
Research Journal of Applied Sciences, Engineering and Technology 11(12): 1417-1423, 2015

DOI: 10.19026/rjaset.11.2249

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: July 24, 2015 Accepted: August 30, 2015 Published: December 25, 2015

Corresponding Author: Daphne Lopez, VIT University, Vellore, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1417

Research Article
Performance Analysis of an Embarrassingly Parallel Application in Atmospheric Modeling

M. Varalakshmi and Daphne Lopez

VIT University, Vellore, India

Abstract: This study aims at making a comparative study of various parallel programming models for a compute
intensive application pertaining to Atmospheric modeling. Atmospheric modeling deals with predicting the behavior
of atmosphere through mathematical equations governing the atmospheric fluid flows. The mathematical equations
are nonlinear partial differential equations which are difficult to solve analytically. Thus fundamental governing
equations of atmospheric motion are discretized into algebraic forms that are solved using numerical methods to
obtain flow-field values at discrete points in time and/or space. Solving these equations often requires huge
computational resource, which is normally available with high-speed supercomputers. Shallow Water equations
provide a useful framework for the analysis of dynamics of large-scale atmospheric flow and for the analysis of
various numerical methods that might be applied to the solution of these equations. In this study, Finite volume
approach has been used for discretizing these equations that leads to a number of algebraic equations equal to the
number of time instants at which the flow field values are to be evaluated. It is apparent that the application is
embarrassingly parallel and its parallelization will suppress communication overhead. A High Performance
Compute cluster has been employed for solving the equations involved in atmospheric modeling. Use of OpenMP
and MPI APIs has paved the way to study the behavior of shared memory programming model and the message
passing programming model in the context of such a highly compute intensive application. It is observed that no
additional benefit can be enjoyed by creating too many software threads than the available hardware threads, as the
execution resources should be shared among them.

Keywords: Atmospheric modeling, MPI, OpenMP, parallel computing, shallow water equations

INTRODUCTION

Parallel Computing find its application in various

disciplines. In Science and Engineering, parallel
computing has been considered to be the high end of
computing and has been used to model difficult
problems in many areas such as Atmosphere, Earth,
Environment Physics nuclear, particle, condensed
matter, high pressure, fusion, photonics Bioscience,
Biotechnology, Genetics Chemistry, Molecular
Sciences, Geology, Seismology, Mechanical
Engineering-from prosthetics to spacecraft, Electrical
Engineering, Circuit Design, Microelectronics,
Computer Science and Mathematics. In Industrial and
Commercial discipline, commercial applications
provide an equal or greater driving force in the
development of faster computers. These applications
require the processing of large amounts of data in
sophisticated ways (Li et al., 2005). Such applications
are Databases, data mining, Oil exploration, web search
engines, web based business services, Medical imaging
and diagnosis, Pharmaceutical design, Financial and
economic modeling, Management of national and
multi-national corporations, Advanced graphics and
virtual reality, particularly in the entertainment

industry, Networked video and multi-media
technologies, Collaborative work environments. In the
field of Atmospheric and Ocean Simulation, Climate
Modeling and Weather Prediction also involves a lot of
compute intensive and number crunching operations,
which can be solved by way of parallel processing with
great speed and high accuracy (Marowka, 2008).

Shared memory model: In this model, there is one
(large) common shared memory for all processors. The
key feature is the use of a single address space across
the whole memory system, so that all the processors
have the same view of memory. The processors
communicate with one another by one processor
writing data into a location in memory and another
processor reading the data. With this type of
communications the time to access any piece of data is
the same, as all of the communication goes through the
bus. The advantage of this type of architecture is that it
is easy to program as there are no explicit
communications between processors, with the
communications being handled via the global memory
store. Access to this memory store can be controlled
using techniques developed from multi-tasking
computers, e.g., semaphores. However, the shared

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1418

memory architecture does not scale well. The main
problem occurs when a number of processors attempt to
access the global memory store at the same time,
leading to a bottleneck. One method of avoiding this is
memory access conflict is by dividing the memory into
multiple memory modules, each connected to the
processors via a high performance switching network.
However, this approach tends to shift the bottleneck to
the communications network (Bethune et al., 2013).
OpenMP-Open Multi-Processing (OpenMP) is the API
that supports shared memory (Quinn, 2003). In relation
to other parallel programming techniques it lies
between HPF (High Performance Fortran) and MPI in
that it has the ease of use of HPF, in the form of
compiler directives, combined with the functionality of
MPI.

