
Research J
DOI: 10.19
ISSN: 204
© 2016 Ma
Submitted:

Correspond

This work is l

Research
E

1De

2S

Abstract:
through di
based algo
approaches
implement
changing i
Processors
evaluated w
efficiency

Keywords

A sea

certain pro
various m
element de
space (Don
used to s
Problem
computatio
practically
algorithm
infinite se
addressed
chips, robo
digital circ
1994). Th
algorithms
heaps and
normal dat

The m
tree and gr
the nodes o
process in
graph trav
systematic
traversal c
graph trav

Journal of Appl
9026/rjaset.12.
0-7459; e-ISSN
axwell Scientif
: September 9,

ding Author: A
K

licensed under a C

h Article
Experiment

1Hakim A
epartment of E

School of Com
3Informati

Recent years,
stributed proce
orithm to orga
s named Open
ted using doma
it to a two-di

s at the School
with certain ch
in comparison

s: BFS, DNA s

INTRO

arch algorithm
operties among
manners, like
efined by math
nald, 1999). A
solve and ev
(DOP), whi

onal problem
interest (Kum
provides solu

et of solution
as DOPs like

ot motion plann
cuits and logis
ere is variety

s like simple lin
hash tables th

tabases.
main existing t
raph traversal,
of data structur

a practical w
versal all nod

way and may
could be consi
versal. There

lied Sciences,
2386
N: 2040-7467
fic Publication
 2015

Aymen Hasan Al
Kufa, Kufa P.O. B
Creative Commons

tal Study of

Adil Kadhim,
Electronics an

mputer Scienc
on Technolog

 many applica
essors and mem
anize large DN
nMP and MPI
ain decomposi
imensional arr
of Computer S

haracteristics a
with the serial

searching, MPI

ODUCTION

is used to fin
g a collection o
records in a

hematical proce
search algorith

valuate Discre
ch is a ty

ms with the
mar et al., 1994
utions to DOP
ns. Many pr
e the optimal
ning, test-patte
tics and contro
of data struc

near search, bi
hat could be u

types of search
where the tree
re to be examin

way. On the ot
des should be

be more than o
dered as a spe
 are two ma

Engineering an

n Corp.
 Accepted

lAwadi, Informa
Box (21), Najaf,
s Attribution 4.0 In

f Parallelizin
2Mohammad
nd Communi

Kufa P.O. B
ces, Universit
gy Research a

Kufa P.O. B

ations have ex
mories. In this
NA dataset an
on a cluster, b
ition method.
ray. Both app
Sciences in US
and the results
l version of the

I, OpenMP, par

nd an item w
f items, sorted
database or

edure of a sear
hm could also

ete Optimizati
ype of high
eoretically a
4). The searchi
Ps from finite
roblems can

layout of VL
ern generation f
ol (Kumar et a
ctures for sear
inary search tr
used for large

h algorithms a
 type imposes
ned in the sear
ther hand, in t

examined in
once. So, the tr
ecial case of t

ain algorithms f

nd Technology

d: September 2

ation Technolog
, Iraq
nternational Licens

465

ng Breadth

d Ali Sarvghad
cation, Facult
Box (21), Naj
ti Sains Mala
and Developm
Box (21), Naj

xploited graph-
s study, we pre
nd parallelize
besides tuning
MPI is applied
roaches are te

SM. The two a
s show high pe
e algorithm.

rallel computin

with
d in

an
rch
be

ion
hly
and
ing
or
be

LSI
for
al.,
rch
ee,
or

are
all

rch
the

n a
ree
the
for

Fig. 1: T

graph t
Breadth

Breadt
nodes b
nearest
as depi

Th
the nod
(First I
will be
Linked
produc
which
algorith
result.

y 12(4): 465-47

25, 2015

gy Research and

se (URL: http://cre

First Searc

di and 3Ayme
ty of Enginee
jaf, Iraq
aysia, 11800 U
ment Center, U
jaf, Iraq

-based comput
esent Breadth F
the algorithm
 the serial ver
d after dividin
ested in Khwa
forementioned
erformance is

ng

The order of exp

traversal name
h First Search (

th First Searc
beginning wit
t neighbors one
cted in Fig. 1.

