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Abstract: Recent years, many applications have exploited graph-based computations for searching massive data
through distributed processors and memories. In this study, we present Breadth First Search algorithm as a graph-
based algorithm to organize large DNA dataset and parallelize the algorithm using two highly tuned parallel
approaches named OpenMP and MPI on a cluster, besides tuning the serial version of the algorithm. OpenMP is
implemented using domain decomposition method. MPI is applied after dividing the dataset into equal parts and
changing it to a two-dimensional array. Both approaches are tested in Khwarizmi cluster with 8 Intel Xeon
Processors at the School of Computer Sciences in USM. The two aforementioned experiments are implemented and
evaluated with certain characteristics and the results show high performance is achieved in terms of speedup and

efficiency in comparison with the serial version of the algorithm.
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INTRODUCTION

A search algorithm is used to find an item with
certain properties among a collection of items, sorted in
various manners, like records in a database or an
element defined by mathematical procedure of a search
space (Donald, 1999). A search algorithm could also be
used to solve and evaluate Discrete Optimization
Problem (DOP), which is a type of highly
computational  problems with theoretically and
practically interest (Kumar et al., 1994). The searching
algorithm provides solutions to DOPs from finite or
infinite set of solutions. Many problems can be
addressed as DOPs like the optimal layout of VLSI
chips, robot motion planning, test-pattern generation for
digital circuits and logistics and control (Kumar et al.,
1994). There is variety of data structures for search
algorithms like simple linear search, binary search tree,
heaps and hash tables that could be used for large or
normal databases.

The main existing types of search algorithms are
tree and graph traversal, where the tree type imposes all
the nodes of data structure to be examined in the search
process in a practical way. On the other hand, in the
graph traversal all nodes should be examined in a
systematic way and may be more than once. So, the tree
traversal could be considered as a special case of the
graph traversal. There are two main algorithms for

Fig. 1: The order of expanding the nodes in BFS algorithm

graph traversal named Depth First Search (DFS) and
Breadth First Search (BFS).

Breadth First Search (BFS): BFS expands the whole
nodes beginning with the root node and explores all
nearest neighbors one by one to find the required item
as depicted in Fig. 1.

The algorithm does not use heuristic direct, so all
the nodes should be expanded and added to the FIFO
(First In First Out) queue. All the unexpanded nodes
will be added to the container, which is organized as a
Linked list and called open list. Afterwards, the
produced list will be added to the other container,
which is a closed list after being examined by the
algorithm. Therefore, the FIFO queue will hold the final
result.
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Applications: The main usage of BFS algorithm is
based on finding the shortest path between the entry
point and the exit point. BFS is employed to solve
several problems such as:

e Finding all nodes within one connected component
Copying Collection, Cheney's algorithm

Finding the shortest path between two nodes u and
%

Testing a graph for bipartiteness

(Reverse) Cuthill-McKee mesh numbering
Ford-Fulkerson method for computing
maximum flow in a flow network
Serialization and Deserialization of a binary tree
vs. Serialization in sorted order, allows the tree to
be re-constructed in an efficient way.

the

In current work, the choice of BFS algorithm did
not come because of its fast performance only, but
because of the simplicity provided to serve various
applications (SR and Leopold, 2006). The
contributions of this study could be listed as below:

Presents three tunable and scalable forms of BFS
and employs them to serve DNA various related
search processing

Employs two highly tuned parallel approaches
(OpenMP and MPI) on a cluster

Proves high performance achieved by means of the
cluster and analyzes the result.

LITERATURE REVIEW

This section reviews recent works of BFS
parallelization based on current trends of parallel
algorithms.

Multithreaded by Madduri et al. (2009) offered a
faster parallel algorithm for evaluating betweeness
centrality and performed a detailed analysis for
performance of the proposed algorithm. They
implemented the optimized algorithm for the Cary
XMT and achieved lower synchronization overhead and
memory cache. Later, Mizell and Maschhoff (2009)
improved their work depending on (Madura et al.,
2009) by tuning the algorithm for Cray XMT (an
improved 64 processors version of (MTA-2)) and
achieved 350x faster running time on the new cluster
than an MPI approach on other cluster.

General Purpose Graphical Processor Unit
(GPGPU) was adopted to accelerate the graph and data
processing due to the huge amount of parallelism that
can be attained by current GPUs. Harish and Narayanan
(2007) proposed the first implementation to various
graph algorithms including BFS by employing Nvidia
GPU and CUDA. Hong et al. (2011a) reduced branch
divergence produced with a warp-centric programming
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model. Recently, Tran et al. (2015) introduced GpSM,
which is a GPU massive parallel architecture method
for sub-graph matching based on filtering-and-joining
techniques.