Message passing model: In this model, each processor
has its own (small) local memory and its content is not
replicated anywhere else. Parallel tasks exchange data
through passing messages to one another. These
communications can be asynchronous or synchronous.
MPI is a message-passing interface (Quinn, 2003),
together with protocol and semantic specifications. It is
supported on virtually all HPC platforms such as a
cluster (Sterling, 2001) or a network of workstations.

MPI-OpenMP model: The nodes of the Clusters today
are at least dual-processor Symmetric Processing
(SMP) systems. So, each node may have more than one
core within it. Parallel programming may combine the
distributed memory parallelization on the node
interconnect with the shared memory parallelization
inside of each node. Hybrid MPI and OpenMP (Shan,
2011) approach is deployed to work with such clusters
whereby OpenMP is used for data sharing among the
multi-cores that comprise a node and MPI is used for
communication between nodes (Artés et al., 2013).
These various models can be deployed for solving
highly compute intensive applications especially the
equations describing the atmospheric fluid flow. Thus
to begin with, simpler two-dimensional system of
governing equations of atmospheric fluid flow, termed
as shallow water equations have been implemented in
these various models.

Shallow water equations: Any fluid flow (including
air) is characterized by the properties such as velocity,
density, pressure, temperature and its space and time
derivatives. Equations describing any fluid flow
characteristics are referred to as governing equations of
motion. Many of the mathematical and computational
properties of these governing equations can be
embodied in a simpler two-dimensional system of
equations known as shallow water equations (Jacobson,
2005). The shallow water equations consider the fluid
to be rotating, homogeneous, incompressible and
hydrostatic with a finite free surface height. They are
derived by assuming that the horizontal length scale is

much greater than the vertical length scale. (i.e., by
approximating the atmosphere to a fluid of limited
depth). This assumption implies that the density as well
as the horizontal velocity field is constant throughout
the depth of the fluid (Hack and Jakob, 1992).

Shallow Water equations provide a useful

framework for the analysis of the dynamics of large-

scale atmospheric flow and for the analysis of various

numerical methods that might be applied to the solution

of these equations. Moreover, Situations in fluid

dynamics where the horizontal length scale is much

greater than the vertical length scale are common, so

the shallow water equations are widely applicable.

Particularly, the horizontal momentum (dV/dt) and

mass continuity (dф/dt) equations of the shallow water

system have been considered for implementation in this

project. The horizontal velocity field can be represented

in terms of the vertical component of the relative

velocity, ζ and horizontal divergence, δ.

Vorticity: It refers to the vertical component of the curl

of the wind and is a measure of the “spin” of the wind

about a vertical axis, with counter clockwise spin being

positive. Including the effect of the Earth’s rotation to

the relative vorticity, gives the absolute vorticity, η

(Hack and Jakob, 1992; Jacobson, 2005). Thus the

absolute vorticity has two contributing terms: the

vorticity associated with the wind and the vorticity

associated with the spin of the Earth. They are called

the relative vorticity and the planetary vorticity

respectively. The planetary vorticity is exactly equal to

the Coriolis parameter f. Hence, the absolute vorticity η

= ζ+f.

Horizontal divergence: It is the fractional rate of

increase of an element of area of a marked fluid particle

(Jacobson, 2005).

Geopotential: Free surface Geopotential, ф is the

potential of the Earth's gravity field. Ф = gh, where ф is

the geopotential at height, h and g is the gravitational

constant. Therefore, the following equations related to

Vorticity, Horizontal Divergence, rate of change of

Vorticity, rate of change of Divergence, rate of change

of Geo-potential Height will be considered for further

implementation (Jacobson, 2005):

η = �
�����µ��

	

	� − �

��
	

	µ

+ � (1)

� = �
�����µ��

	

	� + �

��
	

	µ

 (2)

	�
	� = − �

�����µ��
	�
��

	� − �
��

	�
��
	µ

 (3)

	�
	� = �

�����µ��
	�
	� − �

��

	�
	µ

− �� �Φ +
��
�

�������� (4)

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1419

	�
	� = − �

�����µ��
	�
��

	� − �
��

	�
��
	µ

− �� (5)

The first two equations are termed diagnostic

equations as they do not involve any time derivatives.