he algorithm do
des should be
In First Out) q
 added to the

d list and ca
ed list will b
is a closed l

hm. Therefore,

72, 2016

Published

d Development C

eativecommons.or

ch (BFS) Alg

en Hasan AlA
ering, Univers

USM, Penang
University of

tations for sea
First Search al

m using two h
rsion of the alg
ng the dataset
arizmi cluster

d experiments a
achieved in te

panding the node

ed Depth First
(BFS).

ch (BFS): BFS
th the root no
e by one to fin

oes not use he
expanded and

queue. All the
container, whi

alled open lis
be added to t
list after bein
, the FIFO queu

d: February 25

Center, Univers

rg/licenses/by/4.0/

gorithm

Awadi
sity of Kufa,

g, Malaysia
f Kufa,

arching massiv
lgorithm as a g
ighly tuned p
gorithm. Open
into equal par
with 8 Intel

are implemente
erms of speedu

es in BFS algorit

t Search (DFS

S expands the
ode and explor
nd the required

euristic direct,
d added to the
e unexpanded
ich is organize
st. Afterwards
the other con
g examined b
ue will hold th

, 2016

ity of

/).

ve data
graph-

parallel
nMP is
rts and

Xeon
ed and
up and

thm

S) and

whole
res all
d item

so all
FIFO
nodes

ed as a
s, the

ntainer,
by the

he final

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

466

Applications: The main usage of BFS algorithm is
based on finding the shortest path between the entry
point and the exit point. BFS is employed to solve
several problems such as:

• Finding all nodes within one connected component
• Copying Collection, Cheney's algorithm
• Finding the shortest path between two nodes u and

v
• Testing a graph for bipartiteness
• (Reverse) Cuthill-McKee mesh numbering
• Ford-Fulkerson method for computing the

maximum flow in a flow network
• Serialization and Deserialization of a binary tree

vs. Serialization in sorted order, allows the tree to
be re-constructed in an efficient way.

In current work, the choice of BFS algorithm did

not come because of its fast performance only, but
because of the simplicity provided to serve various
applications (Süß and Leopold, 2006). The
contributions of this study could be listed as below:

• Presents three tunable and scalable forms of BFS

and employs them to serve DNA various related
search processing

• Employs two highly tuned parallel approaches
(OpenMP and MPI) on a cluster

• Proves high performance achieved by means of the
cluster and analyzes the result.

LITERATURE REVIEW

This section reviews recent works of BFS

parallelization based on current trends of parallel
algorithms.

Multithreaded by Madduri et al. (2009) offered a
faster parallel algorithm for evaluating betweeness
centrality and performed a detailed analysis for
performance of the proposed algorithm. They
implemented the optimized algorithm for the Cary
XMT and achieved lower synchronization overhead and
memory cache. Later, Mizell and Maschhoff)2009 (
improved their work depending on (Madura et al.,
2009) by tuning the algorithm for Cray XMT (an
improved 64 processors version of (MTA-2)) and
achieved 350x faster running time on the new cluster
than an MPI approach on other cluster.

General Purpose Graphical Processor Unit
(GPGPU) was adopted to accelerate the graph and data
processing due to the huge amount of parallelism that
can be attained by current GPUs. Harish and Narayanan
(2007) proposed the first implementation to various
graph algorithms including BFS by employing Nvidia
GPU and CUDA. Hong et al. (2011a) reduced branch
divergence produced with a warp-centric programming

model. Recently, Tran et al. (2015) introduced GpSM,
which is a GPU massive parallel architecture method
for sub-graph matching based on filtering-and-joining
techniques.

Distributed memory architecture was used in some
researches to address the graph computing problems
caused by entity of scalability in graph decomposition
implementation as well as high synchronization
overhead in MPI (Beamer et al., 2013). Edmonds et al.
(2010) ombined lightweight graph metadata
transactions with active messages and proved that this
combination can leverage the parallelism of the
distributed memory graph applications. By improving
the memory access locality, Cong et al. (2010) were
able to develop fast PGAS for graph algorithms.
Checconi et al. (2012) proposed an efficient version of
BFS on IBM Blue Gene/P and Blue Gene/Q
architectures. They achieved high performance on large
graph, due to employing various techniques including
bitmab storage, efficient graph representations, 1-
dilation mapping, removal of redundant predecessor
map updates and compression on communication. The
Blue Gene*P version of the code was written by MPI
for communication and OpenMP was used for on-node
parallelism, while the Blue Gene/Q which is written
entirely in C used Pthreads for on-node threading and
SPI for commination. Beamer et al. (2013) used 2D
decomposition approach to an earlier purely BFS
algorithm in addition to top-down combined with a new
bottom-up search steps to enhance edges expands.
Amer et al. (2015) proposed a hybrid and distributed
BFS algorithm using MPI-only and MPI+threads
models at scale. In MPI+threads model, communication
of threads is independent of remote processes during
the process of synchronization with the local
computation. The idea behind this type of hybridization
comes to enhance the memory usage, node-to-node
synchronization and communication performance for
what MPI-only model offers by scaling certain
parameters such as the size of the target system, where
intranode communication and drawbacks of runtime
contention in case of multiple threads exist.