Distributed memory architecture was used in some
researches to address the graph computing problems
caused by entity of scalability in graph decomposition
implementation as well as high synchronization
overhead in MPI (Beamer et al., 2013). Edmonds et al.
(2010) ombined lightweight graph  metadata
transactions with active messages and proved that this
combination can leverage the parallelism of the
distributed memory graph applications. By improving
the memory access locality, Cong et al. (2010) were
able to develop fast PGAS for graph algorithms.
Checconi et al. (2012) proposed an efficient version of
BFS on IBM Blue Gene/P and Blue Gene/Q
architectures. They achieved high performance on large
graph, due to employing various techniques including
bitmab storage, efficient graph representations, 1-
dilation mapping, removal of redundant predecessor
map updates and compression on communication. The
Blue Gene*P version of the code was written by MPI
for communication and OpenMP was used for on-node
parallelism, while the Blue Gene/Q which is written
entirely in C used Pthreads for on-node threading and
SPI for commination. Beamer et al. (2013) used 2D
decomposition approach to an earlier purely BFS
algorithm in addition to top-down combined with a new
bottom-up search steps to enhance edges expands.
Amer et al. (2015) proposed a hybrid and distributed
BFS algorithm using MPIl-only and MPI+threads
models at scale. In MPI+threads model, communication
of threads is independent of remote processes during
the process of synchronization with the local
computation. The idea behind this type of hybridization
comes to enhance the memory usage, node-to-node
synchronization and communication performance for
what MPI-only model offers by scaling certain
parameters such as the size of the target system, where
intranode communication and drawbacks of runtime
contention in case of multiple threads exist.

Finally, the shared-memory parallelization
parallelizes BFS algorithm on multi-core architecture.
Hong et al. (2011b) proposed a hybrid model for BFS
that can dynamically indicate the optimum performance
for each BFS-level iteration in order to utilize the
performance in both large and small graphs. Yasui et al.
(2013) applied a column-wise portioning for the
adjacency list of edges to Beamer et al. (2011)
algorithm on  Non-Uniform  Memory  Access
architecture  (NUMA) using SandyBridge-EP. The
authors explained two affinity strategies, (scatter-type
and compact-type) for the NUMA architecture. The
scatter-type optimized the distribution of OpenMP
threads evenly. On the other hand, the compact-type
binds the OpenMP threads closely in a free thread
context. This optimization could avoid the overhead
usage on the remote RAM access, since the local
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Table 1: The general information of sequential method

Criteria Time (sec)
Average Concurrency 0.68

Logical Processors 2

Threads 1

Transitions 10103
Transitions Per Sec 1266.58

Filtered Transitions 10

Filtered Transition Time 0.00

APIs 70789

APIs Per Sec 8874.57

Total critical path time 7.94144 (100.00%)
No thread active 2.55204 (32.14%)
Serial time 5.3894 (67.86 %)
Wait time 2.55204

Active time 5.3894

Total time 10103

threads traverse each adjacency list on local RAM
(Yasui et al., 2013).

EXPERIMENT SPECIFICATION

Size of the used DNA dataset is about 385 MB and
contains 90,000 strings including three characters only.
The experiment is implemented on Khwarizmi cluster
in the school of Computer Science at USM.
Performance of the parallelization over the algorithm is
analyzed using special performance analyzers such as
Intel VTune Performance, Thread Checker and Thread
profiler. The code is written in C using Microsoft
Visual Studio 2008 Professional as platform.

Sequential performance: Since BFS is used in the
experiment, all nodes should be expanded. Therefore,
we expect a big amount of memory to handle an
extensive search space. The following table is obtained

from the Intel thread profile and shows the general
information about the sequential performance.

Intel thread checker is used to obtain information
in Table 1. Figure 2 depicts the thread profile chart that
shows the algorithm is running serially (single
threading) as can be seen by the orange bar with
execution time of 5.3894 sec. On the other hand, no
threading activity that is shown by the gray bar, took
about 2.38254 sec for the whole experiment.

The waiting time is too large and affects the whole
performance of the algorithm. Therefore, to overcome
this drawback, two parallel algorithms are proposed
based on two approaches of OpenMP and MPI.

Parallelization: As shown above, in sequential
performance, the total critical path time is large
(7.94144 sec) and it takes 100% of the total time. In this
experiment, two parallelizing approaches of OpenMP
and MPI are employed to achieve better performance
on a specific architecture. The parallelization
experiment has been analyzed and compiled on
Khawarizimi cluster machine in USM.

