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Abstract: The Advanced Encryption Standard (AES) is the symmetric cryptography standard that can be used to
protect the electronic data. The natural and malicious injected faults may cause confidential information leakage and
also reduce its reliability. In this study, we have explained a low complexity fault detection schemes for the AES
architecture. The proposed work is low-complexity fault detection schemes using composite fields in polynomial
basis for the AES encryption and decryption. These schemes are independent of the existing S-box and inverse S-
box constructed. Here we have developed a new technique for the fault detection of subbyte and inverse subbyte
using multiplicative inversion and affine transformation of the S-box and the inverse S-box. These are constructed in
S-box and the inverse S-box. So this scheme can be used for the S-boxes and the inverse S-boxes in composite fields
subbyte and inverse subbyte and using ROM. The proposed AES Fault detection scheme is coded in VHDL (Very
High Speed Integrated Circuits Hardware Description Language), synthesized and simulated using EDA (Electronic
Design Automation) tool-XilinxISEVirtex FPGA (http://www.xilinx.com/.). Finally the results are compared with
Conventional ROM based subbyte and inverse subbyte to show the significant improvement in its efficiency in
terms of path delay, speed and area.
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INTRODUCTION

The Advanced Encryption Standard (AES) is the
symmetric key cryptography standard that can encrypt
and decrypt the electronic data. In encryption, AES
accepts a plaintext (which is limited to 128 bits) and a
key for generating the ciphertext. The key can be
specified to be 128 bits (AES-128). In AES-128, the
ciphertext is generated after 10 cycles of repetition. For
encryption, each round, except the final round, consists
of four transformations which includes Sub Bytes
(which is implemented by 16 S-boxes), Shift Rows,
Mix Columns, AddRoundKey. The decryption
transformations are the reverse of the encryption
transformations which is utilised to obtain original plain
text from the cipher text. Among the transformations,
the nonlinear ones are the S-boxes in the encryption and
the inverse S-boxes in the decryption. It occupies much
of the total AES encryption or decryption area.

There exist many schemes for detecting the faults
in the AES hardware implementation, see for example
(Karri et al., 2002; Rijmen, 2000; Satoh et al., 2001;
Satoh et al., 2008; Mozaffari-Kermani and Reyhani-
Masoleh, 2008). Among them, the schemes presented in

Karri et al. (2001) and Maistri and Laveugle (2008) are
independent of the ways the S-box and inverse S-box in
the hardware implementation. The fault detection
schemes using memories (ROMs) for the S-box and the
inverse S-box are there. Further rmore, a fault tolerant
scheme which is resistant to fault attacks is presented in
Moratelli ez al. (2008).

Either the parity-based scheme proposed in Bertoni
et al. (2002) or the duplication approach is
implemented to protect the combinational logic blocks
used in the four transformations of the AES. Moreover,
for storing the expanded key and the state matrix, either
the Reed-Solomon error correcting code or Hamming
code is utilized for protecting the memories. Our
proposed scheme is only applied to the S-box and
inverse S-box in composite field polynomial basis.
While, the scheme presented in Bertoni et al. (2003);
Wolkerstorfer et al., (2002) uses memories. But for
high performance, using ROMs are not preferable.
Thus, for high performance AES, the S-box and the
inverse S-box are implemented using logic gates in
composite fields (Canright, 2005; Yen and Wu, 2006).

