tedious. Thus these partial 

differential equations are discretized (converted) into 

algebraic forms that are solved using numerical 

methods. However, the numerical solutions provide the 

flow-field values only at discrete points in time and/or 

space called grid points. 

In FVD, first the entire fluid flow domain is 
divided into several discrete control volumes. The nodal 
points or the grid points, at which the flow properties 
are to be evaluated, are assumed to be at the centres of 
these control volumes.  

Figure 1, the points marked as N, S, E, W, P are the 
nodal points or the grid points which are assumed to be 
equally spaced and surrounded by a discrete control 
volume (Fig. 2 and 3). 

 
 

Fig. 1: Structured finite volume grid 

 

 
 

Fig. 2: Finite volume grid cell in 3D 

 

 
 

Fig. 3: Finite volume grid cell in 2D 

 

Next, the governing equations of motion are 

integrated over each sub domain. Gauss Divergence 

theorem is used for the integration. 

 

Gauss divergence or green’s theorem: It states that 

the integral of a derivative over a region is equal to the 

value of the function at the boundary of the region. It 

means the rate of change of a flow property within the 

control volume is equivalent to the flux crossing the 

surface S of volume V. i.e., the net flux flow out of a 

region is equal to sum of all sources-sum of all sinks. 

This theorem is applied over a control volume to get the 

divergence of a vector field. In 3D-Version of 

Divergence Theorem, if V is the volume bounded by a 

closed surface S and A is a vector function of position 

with continuous derivatives then. 
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where,  

n  = Outward drawn normal to S 

∇A  = Flux or net outflow per unit volume of the vector 

A through the surface ∆S 

N  = Number of surfaces bounding the 3-dimensional 

control volume  

∆V  = Volume of a single control volume 

ai  = Area of the surface ‘i’ 
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In 2D-Version of Divergence Theorem, the surface 

integral changes into a line integral: 
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∆0 1 +. 2 34 =  �
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where, 

li  = Length of the side ‘i’ 

N  = Number of sides bounding the 2-dimensional 

control volume 

 

OpenMP Application program interface: The 

OpenMP-Open Multi-Processing is an API that 

supports Multi-Platform (UNIX, Windows) and Shared 

Memory programming. Programmer need not specify 

the processors (nodes) on which to execute the task. 

OpenMP Programming can be performed in C, C++ 

and FORTRAN. It is a portable model that gives 

programmers a simple and flexible interface for 

developing parallel applications for platforms ranging 

from the desktop to the supercomputer. It is composed 

of a set of compiler directives, library routines and 

environment variables. But scalability is hindered due 

to shared memory architecture. 

The standard view of parallelism in a shared-

memory program is fork-join parallelism. When the 

program starts execution, only a single thread called the 

master thread is active. It executes the sequential 

portions of the algorithm. At those points where parallel 

operations are required, the master thread forks 

additional threads. The master thread and the created 

threads work concurrently through the parallel section. 

At the end of the parallel code the created threads die or 

are suspended and the flow of control returns to the 

single master thread. This is called a join (Sato, 2002; 

Zheng et al., 2011). Thus in any shared memory model, 

the number of active threads is one at the program’s 

start and finish and may change dynamically 

throughout the execution of the program. This model 

supports incremental parallelization where in the 

sequential program is transformed into a parallel 

program one block of code at a time (Amit et al., 2012). 

 

MPI Application program interface: Each processor 

in the Message Passing model has direct access only to 

the instructions and data stored in its local memory but 

can exchange messages among themselves via the 

interconnection network (Diaz et al., 2012). The user 

specifies the number of concurrent processes when the 

program begins and typically the number of active 

processes remains constant throughout the execution of 

the program. MPI-Message Passing Interface is an 

Application Program Interface together with protocol 

and semantic specifications. Message passing libraries 

allow efficient parallel programs to be written for 

distributed memory systems. These libraries provide 

routines to initiate and configure the messaging 

environment as well as sending and receiving packets 

of data. Currently, there are several implementations of 

MPI (Dekate et al., 2012), including versions for 

networks of workstations, clusters of personal 

computers, distributed-memory multiprocessors and 

shared-memory machines. MPI enhances performance 

in clusters (Sterling, 2001). 