OpenMP: In shared memory architecture, multiple
CPUs are sharing the same amount of memory.
OpenMP API is an example of multi-platform shared
memory  multiprocessing  programming  where
multithreading concept is applied to rewrite the
algorithm in a parallel manner. In OpenMP,
programmer  should think about parallelizing
computation parts of the program as possible in
successive steps (Harish and Narayanan, 2007) and then
the result of each step (thread) will be collected
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Fig. 3: Domain decomposition

Fig. 4: Functional decomposition

yielding the main function. The threads are running
individually, but at the same time on separate
processors, where each thread performs its own task
and sharing the resources with other threads. Finally,
the result of each thread collected in order to form the
final result. OpenMP is considered as a library that
could be added to C/C++ and FORTRAN. The library
is portable and can be implemented in most Operating
Systems like Windows NT and Unix/Linux platforms.
Now, which tasks should be assigned to threads?

e Independent tasks of the sequential code that can
be parallelized and run at the same time

Functions that have the most computation of the
sequential code and can be divided into threads
Independent functions, which can be parallelized
without affecting other functions.

Decomposition: The Decomposition or portioning
refers to splitting the problem into multiple sub-
problems. There are two types of decomposition:
Domain decomposition and functional decomposition.
In domain decomposition, the problem data set is
partitioned into sub-datasets and each sub-dataset of the
function works on certain portion of the data as shown
in Fig. 3.

The functional decomposition is dividing the
problem or function into different sub-functions with
different tasks as shown in Fig. 4.

In this experiment, the main objective is to reduce
the waiting time of sequential code of the algorithm as
much as possible. The domain decomposition method is
used to parallelize the sequential code by splitting the
most computational functions into pieces, hence there is
a wide range of data which can be processed in parallel
using (#pragma omp parallel) number of threads (four
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Fig. 5: Comparison between no thread activity, serial

optimization, fully utilization and over utilization

or five threads). Choosing the best number of threads is
experimentally achieved by trial and error after getting
the result for each experiment. We got unsatisfactory
results every time we exceeded this number of threads.
This is because when the number of threads increases,
the amount of fork and join activity among the threads
increases too, in addition to the overhead of
synchronization is needed to form the final result.

The second portion of the parallelization is
performed on the function that changes the one-
dimensional array into two-dimensional array, in
addition to the function of printing data after changing
it into a two-dimensional array. The main
computational part of the code is not parallelizable;
because of the data-trace that happens between
variables. According to the Bernstein condition, only
independent functions can be in parallel (Beamer et al.,
2013) and if there is any overlap between variables,
errors will occur with threading synchronization. The
data-race error occurred six times because of the
dependent variables between the functions. According
to the Bernstein condition (Beamer et al., 2013), there
are three types of data dependency:

Flow dependence: write -> read
Anti-dependence: read -> write
Output dependernice: writ -> write

Writing and reading activities are performed with
variables within the function. Most of the errors are
following the dependence problem and only one of
them founded anti-dependence.

RESULTS AND DISCUSSION

The objectives of reducing the total waiting time
and utilization of the resources were achieved. The
Information related to the “Fully utilization” bar in bar
chart of Fig. 5 is shown in Table 2.

It can be seen that “No Thread activity” bar is
declined to 6.66741e-005 sec (about 0%). The serial bar
is also reduced to 0.00137793 sec because of deploying
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Table 2: Analyzed result of Open MP experiment
Criteria

Total critical path time

No thread active

Time (sec)
12.1019 (90.61%)
6.66741e-005

Serial time 0.00137793
Serial blocking 0.896081
Serial impact 0.029866
Under utilize 0

Under blocking 0

Under impact 0

Full utilized 1.03663
Full blocking 9.62859
Full impact 0.246098
Over utilized 0.201813
Over blocking 0

Over impact 0
Overhead 0.0613929

OpenMP of three threads. The “Over Utilized” bar
raised by 1.03663 sec and this is an acceptable rising
because of the concurrency level that matches the
number of the processors. Figure 5 illustrates the
comparison between fully utilized, serial optimization,
no thread activity and over utilization.

Speedup and efficiency: the speedup refers to how fast
parallel computing is in comparison to the sequential
computing for the same algorithm (Hennessy and
Patterson, 2011). Speedup ratio can be measured by Eq.
(1), where T1 is the sequential execution time and Tp is
parallel execution time:

Tl

_TP

Sp 1
For the whole execution time, on Khwarizmi

cluster with four threads the following results are
achieved:

0,07

P=0a 70

For the whole execution time, on a PC with Intel
Core2Due 2.20 GHz machine, running windows on it
with 5 threads the following results are achieved:

7.385

Sp = 2gz = 1.0309

According to the achieved results, the speedup
ratio on Khwarizmi cluster is greater than on regular PC
because of the number of the processors on the cluster.
The execution time of the parallel or serial may vary
according to state of the machine of the experiment
(i.e., how much of the process is already done on the
machine).