Thus the schemes suitable for the S-box and the
inverse S box in composite field implementation are
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obtained in Kermani and Reyhani-Masoleh (2006) and
Mozaffari-Kermani and Reyhani-Masoleh (2008). The
approach in Kermani and Reyhani-Masoleh (2006);
Karpovsky et al. (2004); Wu and Yen (2006) is based
on using the parity-based fault detection method for a
specific S-box in composite field and polynomial basis
for covering all the single malicious faults. For the
multiplicative inversion of the S-box, two specific
composite fields are treated. Though the transformation
and affine matrices are excluded in this approach.
Furthermore, in Cohen (2007) Zhang and Parhi (2004,
20006), the fault detection scheme for the multiplicative
inversion of a S-box in composite field polynomial
basis, the systematic method including predicted
parities have been used. The transformation matrices
are also advised. Finally, in the parity-based approach
in Mozaffari-Kermani and Reyhani-Masoleh (2008),
through exhaustive search among all the fault detection
S-boxes utilizing five predicted parities using
polynomial basis, utmost compact one is obtained. The
main objective of the work is to obtain low complexity
fault detection schemes using composite field and the
result is compared with conventional ROM to get
efficient path delay, speed and area.

AES encryption: In this section, we briefly explain
about the four transformations used in the AES
encryption and decryption (National Institute of
Standards and Technologies, 2001). In the AES-128
(128-bit key) transformation implementations, the
irreducible polynomial of P(x) = x*+x*+x’+x+1 is used
for constructing the binary field GF(2%). Each
transformation in every round acts on its 128-bit input
denoted as the state. The states are considered as 4x4
matrices whose entries are 8 bits. For example, the
input state S with its 8-bit entries, i.e., S ,, 01, ¢<3, is
represented as follows:

S =[5, J5= 0 (1)

Considering (1) as the input state of an encryption
round. The transformations in each round, except the
final round, are as follows:

SubBytes: In each round the first transformation is the
bytes substitution (SubBytes) which is implemented by
16 S-boxes. Let the 8-bit input and output of each S-
box besr,c€GF(28) and s' € GF(2%) respectively. The S-
box consists of a multiplicative inversion, i.e., s'r,c €
GF(2%), followed by an affine transformation consisting
of the matrix I" and the vector y to generate the output
as:
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The 8-bit outputs of 16 S-boxes are used to obtain
the output state of the SubBytes transformation as:

3)

Shift rows: In the second transformation, it cyclically
shifts the 4 bytes of the rows of the input state to the
left and the first row is left unchanged to obtain the
output state, i.e., SR(S"), as:

S’ = [S ’r,c]r,c =0

50,0 s'01 502 503
s'1,1 s'1,2 ='1,3 ='1,0
SR{S‘F — i3 L P »
22 523 520 521
£33 530 531 s'32

= [S'I’r_q}mad‘jgr_c =0 (4)

Mix columns: In the third transformation, multiplying
a constant matrix with the output state of ShiftRows,

SR(S") in (4), to obtain the output state of MixColumns,
i.e., the matrix S”, as:

{23h {3}h {13h {1}h
S”:[S” ]3 — {1}h {z}h {B}h {1}h
R (DR 23k (3)R
Bh Wk Wb 2k 5)
50,0 s01 s02 503
SR(S) = 5'1,3 sv1,0 5’1,1 3'1,2
s2,2 §23 520 s21
53,3 532 s33 s3,0 (6)
AddRoundKey: The final transformation is

AddRoundKey in which the input state is added
(modulo-2) with the key of the round. Considering the
round key input state as the matrix K = [kr, ¢]3r,c = 0,
with entries kr; ¢, 0<r, ¢<3, the output state of the
AddRoundKey transformation, i.e., O, is obtained as:

0 =[o0,J’.= 0=S"+K (7)
foelh b} {0} {09}
_ oo e}k (0B} {od}h .,
O=lod = 043n (09 f{oelh {0b}h >
{ob}h {0d}h {09 {oelh &

FAULT DETECTION SCHEME

The systematic fault detection scheme for the
multiplicative inversion of s-box and inverse s-box:
This scheme explains the 8-bit input of the
multiplicative inversion is multiplied by the 8-bit
output. Also the n-bit result (1<n<8) of the
multiplication is compared with the actually obtained n-
bit result, i.e., 1 € GF (2%). If s#0 and 0 € GF (2%). If s =
0 because the multiplicative inversion is also used in
the inverse S-box, the same scheme can be used for the
inverse S-box.
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Fig. 1: The scheme based on multiplication for the fault
detection of the multiplicative inversion

We present a systematic method for the fault
detection scheme for the multiplicative inversion by
deriving the matrix-based formulations for the
multiplicative inversion in the S-box and inverses-box.
We use the following theorem from Mentens et al.
(2005) to obtain the multiplication of field elements
A=Y taiai and B=Y%;'biai in the finite field
GF(2™) constructed by the irreducible polynomial of
P(x) with the primitive root of ai.