The last three equations are termed prognostic

equations as they include time derivatives and hence

used for forecasting.

METHODOLOGY

Discretization: Finite Volume method is as efficient as

the finite element method for its application in irregular

grids too. However, it is as simple as the Finite

Difference method in formulating the equations.

Other advantages of the Finite volume method are:

• Do not require any coordinate transformations for

irregular shapes unlike the finite difference

method.

• Treats arbitrary geometries efficiently. Hence, well

suited for two and three dimensional flow

computation

• Use of Integral formulation provides more natural

treatment of boundary conditions

• Naturally applied to PDEs for expressing

conservation laws.

Hence FDM can be considered to be superior to

other elementary discretization methods such as the

Finite Difference Method, FDM and the Finite Element

Method, FEM.

Finite volume discretization: Discretization refers to

replacing the partial derivatives in the governing

equations of motion with the algebraic terms. The

equations of vorticity, divergence and geopotential

mentioned above, are nonlinear partial differential

equations. Analytical solutions of PDEs provide the

variation of the dependent variables continuously

throughout the domain. But solving the PDEs over a

huge domain such as the atmospheric domain

analytically is very tedious. Thus these partial

differential equations are discretized (converted) into

algebraic forms that are solved using numerical

methods. However, the numerical solutions provide the

flow-field values only at discrete points in time and/or

space called grid points.

In FVD, first the entire fluid flow domain is
divided into several discrete control volumes. The nodal
points or the grid points, at which the flow properties
are to be evaluated, are assumed to be at the centres of
these control volumes.

Figure 1, the points marked as N, S, E, W, P are the
nodal points or the grid points which are assumed to be
equally spaced and surrounded by a discrete control
volume (Fig. 2 and 3).

Fig. 1: Structured finite volume grid

Fig. 2: Finite volume grid cell in 3D

Fig. 3: Finite volume grid cell in 2D

Next, the governing equations of motion are

integrated over each sub domain. Gauss Divergence

theorem is used for the integration.

Gauss divergence or green’s theorem: It states that

the integral of a derivative over a region is equal to the

value of the function at the boundary of the region. It

means the rate of change of a flow property within the

control volume is equivalent to the flux crossing the

surface S of volume V. i.e., the net flux flow out of a

region is equal to sum of all sources-sum of all sinks.

This theorem is applied over a control volume to get the

divergence of a vector field. In 3D-Version of

Divergence Theorem, if V is the volume bounded by a

closed surface S and A is a vector function of position

with continuous derivatives then.

 � ∇. AdV$ = �
∆$ & A. n ds) = �

∆$ & A. ds =
 �
∆$ * +,-,

.
,/�

where,

n = Outward drawn normal to S

∇A = Flux or net outflow per unit volume of the vector

A through the surface ∆S

N = Number of surfaces bounding the 3-dimensional

control volume

∆V = Volume of a single control volume

ai = Area of the surface ‘i’

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1420

In 2D-Version of Divergence Theorem, the surface

integral changes into a line integral:

�∇A dA = �
∆0 1 +. 2 34 = �

∆0 * +,5,
.
,/�

S C

where,

li = Length of the side ‘i’

N = Number of sides bounding the 2-dimensional

control volume

OpenMP Application program interface: The

OpenMP-Open Multi-Processing is an API that

supports Multi-Platform (UNIX, Windows) and Shared

Memory programming. Programmer need not specify

the processors (nodes) on which to execute the task.

OpenMP Programming can be performed in C, C++

and FORTRAN. It is a portable model that gives

programmers a simple and flexible interface for

developing parallel applications for platforms ranging

from the desktop to the supercomputer. It is composed

of a set of compiler directives, library routines and

environment variables. But scalability is hindered due

to shared memory architecture.