It exhibits a high level of scalability and 

portability. The goal of portability, architecture and 

network transparency has been achieved with the low-

level communication library like MPI. The library 

provides an interface for C and FORTRAN and 

additional support of graphical tools. However, these 

message-passing systems are still stigmatized as low-

level because most tasks of the parallelization are still 

left to the application programmer. When writing 

parallel applications using message passing, the 

programmer still has to develop a significant amount of 

software to manage some of the tasks of the 

parallelization, such as: the communication and 

synchronization between processes, data partitioning 

and distribution, mapping of processes onto processors 

and input/output of data structures. If the application 

programmer has no special support for these tasks, it 

then becomes difficult to widely exploit parallel 

computing. The easy-to-use goal is not accomplished 

with a bare message-passing system and hence requires 

additional support. It also lays the burden of assigning 

the nodes on the programmer. 

In MPI, processes belong to groups. If a group 

contains n processes, then each of the processes in the 

group is identified within the group by a rank (id), 

which is an integer from 0 to n-1 (Nupairoj and Ni, 

1994). A process may belong to more than one group. 

There is an initial group to which all processes in an 

MPI implementation belong. Such a group forms a so-

called communication domain. A communication 

domain is a set of processes that are allowed to 

communicate with each other. Each process can belong 

to many different (possibly overlapping) 

communication domains. The communication domain 

also called a communicator is used to define a set of 

processes that can communicate with each other. 

Processes executing in parallel have different address 

spaces and during communication between processes a 

part of the data in the address space of the sending 

process is copied in the address space of the receiving 

process (Hursey et al., 2007). Therefore, 

communication is achieved by sending and receiving 

messages.  

The aforementioned models can be deployed for 
solving highly compute intensive applications such as 
the equations describing the atmospheric fluid flow. In 
this study, simpler two-dimensional system of 
governing equations of atmospheric fluid flow, termed 
as shallow water equations have been considered for 
implementation in these various models. 
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Table 1: Execution time for varying number of cores in OpenMP, MPI and Hybrid MPI-OpenMP 

Parallel models 

No. of execution cores 

------------------------------------------------------------------------------------------------------------------------------

1 2  4 6 8 10 12 16 

Execution 

time           

(secs) 

OpenMP 422  191 141 124 115 118 122 136 

MPI 432 1380 480 394.8 372.6 201.6 186 153.6 

Hybrid MPI- OpenMP 366  301.2  417 438.6   

 

IMPLEMENTATION 

 

MERRA: Modern-Era Retrospective Analysis for 

Research and Applications is a NASA reanalysis for the 

satellite era using a major new version of the Goddard 

Earth Observing System Data Assimilation System 

Version 5 (GEOS-5). The Project focuses on historical 

analyses of the hydrological cycle on a broad range of 

weather and climate time scales and places the NASA 

EOS suite of observations in a climate context. 

MERRA data is available at the Modeling and 

Assimilation Data and Information Services Center 

(MDISC) managed by the NASA Goddard Earth 

Sciences (GES) Data and Information Services Center 

(DISC). The data for the two-dimensional velocity 

components, u and v and the geo-potential height, h 

have been obtained from MERRA data. This data has 

been provided for 361 nodal points along the latitude 

and 540 nodal points along the longitude. Thus this 

project work tries to solve the shallow water equations 

for a total of 540×361 grid points to suit the input 

MERRA data for u, v and h.  

 

Solution domain for consideration: In this study, the 

flow domain considered for solving the equations is-

180° to 180° E Longitude and -90° to 90° N Latitude. 

The total 180° Latitude is partitioned into 361 

subdivisions and the total 360° Longitude is partitioned 

into 540 subdivisions to map with the input data 

obtained from MERRA. The vorticity, divergence and 

the mass continuity values are evaluated and forecasted 

for every 30 sec for a total of 3 days over a flow 

domain grid of size 361×540. The 361×540 size 2-D 

arrays needed for storing the vorticity, divergence and 

the free surface geo-potential values are declared inside 

a structure. Due to memory constraints, distinct arrays 

are not created for every 30 sec time instant. Instead 

only two structure variables are created. 