Lets= S7(17+S60,6+S5(15+S4(14+S3(13+Sz(12+s|(1+SO and
s'= s oltse! atrsst ottsy ! oty aitsy ! ol ts, ! ol
+so”" be the 8-bit input and output of the multiplicative
inversion in the binary field GF(2%), respectively.
Considering the fact that the result of the multiplication
of the 8-bit input s, s # 0 and the output s of the
multirg)licative inversion is the unity polynomial 1 €
GF(2%), the following is derived from Theorem 1 for
the relation between s and s™.

Corollary 1: Let the vectors corresponding to the input
and output of the multiplicative inversion be s = [s,, sy,
S5, S3, S4, S5, Se, s7]T and s' = [s7'1,s6'1, s5'1, s4'1,, s3'1, Sy,
s, so'l]T. Then, the matrix formulation of the S-box
multiplicative inversion (respectively, the inverse S-
box) is as follows in Fig. 1.

Theorem 1 (Mentens et al, 2005): Let C
m*ciaibe the multiplication of A and B € GF(2").
Then, the coordinates of C can be obtained from:

T
[co, €1, CaevcCpt] = (LHQU)D )
where, b = [bg, by, by.....b,1]"
L=
a0 0 0 0 0
al a0 0 0 0
al al 0 0
. al a0l .
am—2 am—3 a2 al a0
am—1 am—2 . . .. . ab
(10)

21

a2
a3

al
a2

am—1 am—2
0 0 am—1

(11

And the (m-1xm) binary matrix Q is obtained as
follows:

[(lm O] eeeees alzm_z]T = Q [1, a, ...... am_l]T
mod(p(x)) (12)
Zs!' =u (13)

u=[u'00000O0 0] where u'is obtained by logical OR
operations of all inputs and outputs, u
(80VS1VSyVs3Vs,VssVsgVsy) V( s7' Vsg!t Vst Vs,V ogy!
Vs, Vst v osg ) Moreover, the modulo-2 additions
(XOR operations) of the coordinates of s are shown
with commas in indices, €.g., 70 = 87 + So:

! —

7=
57 56 5 54 57,3 5762 56,51
570 s76 65 s54 57,4,3 56,32 57,521
sl s70 s76 s65 55,4 74,2 56,32
572 s61 5750 5764 s7653 57,6542 57,654731
57,3 5762 s651 57540 s64,3 55,32 57421
s4 573 5762 5651 57540 5642 55,32
s5 s4 §7,3 s762 s651 57540 56,43
56 55 54 57,3 57,6,2 56,6,1 57,540

(14)

Proof: We prove (13) for two cases of s =0 and s # 0
separately. Let the input (s # 0) be a nonzero field
element in GF(2%) generated by P(x) = x*+x*+x*+x+1.
Then, the multiplicative inversion should generate s-1.
Using (12) in Theorem 1 and considering the
irreducible polynomial of P(x), the (7%8) matrix Q can
be obtained as:

I
O = =OC OO
O OOk
O R OO R RO
e e =l
_ OO RO R
O OROR RO
O = O RO o
O R kOO

(15)