Finally, the shared-memory parallelization
parallelizes BFS algorithm on multi-core architecture.
Hong et al. (2011b) proposed a hybrid model for BFS
that can dynamically indicate the optimum performance
for each BFS-level iteration in order to utilize the
performance in both large and small graphs. Yasui et al.
(2013) applied a column-wise portioning for the
adjacency list of edges to Beamer et al. (2011)
algorithm on Non-Uniform Memory Access
architecture (NUMA) using SandyBridge-EP. The
authors explained two affinity strategies, (scatter-type
and compact-type) for the NUMA architecture. The
scatter-type optimized the distribution of OpenMP
threads evenly. On the other hand, the compact-type
binds the OpenMP threads closely in a free thread
context. This optimization could avoid the overhead
usage on the remote RAM access, since the local

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

467

Table 1: The general information of sequential method
Criteria Time (sec)
Average Concurrency 0.68
Logical Processors 2
Threads 1
Transitions 10103
Transitions Per Sec 1266.58
Filtered Transitions 10
Filtered Transition Time 0.00
APIs 70789
APIs Per Sec 8874.57
Total critical path time 7.94144 (100.00%)
No thread active 2.55204 (32.14%)
Serial time 5.3894 (67.86 %)
Wait time 2.55204
Active time 5.3894
Total time 10103

threads traverse each adjacency list on local RAM
(Yasui et al., 2013).

EXPERIMENT SPECIFICATION

Size of the used DNA dataset is about 385 MB and
contains 90,000 strings including three characters only.
The experiment is implemented on Khwarizmi cluster
in the school of Computer Science at USM.
Performance of the parallelization over the algorithm is
analyzed using special performance analyzers such as
Intel VTune Performance, Thread Checker and Thread
profiler. The code is written in C using Microsoft
Visual Studio 2008 Professional as platform.

Sequential performance: Since BFS is used in the
experiment, all nodes should be expanded. Therefore,
we expect a big amount of memory to handle an
extensive search space. The following table is obtained

from the Intel thread profile and shows the general
information about the sequential performance.

Intel thread checker is used to obtain information
in Table 1. Figure 2 depicts the thread profile chart that
shows the algorithm is running serially (single
threading) as can be seen by the orange bar with
execution time of 5.3894 sec. On the other hand, no
threading activity that is shown by the gray bar, took
about 2.38254 sec for the whole experiment.

The waiting time is too large and affects the whole
performance of the algorithm. Therefore, to overcome
this drawback, two parallel algorithms are proposed
based on two approaches of OpenMP and MPI.

Parallelization: As shown above, in sequential
performance, the total critical path time is large
(7.94144 sec) and it takes 100% of the total time. In this
experiment, two parallelizing approaches of OpenMP
and MPI are employed to achieve better performance
on a specific architecture. The parallelization
experiment has been analyzed and compiled on
Khawarizimi cluster machine in USM.

OpenMP: In shared memory architecture, multiple
CPUs are sharing the same amount of memory.
OpenMP API is an example of multi-platform shared
memory multiprocessing programming where
multithreading concept is applied to rewrite the
algorithm in a parallel manner. In OpenMP,
programmer should think about parallelizing
computation parts of the program as possible in
successive steps (Harish and Narayanan, 2007) and then
the result of each step (thread) will be collected

Fig. 2: Thread profile chart

Fig. 3: Dom

Fig. 4: Func

yielding th
individuall
processors
and sharin
the result o
final resul
could be a
is portable
Systems lik
Now, whic

• Indepe

be par
• Functi

sequen
• Indepe

withou

Decompos
refers to
problems.
Domain de
In domain
partitioned
function w
in Fig. 3.