The standard view of parallelism in a shared-

memory program is fork-join parallelism. When the

program starts execution, only a single thread called the

master thread is active. It executes the sequential

portions of the algorithm. At those points where parallel

operations are required, the master thread forks

additional threads. The master thread and the created

threads work concurrently through the parallel section.

At the end of the parallel code the created threads die or

are suspended and the flow of control returns to the

single master thread. This is called a join (Sato, 2002;

Zheng et al., 2011). Thus in any shared memory model,

the number of active threads is one at the program’s

start and finish and may change dynamically

throughout the execution of the program. This model

supports incremental parallelization where in the

sequential program is transformed into a parallel

program one block of code at a time (Amit et al., 2012).

MPI Application program interface: Each processor

in the Message Passing model has direct access only to

the instructions and data stored in its local memory but

can exchange messages among themselves via the

interconnection network (Diaz et al., 2012). The user

specifies the number of concurrent processes when the

program begins and typically the number of active

processes remains constant throughout the execution of

the program. MPI-Message Passing Interface is an

Application Program Interface together with protocol

and semantic specifications. Message passing libraries

allow efficient parallel programs to be written for

distributed memory systems. These libraries provide

routines to initiate and configure the messaging

environment as well as sending and receiving packets

of data. Currently, there are several implementations of

MPI (Dekate et al., 2012), including versions for

networks of workstations, clusters of personal

computers, distributed-memory multiprocessors and

shared-memory machines. MPI enhances performance

in clusters (Sterling, 2001).

It exhibits a high level of scalability and

portability. The goal of portability, architecture and

network transparency has been achieved with the low-

level communication library like MPI. The library

provides an interface for C and FORTRAN and

additional support of graphical tools. However, these

message-passing systems are still stigmatized as low-

level because most tasks of the parallelization are still

left to the application programmer. When writing

parallel applications using message passing, the

programmer still has to develop a significant amount of

software to manage some of the tasks of the

parallelization, such as: the communication and

synchronization between processes, data partitioning

and distribution, mapping of processes onto processors

and input/output of data structures. If the application

programmer has no special support for these tasks, it

then becomes difficult to widely exploit parallel

computing. The easy-to-use goal is not accomplished

with a bare message-passing system and hence requires

additional support. It also lays the burden of assigning

the nodes on the programmer.

In MPI, processes belong to groups. If a group

contains n processes, then each of the processes in the

group is identified within the group by a rank (id),

which is an integer from 0 to n-1 (Nupairoj and Ni,

1994). A process may belong to more than one group.

There is an initial group to which all processes in an

MPI implementation belong. Such a group forms a so-

called communication domain. A communication

domain is a set of processes that are allowed to

communicate with each other. Each process can belong

to many different (possibly overlapping)

communication domains. The communication domain

also called a communicator is used to define a set of

processes that can communicate with each other.

Processes executing in parallel have different address

spaces and during communication between processes a

part of the data in the address space of the sending

process is copied in the address space of the receiving

process (Hursey et al., 2007). Therefore,

communication is achieved by sending and receiving

messages.

The aforementioned models can be deployed for
solving highly compute intensive applications such as
the equations describing the atmospheric fluid flow. In
this study, simpler two-dimensional system of
governing equations of atmospheric fluid flow, termed
as shallow water equations have been considered for
implementation in these various models.

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1421

Table 1: Execution time for varying number of cores in OpenMP, MPI and Hybrid MPI-OpenMP

Parallel models

No. of execution cores

--

1 2 4 6 8 10 12 16

Execution

time

(secs)

OpenMP 422 191 141 124 115 118 122 136

MPI 432 1380 480 394.8 372.6 201.6 186 153.6

Hybrid MPI- OpenMP 366 301.2 417 438.6

IMPLEMENTATION

MERRA: Modern-Era Retrospective Analysis for

Research and Applications is a NASA reanalysis for the

satellite era using a major new version of the Goddard

Earth Observing System Data Assimilation System

Version 5 (GEOS-5). The Project focuses on historical

analyses of the hydrological cycle on a broad range of

weather and climate time scales and places the NASA

EOS suite of observations in a climate context.