This matrix is obtained by using the representations
of a® o”..... o' with respect to the polynomial basis for
different rows of Q. Considering A=s# 0 and B=s"in
Theorem 1, the matrices L and U in (10) and (11) are
functions of the 8-bit input vector s as:
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s00 0O 0O 0 O 0O 0 0O
s1 s0 0 0 O 0O 0 0O
s2 §1 s0 0 0O 0O O O
L= s3 s2 s1 sO 0 0 O O
s4 s3 s2 s1 sO 0 O O
sb s4 s3 s2 s1 sO 0 O
s6 s5 s4 s3 s2 s1 sO O
s7 s6 s5 s4 s3 s2 s1 s0 (16)
S7 56 S5 S4 53 52
0 0 57 56 55 54 53
0 0 0 57 56 55 54
U=/0 0 0 0 57 56 55
0 0 0 0 0 587 56
o 0 0o 0 0 0 57
o 0 0 0 O 0 0 (17)

Substituting Q, L and U (15)-(17) from (9) and
denoting Z = L + Q"U. Since s # (0 0, 0, 0... 0) €
GF(2*), u =1 and the result of multiplication is:

C = A.B mod P(x) = 1 € GF(2%
ie.,c=[cycr.c]"=[10..0]"

Therefore using (9) one can prove that (13) is valid
for s # 0. moreover, for s = 0, the output of the
multiplicative inversion generates 0 = (0 O.... 0). Thus,
all entries of the matrix Z and hence, all eight entries of
the left-hand side vector of (13) are equal to zero. In
such a case, the vector u = [0 0... 0]" since the result of
the OR operation among all sis and s1is are zero, i.e.,
u =0. Therefore, the proof is complete.

One can figure out that implementation (13) needs
64 ANDs, 15 ORs and 143 XOR gates. Also it is noted
that XOR gates can be reduced to 84, if sub expression
sharing is used. If one implements the S-box using the
composite field presented in Breveglieri et al. (2007), it
requires 36 and gates and 123 XOR gates for the
original S-box implementation. Then, adding this fault
detection scheme would require approximately 91%
area overhead. Also the silicon area of an AND is 0.6
that of an XOR gate and is derived assuming that an
XOR gate is implemented by 10 transistors.

The proposed fault detection scheme for the S-Box
and the inverse S-Box: If the SubBytes
implementation in the AES is using LUTs, there will be
no means of entry to the output of the multiplicative
inversion. Thus, the aforementioned scheme cannot be
used. We propose a new scheme which is independent
of the way the implementation of S-box and the inverse
S-box. First, we obtain the matrix-based S-box
formulations as follows:

7 6 5 4 3 2

Theorm 2: Let s =s;0" +ts40 +ss507 + 540 +s307 +s07 +
7 6 5 4 3 2

siat spands' =s0 +s'sa’+s'so”+s"0" +s300 s ol +

22

sja'+ s’y be the 8-bit input and output of the S-box.
Thus the relation between the input and output of the S-
box can be obtained as:

Ms'+m=u' (18)
Moreover, the (8x8) matrix M is denoted as:
e
656 sAl  SEI0 42 1531 STE520 STESAL 7630
75320 6421 STE5431 6654315 1654321 5321 4210 s6431
6431 ST5320 STRSA2 TES43Ls TESAIZ0 6432 s5321 75420
STEAD 653 s60 S5 s64 64320 ST5331 751
STE21 STESLO 3L 20 31 s64321 753210 5723
732 STE2L sS40 S31 s420 5432 64321 sh3D
430 §732 531 6430 531 65430 75432 5l
sS4 30 642 531 6420 76541 s65430  s652
(19)
where, u' = [u1’0,0,0,0,0,0,0]7 u' = (soVs;Vs,Vs3

Vs VssVsgVsy) V(s'7\/s'6\/s'5\/s’4Vs'3\/s'2Vs’,\7{s'65 and m
= [S6:00 $7:6:1, S7:2:0, 56:3;1, $7:6:4:2, $7:5:3, S6:4, 57:5] -

Proof: We prove (18) for two cases of s #0 and s =0

separately. Let 8-bit input s be a nonzero field element
in GF(2®). Considering (2), one can obtain:

sl=rs'+ I y=

et

OO PR O OO0
=T = T o == T e Y = |
|l =T o == e T L e
[l = R e T i e T e Y e

%:-HGGHCM—/

0O RO RO O
O OO RO O
0000 ok O

ﬁl—‘@@l—*@l—*;\

) (20)