The f
problem o
different ta

In this
the waiting
much as po
used to pa
most comp
a wide ran
using (#pra

main decompositi

ctional decompo

he main funct
ly, but at t
, where each

ng the resource
of each thread
lt. OpenMP is
added to C/C+
e and can be im
ke Windows N
ch tasks should

endent tasks o
rallelized and ru
ions that have
ntial code and
endent functio
ut affecting oth

sition: The D
splitting the
There are t

ecomposition
n decompositi
d into sub-datas
works on certai

functional de
or function int
asks as shown i
s experiment, t
g time of sequ
ossible. The do
arallelize the s
putational func
nge of data whi
agma omp pa

Res. J. A

ion

sition

tion. The thre
the same tim
thread perform

es with other
d collected in o
s considered a
+ and FORTR
mplemented in

NT and Unix/Li
d be assigned to

of the sequenti
un at the same

e the most com
can be divided

ons, which can
her functions.

Decomposition
problem into

two types of
and functiona

ion, the probl
sets and each s
in portion of th

composition
o different su
in Fig. 4.
the main objec

uential code of
omain decompo
equential code
tions into piec
ich can be proc

arallel) number

Appl. Sci. Eng.

eads are runni
me on separa
ms its own ta
threads. Final

order to form t
as a library th

RAN. The libra
n most Operati
inux platforms
o threads?

ial code that c
 time
mputation of t
d into threads
n be paralleliz

n or portioni
o multiple su
f decompositio
l decompositio
lem data set
sub-dataset of t
he data as show

is dividing t
ub-functions w

ctive is to redu
f the algorithm
osition method
e by splitting t
es, hence there
cessed in paral
r of threads (fo

 Technol., 12(4

468

ing
ate
ask
lly,
the
hat
ary
ing
s.

can

the

zed

ing
ub-
on:
on.

is
the
wn

the
with

uce
as

d is
the
e is
llel
our

Fig. 5: C
o

or five
experim
the res
results
This is
the amo
increas
synchro

Th
perform
dimens
addition
it int
comput
because
variabl
indepen
2013)
errors w
data-ra
depend
to the B
are thre

• Flo
• An
• Ou

Wr
variabl
followi
them fo

Th

and uti
Informa
chart of

It
decline
is also

4): 465-472, 20

Comparison be
optimization, ful

threads). Choo
mentally achiev
ult for each e
every time we
because when

ount of fork an
es too, in
onization is ne

he second po
med on the
sional array
n to the functi
to a two-d
tational part o
e of the da
es. According
ndent function
and if there i
will occur wit
ce error occu

dent variables
Bernstein cond
ee types of data

ow dependence
nti-dependence
utput dependen

riting and read
es within the
ing the depen
ounded anti-de

RESULT

he objectives o
ilization of th
ation related to
f Fig. 5 is show
can be seen

ed to 6.66741e-
reduced to 0.0

016

etween no th
lly utilization an

osing the best n
ved by trial an

experiment. W
e exceeded this
n the number o
nd join activity
addition to

eded to form th
ortion of the
function that
into two-dim

ion of printing
dimensional a
of the code is
ata-trace that

g to the Berns
s can be in par
is any overlap
th threading s
urred six tim
between the fu
dition (Beamer
a dependency:

e: write -> read
e: read -> write
nce: writ -> wri

ding activities
function. Mo

ndence problem
ependence.

TS AND DISCU

of reducing th
he resources w
o the “Fully ut
wn in Table 2.
that “No Thre
-005 sec (abou
00137793 sec b

hread activity,
nd over utilizatio

number of thre
nd error after g

We got unsatisf
s number of th
of threads incr
y among the th

the overhea
he final result.
e parallelizati

changes the
mensional arra
g data after cha
array. The
s not paralleli

happens be
tein condition
rallel (Beamer

p between vari
ynchronization

mes because o
functions. Acco
r et al., 2013),

d
e
ite

are performed
ost of the erro
m and only o

USSION

e total waiting
were achieved
tilization” bar

ead activity”
ut 0%). The ser
because of dep

serial
on

eads is
getting
factory
hreads.
reases,
hreads
ad of

ion is
e one-
ay, in
anging

main
izable;
etween
n, only

et al.,
iables,
n. The
of the
ording
, there

d with
ors are
one of

g time
d. The
in bar

bar is
rial bar
loying

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

469

Table 2: Analyzed result of Open MP experiment
Criteria Time (sec)
Total critical path time 12.1019 (90.61%)
No thread active 6.66741e-005
Serial time 0.00137793
Serial blocking 0.896081
Serial impact 0.029866
Under utilize 0
Under blocking 0
Under impact 0
Full utilized 1.03663
Full blocking 9.62859
Full impact 0.246098
Over utilized 0.201813
Over blocking 0
Over impact 0
Overhead 0.0613929

OpenMP of three threads. The “Over Utilized” bar
raised by 1.03663 sec and this is an acceptable rising
because of the concurrency level that matches the
number of the processors. Figure 5 illustrates the
comparison between fully utilized, serial optimization,
no thread activity and over utilization.