MERRA data is available at the Modeling and

Assimilation Data and Information Services Center

(MDISC) managed by the NASA Goddard Earth

Sciences (GES) Data and Information Services Center

(DISC). The data for the two-dimensional velocity

components, u and v and the geo-potential height, h

have been obtained from MERRA data. This data has

been provided for 361 nodal points along the latitude

and 540 nodal points along the longitude. Thus this

project work tries to solve the shallow water equations

for a total of 540×361 grid points to suit the input

MERRA data for u, v and h.

Solution domain for consideration: In this study, the

flow domain considered for solving the equations is-

180° to 180° E Longitude and -90° to 90° N Latitude.

The total 180° Latitude is partitioned into 361

subdivisions and the total 360° Longitude is partitioned

into 540 subdivisions to map with the input data

obtained from MERRA. The vorticity, divergence and

the mass continuity values are evaluated and forecasted

for every 30 sec for a total of 3 days over a flow

domain grid of size 361×540. The 361×540 size 2-D

arrays needed for storing the vorticity, divergence and

the free surface geo-potential values are declared inside

a structure. Due to memory constraints, distinct arrays

are not created for every 30 sec time instant. Instead

only two structure variables are created.

If the vorticity values for the current time instant

are evaluated and stored in the structure variable t[0],

then the values for the next time instant are evaluated

using this previous time instant data and stored in the

other structure variable, t[1]. Also these values are

stored in to a file as and when computed. Thus the

computation for the third time instant is done and the

results are stored in t[0] by overwriting the previous

contents. This is continued for all the 72×120 time

instants. The file writing is done for every array

computed instead of for every single nodal point to

minimize the number of file I/O operations. Moreover a

binary file would occupy less space than a text file. It is

to be noted that for computing the flow field value at

any particular grid point, the field values at the

neighboring cells in all the four directions should be

known. In such a scenario, to compute the values at the

end points say 0 and 361 in case of latitude and 0 and

540 in case of longitude, there are no adjacent cells for

one direction as such. Hence, while simulating the

calculation, the corner points can be neglected and

calculation for the remaining points can be done.

RESULTS AND DISCUSSION

The results of evaluating the shallow water

equations have been plotted using MATLAB which can

be used for easy interpretation of the atmospheric flow

field values. Also, Table 1 illustrates the execution time

required for varying number of threads in all three

models of programming. Figure 4 shows the plot of

execution time needed for 72×120 forecasts (for a

period of 3 days) with varying number of threads in

shared memory model. Likewise graphs plotted for pure

MPI and hybrid programming models are shown in

Fig. 5 and 6. The number of cores has been taken along

the x-axis and the execution time along the y-axis.

When the code is executed with just two threads, it

brings about a speed up of 45% and the execution time

reduces gradually upon increasing the number of

threads up to 8. However, in case of over threading

where in the number of threads range from 10 to 16, it

becomes slower than when executed with lesser number

of threads. This may be owing to the fact that

embarrassingly parallel applications in general keep the

execution resources busy and hence no additional

benefit can be enjoyed by sharing the execution

resources among the software threads that are more in

number than the hardware threads. Nevertheless,

execution is faster than the sequential code execution.

In case of MPI, as message passing is involved, the

communication overheads involved, makes its

execution time quite higher than that of OpenMP

implementation. But the time is found to be nearly

equal with 16 threads, in both the cases. With 2 threads,

the execution time is even worse than sequential,

accounting for an increase of processing time by more

than 3 folds. This is because of the master-slave

approach followed in the implementation. Hence with 2

threads, one acts as the master and only the other one

works on the data. It only incurs an additional

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1422

Fig. 4: Plots for execution time in OpenMP

Fig. 5: Plots for execution time in MPI

Fig. 6: Plots for execution time in Hybrid MPI-OpenMP

communication overhead resulting in the worst

performance. Hybrid MPI-OpenMP programming

model has offered a speedup of 40%.