By substituting s-1 from (20) into (13), one reaches
ZI s'+ZI'y. Now, let us denote ZI'' =M and ZI™ y =
m. Then, the left-hand side of (18) is obtained. Since s
#0 = (0, 0. 0) € GF2® u' = 1. i.., the result of
multiplication C = AB mod P(x) = 1 € GF(2®. This
implies that the left-hand side of (18) be Zs' =[1 0... 0]
T = u'. Furthermore, because we have Zs!' = Ms+ m
one can prove that (18) is valid for s#0. Moreover,
according to (2), for the input s = 0 = (0, 0... 0) €
GF(2%).

We have the output as s' = [s'y s';... s%,]" =[1 1000
1 1 0]" which corresponds to the field element s' = {63}
h=0110001 1)€GF?2%. From the Theorm 2, u' =
[00... O]T since we have u' = (s¢Vs;Vs;Vs3Vs4VssVseVsy)
V(s Vs_'6 \Y s_’5V s'y Vs's \/s'zvs_’lvs'aj. Then the vector [0
0... 0]" = u'. Therefore, the proof is complete (Fig. 2).

Let us consider (18) for the inputs=0=1[00... 0] 2
€ GF(2%). For this input, the correct output is s' =
{63,= (01 100011)¢€ GF(2%). If the erroneous
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Fig. 2: The proposed fault detection scheme of the S-box

output is not s'= {63}h=(0 11000 1 1) € GF22® in
the right hand side of (18), we have u' = 1, whereas the
left-hand side is zero and therefore, the wrong output is
detected.

Although checking the formulation of (18) detects
all errors in the output of the S-box, its implementation
is very costly (Proposition 1). To reduce the overhead
of the fault detection scheme (Fig. 2), we have obtained
the single-bit parity for the formulation of (18). In
Fig. 2, this is obtained in order to compare only 1 bit for
an 8-bit data to detect any combination of odd number
of erroneous bits at the result of the left-hand side of
(18). Thus, one can check the parity of two sides of (18)
to obtain 1-bit equation for checking the S-box as
follows:

Theorem 2: Let s =s7a+s6a6+s5a5+s4a4+s3a3+s2a2+
s;ats) and s' = s'7a7+s’6a6+s ’5a5+s ’4a4+s ’3a3+s'2a2 +
s"j0'+s', be the 8-bit input and output of the S-box. The
equation holds for all the possible patterns of s and s' is
as follows:

P (M s+m) = sy(spts'c)tss'btsos'd+sss'd+s(s'c
+8'3) 558y T56(8'ats"s) FsAs'sts") = u'

where

s'a=slgtsyts'yts's., st = s'ats's, §'c= syt
and s'y= s',ts'; 21)
Proof: The parity of two sides of (18) as obtained and
we have:

Poysiimy =Pu' =u' (22)
where, M, m and u' are presented in Theorem 2.
Considering the fact that parity is a linear operation,

23

P(M s+m) = PM s+P m. Then, using M and m defined
in Theorem 2 one can obtain:

Pyrg = 8.8"gtsp8" 17580+ (S,+54) +8'y (spts3+57)+
5554t 57)+8s (sp+ 56)Fs'7 (557F5C)

And P,, = s¢ts;, where s,= Sg+s;+Ss, Sp = S¢tS4, 8=
sat syt s, after rearranging, the proof is complete.

Corollary 2: For the fault detection of the inverse S-
box, one can use by changing the place of the input and
output, i.e., swapping the coordinates of s with s'.

SIMULATION RESULTS

Here we have considered both the single and
multiple stuck-at errors for the proposed scheme. And
these models covers both natural faults and fault
attacks. In the AES encryption or decryption rounds, if
exactly 1 bit error appears at the output, this proposed
scheme detects it, the error coverage is about 100%.
Because in this case, one of the 8-bit four error
indication flags in alarms the error. However, multiple
stuck-at errors are also considered. Because multiple
bits will actually be flipped due to the reason an
attacker cannot be able to flip exactly 1 bit in a single
stuck at error to gain more information by some
technical constraints.