Speedup and efficiency: the speedup refers to how fast
parallel computing is in comparison to the sequential
computing for the same algorithm (Hennessy and
Patterson, 2011). Speedup ratio can be measured by Eq.
(1), where T1 is the sequential execution time and Tp is
parallel execution time:

ܵ௉ ൌ ்௟
்ು

 (1)

For the whole execution time, on Khwarizmi
cluster with four threads the following results are
achieved:

ܵ௉ ൌ
0.07
0.04 ൌ 1.75

For the whole execution time, on a PC with Intel

Core2Due 2.20 GHz machine, running windows on it
with 5 threads the following results are achieved:

ܵ௉ ൌ
7.385
7.163 ൌ 1.0309

According to the achieved results, the speedup

ratio on Khwarizmi cluster is greater than on regular PC
because of the number of the processors on the cluster.
The execution time of the parallel or serial may vary
according to state of the machine of the experiment
(i.e., how much of the process is already done on the
machine).

Efficiency can be defined as how well processors
are utilized in the parallel execution of the algorithm
compared to the wasted time in communication and
synchronization between the processors. Efficiency can
be calculated by Eq. (2), where Sp is the speedup ratio
and P is number of the processors:

௉ܧ ൌ ௌು
௉

 (2)

In Khwarizmi cluster the efficiency of using the
processors for 4 threads only:

1.75
4 ൌ 0.43

Efficiency by using PC with five or with four

threads are:

ଵ.଴ଷ଴ଽ
ହ

ൌ 0.206 And ଵ.଴ଷ଴ଽ
ସ

ൌ 0.257

Efficiency value is typically between zero and one.
Since we have achieved acceptable speedup on the
cluster experiment, the efficiency will be better than the
PC experiment. Overall, efficiency of the threads and
speedup need to be improved in order for processors to
be more utilized.

MPI EXPERIMENT

MPI stands for Message Passing Interface, which is
a standard library for message passing interfaces. MPI
is a specification not an implementation. The purpose
of MPI is to develop a widely used standard for writing
message passing programs and achieving practical,
portable, efficient and flexible standard for message
passing. It can be implemented in C, C++ and
FORTRAN languages. MPI is consisted of functions,
subroutines and methods and they have a different
syntax from one language to another one.

In parallel programming, the problem will be
divided to sub-problems or processes and then passed to
the processors. The responsibility of MPI is to establish
communication between processes. Therefore, it is used
for distributed memory not for shared memory.

There are different versions of MPI such as MPI
1.0, MPI 1.1, MPI 1.2, MPI 2.0, MPI 1.3, MPI 2.1 and
MPI 2.2 each of which has different facilities and
conveniences.

MPI is suitable for networks of workstations even
heterogeneous ones, shared memory implementations,
such as multi core processors and hybrid structures too.

Types of communications in MPI: There are two
types of communication in MPI. First, is point-to-point
communication and second is collective
communication. In this experiment, point-to-point is
used for parallelizing the BFS algorithm. Before
starting to explain point-to-point communication, we
have to explain four routines that are common in almost
every program in MPI. The first one is MPI_Init (int
argc, char **argv). This routine is the first routine that
must be called in any MPI interface and it must be
called only once. Initialization routine has two

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

470

Fig. 6: Flowchart of MPI experiment

parameters; one is argc, which is a pointer to number of
arguments and the other one is argv, which is a pointer
to the arguments vector. The second routine is
MPI_Finalize (). This routine is responsible for
terminating the MPI execution environment. This
routine cleans up all MPI state. Once this routine is
called, no MPI routine (even MPI_INIT) may be called.
The user must ensure that all pending communications
involving a process are completed before the process
calls MPI_Finalize.