CONCLUSION

In OpenMP implementation, creating more
software threads than the available hardware threads

does not bring about any additional efficiency. In
contrary it slows down the execution. This may be due
to the reason that the application is compute-intensive
rather than communication-intensive. In case of MPI,
although, the execution time is quite higher than that of
OpenMP implementation, MPI offers more scalability
compared to OpenMP as OpenMP can be used only for
multiple cores within a single system which is difficult
to extend beyond 16 cores. Hybrid MPI-OpenMP
programming model has been proven to work well with
clusters and a network of workstations. As Shallow
water equation models have only one vertical level,
complex Navier-Stoke’s equations can be solved not
only to make the results useful for actual weather
prediction but also to fully experience the benefit of
using a cluster.

REFERENCES

Amit, A., T. Danesh, L. Rui, K. Rick and C. Barbara,
2012. OpenMP parallelism for fluid and fluid-
particulate systems. Parallel Comput., 38(9):
501-517.

Artés, T., A. Cencerrado, A. Cortés and T. Margalef,
2013. Relieving the effects of uncertainty in forest
fire spread prediction by hybrid MPI-OpenMP
parallel strategies. Proc. Comput. Sci., 18:
2278-2287.

Bethune, I., J.M. Bull, N.J. Dingle and N.J. Higham,
2013. Performance analysis of asynchronous
Jacobi’s method implemented in MPI, SHMEM
and OpenMP. Int. J. High Perform. C., 28(1):
97-111.

Dekate, C., M. Anderson, M. Brodowicz, H. Kaiser, B.
Adelstein-Lelbach and T. Sterling, 2012.
Improving the scalability of parallel N-body
applications with an event-driven constraint-based
execution model. Int. J. High Perform. C., 26(3):
319-332.

Diaz, J., C. Munoz-Caro and A. Nino, 2012. A survey
of parallel programming models and tools in the
multi and many-core era. IEEE T. Parall. Distr.,
23(8): 1369-1386

Hack, J.J. and R. Jakob, 1992. Description of a global
shallow water model based on the spectral
transform method. NCAR Technical Note,
NCAR/TN-343+STR, pp: 93.

Hursey, J., J.M. Squyres, T.I. Mattox and A.

Lumsdaine, 2007. The design and implementation

of checkpoint/restart process fault tolerance for

open MPI. Proceeding of the IEEE International

Parallel and Distributed Processing Symposium

(IPDPS, 2007), pp: 1-8
Jacobson, M.Z., 2005. Fundamentals of Atmospheric

Modeling. 2nd Edn., Cambridge University Press,
New York.

Li, J., J. Shu, C. Yongjian, W. Dingxing and W. Zheng,
2005. Analysis of factors affecting execution
performance of OpenMP programs. Tsinghua Sci.
Technol., 10(3): 304-308.

Res. J. Appl. Sci. Eng. Technol., 11(12): 1417-1423, 2015

1423

Marowka, A, 2008. Think parallel: Teaching parallel
programming today. IEEE Distrib. Syst. Online,
9(8): 1-1.

Nupairoj, N. and L.M. Ni, 1994. Performance
evaluation of some MPI implementations on
workstation clusters. Proceeding of the Scalable
Parallel Libraries Conference, pp: 98-105.

Quinn, M.J., 2003. Parallel Programming in C with
MPI and OpenMP. 1st Edn., McGraw-Hill, New
York.

Sato, M., 2002. OpenMP: Parallel programming API
for shared memory multiprocessors and on-chip
multiprocessors. Proceeding of the 15th
International Symposium on System Synthesis, pp:
109-111.

Shan, H., 2011. Hybrid Programming for multicore

processors, Computational Sciences and

Optimization (CSO). Proceeding of 4th

International Joint Conference on Computational

Sciences and Optimization, pp: 261-262.

Sterling, T., 2001. Beowulf Cluster Computing with

Linux. 1st Edn., MIT Press, Cambridge, MA.

Zheng, Z., X. Chen, Z. Wang, L. Shen and J. Li, 2011.

Performance model for OpenMP parallelized

loops. Proceeding of 2011 International

Conference on Transportation, Mechanical and

Electrical Engineering (TMEE), pp: 383-387.