The AES algorithm and low complexity fault
detection scheme for composite s-box was described in
VHDL and we used the Modelsim 6.3 g bl tool to
simulate the code. We analyzed the area and internal
and external fault in AES. The fault detection schemes
of sub byte in existing and proposed compare the
performance in Table 1. Figure 3 to 6 shows the
simulation results.

The implementation of s-box requires large number
of gates in traditional (LUT) Look up table. Also the
unbreakable delay is longer than that of the total delay.
Also it is not suitable for resource constrained use
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Table 1: Comparision of s-box

Design Area Delay Power
LUT-Based 262144 31.824 ns 35 mw
Composite field based 28514 8.129 ns 34 mw
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Fig. 4: Output of encryption for composite field s-box with error
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Fig. 6: Output of decryption for composite field s-box with error

because it costs a large area. Thus the composite field
arithmetic is used to solve these problems. The fault
detection scheme implemented by (LUT) look up table
in VHDL code synthesised using Xilinix 9.1ISE and get
the report of gate count. The gate count value of LUT
based fault detection scheme is 262144 logic gates.
This fault detection scheme requires 4 times greater
than the proposed one. We have to compare it with
proposed once and our aim is to reduce the gate count
to maximum possible extent.

Composite field implementation of s-box needs
less number of gates. We can describe in VHDL and
perform synthesis using Xilinix 9.1 In our synthesis
report we got a comparatively small value of value of
28514 numbers of gates. Our aim is to reduce the gate
count to maximum possible extent. We got gate count
almost one tenth of look up table implementation of s
box.

Encryption output for composite field s-box without
error:

Plain text: x“00112233445566778899aabbccd
deeff”

Key: x“000102030405060708090a0b0c0d0e0f”
Cipher text: x“69c4e0d86a7b0430d8cdb78070b
4c55”

Figure 3 shows the output for composite field s-
box without error any for a particular input. Theta, eta,
gamma, sigma values are obtained and the fault output
value is zero.

Encryption output for composite field s-box without
error: Figure 4 shows the Output for encryption for
composite field s-box without error for a particular 128-
bits input and128-bit input key. Fault detection scheme
implemented by composite field s-box and detect a
internal fault. We will consider the initial round pre_out

25

KK o=

output value and replace output of pre_out with another
128-bit value and stimulate with modelsim we will get
faulty output Theta, eta, gamma, sigma values are
obtained and the fault output value is obtained. In this
waveform fault occur in add roundkey transformation
in initial round.

Decryption output for composite field s-box without
error (Fig. 5):

Decryption output for composite field s-box with
error: Figure 6 shows the Output of decryption for
composite field s-box with error any for a particular
128-bits cipher input and 128-bit input cipher key of
each round. Fault detection scheme implemented by
composite field s-box and detect a internal fault. We
will consider the internal inverse round key output
value and replace output of inverse add round key with
another 128-bit value and stimulate with modelsim we
will get faulty output Theta, eta, gamma, sigma values
are obtained and the fault output value is obtained. In
this wave form fault occur in add round key
transformation of initial round.

CONCLUSION

We have presented a high performance low
complexity parity based fault detection scheme for the
AES. These schemes are constructed using the S-box
and the inverse S-box using composite fields. We have
obtained the least complexity S-boxes and inverse S-
boxes including their fault detection circuits. The new
fault detection schemes are independent of the
structures of the S-boxes and the inverse S-boxes. So
that we have used parity based method in s box.
Therefore it improves the fault coverage to a greater
extent because here the error detection at s box takes
two times of it. This simulation results shows that the
proposed structure-independent schemes have the
highest efficiencies with acceptable error coverage. It
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shows reasonable area also the time complexity
overheads.
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