The third routine is MPI_Comm_size (MPI_Comm
comm, int *size). This routine has two parameters; the
first one indicates the type of communicator that the
processes employ and the second one indicates the
number of processes involved in that specific
communicator. The last common routine is
MPI_Comm_rank (MPI_Comm comm, int* rank). This
routine has two parameters too; the first one is exactly
like MPI_Comm_size but the second indicates the rank
of the process in the communicator.

Another two routines that will be used in the
experiment for BFS are MPI_Send (void *buffer, int
count, MPI_Data type data type, int dest, int tag,
MPI_Comm *comm) and MPI_Recv (void *buffer, int
count, MPI_Data type datatype, int source, int tag,

Table 3: Analyzed result of OpenMP experiment
T1(sec) Tp(sec) Sp P Ep
0.07 0.043 1.75 4 0.43
0.07 0.008 8.75 24 0.36
0.07 0.007 10 32 0.31
0.07 0.009 7.77 40 0.19

Table 4: Speedup and efficiency comparison
Type of Parallel
method Speed up Efficiency

Number
of chars

OpenMP (4 threads) 1.75 0.43 270000
MPI (4 proc.) 1.75 0.43 270000
MPI (24 proc.) 8.75 0.36 270000
MPI (32 proc.) 10 0.31 270000
MPI (40 proc.) 7.77 0.19 270000

MPI_Comm *comm, MPI_Status *status). As
mentioned MPI_Send has six parameters and is
responsible of sending data point to point from one
process to another one.

MPI Experiment: In this section, we will clarify the
MPI experiment to the BFS sequential code.

Parallelization scenario: In this scenario, data read
from the dataset file by the root process. Afterwards,
this process will do the computation to divide the read
data, which consists of characters of the same chunks in
size and send them to different processes. The root
process read the data and stored it in an array, after
sending it to other processes in point to point manner.
Then, the process of changing the array dimension of
the strings began to change the one-dimensional array
of the data to an array of 3-character strings and then it
converted to a two-dimensional array to be ready for
BFS algorithm. Next, each process started to do BFS
for each array and compared each one with the
requested string. In each event of searching through the
dataset, the processes recorded the pass of events and
then these events (passes) were combined to represent
the final result. Figure 6 shows the flowchart of the
MPI scenario.

Speedup and efficiency: The results of running the
algorithm on the cluster with different number of
processes and the execution time of the last process,
which finished its job is summarized in Table 3.
According to the sequential code, speedup and
efficiency for MPI calculated by Eq. (1) and (2)
respectively.

It is clear that the number of processes has affected
the efficiency and the speedup ratio. When the number
of processes increased, the speedup ratio increased too.
However, the efficiency decreased in contrast. The best
speedup achieved with 32 processes when the number
of processes and processors were identical. When the
number of processes grew to 40, both speedup and
efficiency decreased. In conclusion, the best number for
processes is equal to the number of processors.

Table 4 summarizes the comparison between the
two experiments of parallel computing (OpneMP and

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

471

Fig. 7: CPU utilization report

Fig. 8: Threads report

MPI) regarding the achieved speedup, efficiency and
number of characters.

PERFORMANCE ANALYZING TOOLS

Performance analyzing tools can be classified into
two categories: Profiling and tracing tools. The
profiling tools depend on collecting timing summaries
while tracing collect a sequence of time-stamped
events. Profiling tools produce small amount of data
that can be scaled well, on the other hand the tracing
tools cannot be scaled properly (Chung et al., 2006).

In this study, two different tools from different
vendors and developers were used to analyze the
parallel performance of the algorithm. Intel Vtune
thread checker and Microsoft Visual studio 2010
performance analyzer are the used tools. These tools are
employed to produce CPU utilization, threads and

Cores reports. Figure 7 and 8 show concurrency
profiling reports for analyzing the performance of the
BFS algorithm by using Microsoft Visual studio 2010
performance analyzer.

CONCLUSION

This paper studied parallelizing of BFS algorithm

in two different approaches of OpenMP and MPI
experimentally. Both parallel approaches may produce
equal speedup ratio if it is executed in the same
conditions (i.e., the number of threads/processes equal
to the number of the processors). OpenMP was
implemented using domain decomposition method and
tested on Khwarizmi cluster with 8 Intel Xeon
Processors. MPI was implemented by different number
of processes on the same cluster. However, the
achieved results (speedup and efficiency) for both

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016

472

OpenMP and MPI were acceptable to some extent,
but still need some enhancement to get better
performance.