If the vorticity values for the current time instant 

are evaluated and stored in the structure variable t[0], 

then the values for the next time instant are evaluated 

using this previous time instant data and stored in the 

other structure variable, t[1]. Also these values are 

stored in to a file as and when computed. Thus the 

computation for the third time instant is done and the 

results are stored in t[0] by overwriting the previous 

contents. This is continued for all the 72×120 time 

instants. The file writing is done for every array 

computed instead of for every single nodal point to 

minimize the number of file I/O operations. Moreover a 

binary file would occupy less space than a text file. It is 

to be noted that for computing the flow field value at 

any particular grid point, the field values at the 

neighboring cells in all the four directions should be 

known. In such a scenario, to compute the values at the 

end points say 0 and 361 in case of latitude and 0 and 

540 in case of longitude, there are no adjacent cells for 

one direction as such. Hence, while simulating the 

calculation, the corner points can be neglected and 

calculation for the remaining points can be done. 

 

RESULTS AND DISCUSSION 

 

The results of evaluating the shallow water 

equations have been plotted using MATLAB which can 

be used for easy interpretation of the atmospheric flow 

field values. Also, Table 1 illustrates the execution time 

required for varying number of threads in all three 

models of programming. Figure 4 shows the plot of 

execution time needed for 72×120 forecasts (for a 

period of 3 days) with varying number of threads in 

shared memory model. Likewise graphs plotted for pure 

MPI  and  hybrid  programming  models  are  shown in 

Fig. 5 and 6. The number of cores has been taken along 

the x-axis and the execution time along the y-axis.  

When the code is executed with just two threads, it 

brings about a speed up of 45% and the execution time 

reduces gradually upon increasing the number of 

threads up to 8. However, in case of over threading 

where in the number of threads range from 10 to 16, it 

becomes slower than when executed with lesser number 

of threads. This may be owing to the fact that 

embarrassingly parallel applications in general keep the 

execution resources busy and hence no additional 

benefit can be enjoyed by sharing the execution 

resources among the software threads that are more in 

number than the hardware threads. Nevertheless, 

execution is faster than the sequential code execution. 

In case of MPI, as message passing is involved, the 

communication overheads involved, makes its 

execution time quite higher than that of OpenMP 

implementation. But the time is found to be nearly 

equal with 16 threads, in both the cases. With 2 threads, 

the execution time is even worse than sequential, 

accounting for an increase of processing time by more 

than 3 folds. This is because of the master-slave 

approach followed in the implementation. Hence with 2 

threads, one acts as the master and only the other one 

works   on   the   data.   It   only   incurs   an   additional  
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Fig. 4: Plots for execution time in OpenMP 

 

 
 

Fig. 5: Plots for execution time in MPI 

 

 
 

Fig. 6: Plots for execution time in Hybrid MPI-OpenMP 

 

communication overhead resulting in the worst 

performance. Hybrid MPI-OpenMP programming 

model has offered a speedup of 40%. 
 

CONCLUSION 
 

In OpenMP implementation, creating more 
software threads than the available hardware threads 

does not bring about any additional efficiency. In 
contrary it slows down the execution. This may be due 
to the reason that the application is compute-intensive 
rather than communication-intensive. In case of MPI, 
although, the execution time is quite higher than that of 
OpenMP implementation, MPI offers more scalability 
compared to OpenMP as OpenMP can be used only for 
multiple cores within a single system which is difficult 
to extend beyond 16 cores. Hybrid MPI-OpenMP 
programming model has been proven to work well with 
clusters and a network of workstations. As Shallow 
water equation models have only one vertical level, 
complex Navier-Stoke’s equations can be solved not 
only to make the results useful for actual weather 
prediction but also to fully experience the benefit of 
using a cluster.  
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