REFERENCES

Amer, A., H. Lu, P. Balaji and S. Matsuoka, 2015.
Characterizing MPI and hybrid MPI+threads
applications at scale: Case study with BFS.
Proceeding of the IEEE Workshop on Parallel
Programming Model for the Masses (PPMM,
2015), pp: 1075-1083.

Beamer, S., K. Asanovic and D.A. Patterson, 2011.
Searching for a parent instead of fighting over
children: A fast breadth-first search
implementation for graph500. Tech. Rep.
UCB/EECS-2011-117, EECS Department,
University of California, Berkeley.

Beamer, S., A. Buluc, K. Asanovic and D. Patterson,
2013. Distributed memory breadth-first search
revisited: Enabling bottom-up search. Proceeding
of the IEEE 27th International Parallel and
Distributed Processing Symposium Workshops and
PhD Forum (IPDPSW, 2013), pp: 1618-1627.

Checconi, F., F. Petrini, J. Willcock, A. Lumsdaine,
A.R. Choudhury and Y. Sabharwal, 2012. Breaking
the speed and scalability barriers for graph
exploration on distributed-memory machines.
Proceeding of the 2012 IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp: 1-12.

Chung, I.H., R.E. Walkup, H.F. Wen and H. Yu, 2006.
MPI performance analysis tools on blue gene/L.
Proceeding of the ACM/IEEE SC 2006
Conference, pp: 16-16.

Cong, G., G. Almasi and V. Saraswat, 2010. Fast PGAS
implementation of distributed graph algorithms.
Proceedings of the International Conference for
High Performance Computing, Networking,
Storage and Analysis, pp: 1-11.

Donald, E.K., 1999. The art of computer programming.
Sorting Search., 3: 426-458.

Edmonds, N., J. Willcock, T. Hoefler and A.
Lumsdaine, 2010. Design of a large-scale hybrid-
parallel graph library. Proceeding of the
International Conference on High Performance
Computing, Student Research Symposium. Goa,
India.

Harish, P. and P.J. Narayanan, 2007. Accelerating large
graph algorithms on the GPU using CUDA.
Proceeding of the 14th International Conference on
High Performance Computing (HiPC'07), pp:
197-208.

Hennessy, J.L. and D.A. Patterson, 2011. Computer
architecture: A quantitative approach. Elsevier
Science, Burlington.

Hong, S., S.K. Kim, T. Oguntebi and K. Olukotun,
2011a. Accelerating CUDA graph algorithms at
maximum warp. ACM SIGPLAN Notices, 46(8):
267-276.

Hong, S., T. Oguntebi and K. Olukotun, 2011b.
Efficient parallel graph exploration on multi-core
CPU and GPU. Proceeding of the 2011 IEEE
International Conference on Parallel Architectures
and Compilation Techniques (PACT, 2011), pp:
78-88.

Kumar, V., A. Grama, A. Gupta and G. Karypis, 1994.
Introduction to Parallel Computing: Design and
Analysis of Algorithms. Benjamin/Cummings
Publishing Co., Redwood City, CA.

Madduri, K., D. Ediger, K. Jiang, D. Bader and D.
Chavarria-Miranda, 2009. A faster parallel
algorithm and efficient multithreaded
implementations for evaluating betweenness
centrality on massive datasets. Proceeding of the
IEEE International Symposium on Parallel and
Distributed Processing (IPDPS, 2009), pp: 1-8.

Mizell, D. and K. Maschhoff, 2006. Early experiences
with large-scale XMT systems. Proceeding of the
Workshop on Multithreaded Architectures and
Applications (MTAAP'09), May 2009.

Süß, M. and C. Leopold, 2006. Implementing irregular
parallel algorithms with OpenMP. In: Nagel, W.E.
(Eds.), Euro-Par 2006. LNCS 4128, Springer-
Verlag, Berlin, Heidelberg, pp: 635-644.

Tran, H.N., J.J. Kim and B. He, 2015. Fast subgraph
matching on large graphs using graphics
processors. In: Renz, M. et al. (Eds.), DASFAA,
2015, Part 1, LNCS 9049, Springer International
Publishing, Switzerland, pp: 299-315.

Yasui, Y., K. Fujisawa and K. Goto, 2013. NUMA-
optimized parallel breadth-first search on multicore
single-node system. Proceeding of the IEEE
International Conference on Big Data, pp: 394-402.