Efficiency can be defined as how well processors
are utilized in the parallel execution of the algorithm
compared to the wasted time in communication and
synchronization between the processors. Efficiency can
be calculated by Eq. (2), where Sp is the speedup ratio
and P is number of the processors:
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(2)

In Khwarizmi cluster the efficiency of using the
processors for 4 threads only:

175 0.43
4 - .

Efficiency by using PC with five or with four
threads are:

1.0309 1.0309

= 0.206 And — = 0.257

Efficiency value is typically between zero and one.
Since we have achieved acceptable speedup on the
cluster experiment, the efficiency will be better than the
PC experiment. Overall, efficiency of the threads and
speedup need to be improved in order for processors to
be more utilized.

MPI EXPERIMENT

MPI stands for Message Passing Interface, which is
a standard library for message passing interfaces. MPI
is a specification not an implementation. The purpose
of MPI is to develop a widely used standard for writing
message passing programs and achieving practical,
portable, efficient and flexible standard for message
passing. It can be implemented in C, C++ and
FORTRAN languages. MPI is consisted of functions,
subroutines and methods and they have a different
syntax from one language to another one.

In parallel programming, the problem will be
divided to sub-problems or processes and then passed to
the processors. The responsibility of MPI is to establish
communication between processes. Therefore, it is used
for distributed memory not for shared memory.

There are different versions of MPI such as MPI
1.0, MPI 1.1, MPI 1.2, MPI 2.0, MPI 1.3, MPI 2.1 and
MPI 2.2 each of which has different facilities and
conveniences.

MPI is suitable for networks of workstations even
heterogeneous ones, shared memory implementations,
such as multi core processors and hybrid structures too.

Types of communications in MPI: There are two
types of communication in MPI. First, is point-to-point
communication and second is collective
communication. In this experiment, point-to-point is
used for parallelizing the BFS algorithm. Before
starting to explain point-to-point communication, we
have to explain four routines that are common in almost
every program in MPI. The first one is MPI_Init (int
argc, char **argv). This routine is the first routine that
must be called in any MPI interface and it must be
called only once. Initialization routine has two
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Fig. 6: Flowchart of MPI experiment

parameters; one is argc, which is a pointer to number of
arguments and the other one is argv, which is a pointer
to the arguments vector. The second routine is
MPI_Finalize (). This routine is responsible for
terminating the MPI execution environment. This
routine cleans up all MPI state. Once this routine is
called, no MPI routine (even MPI_INIT) may be called.
The user must ensure that all pending communications
involving a process are completed before the process
calls MPI_Finalize.

The third routine is MPI_Comm_size (MP1_Comm
comm, int *size). This routine has two parameters; the
first one indicates the type of communicator that the
processes employ and the second one indicates the
number of processes involved in that specific
communicator. The last common routine s
MPI1_Comm_rank (MPI_Comm comm, int* rank). This
routine has two parameters too; the first one is exactly
like MPI_Comm_size but the second indicates the rank
of the process in the communicator.

Another two routines that will be used in the
experiment for BFS are MPI_Send (void *buffer, int
count, MPI_Data type data type, int dest, int tag,
MPI_Comm *comm) and MPI_Recv (void *buffer, int
count, MPI_Data type datatype, int source, int tag,
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Table 3: Analyzed result of OpenMP experiment

T1(sec) Tp(sec) Sp P Ep
0.07 0.043 1.75 4 0.43
0.07 0.008 8.75 24 0.36
0.07 0.007 10 32 0.31
0.07 0.009 7.77 40 0.19
Table 4: Speedup and efficiency comparison

Type of Parallel Number
method Speed up Efficiency of chars
OpenMP (4 threads) 1.75 0.43 270000
MPI (4 proc.) 1.75 0.43 270000
MPI (24 proc.) 8.75 0.36 270000
MPI (32 proc.) 10 0.31 270000
MPI (40 proc.) 7.77 0.19 270000
MPI_Comm *comm, MPI_Status *status). As

mentioned MPI_Send has six parameters and is
responsible of sending data point to point from one
process to another one.

MPI1 Experiment: In this section, we will clarify the
MPI experiment to the BFS sequential code.

Parallelization scenario: In this scenario, data read
from the dataset file by the root process. Afterwards,
this process will do the computation to divide the read
data, which consists of characters of the same chunks in
size and send them to different processes. The root
process read the data and stored it in an array, after
sending it to other processes in point to point manner.
Then, the process of changing the array dimension of
the strings began to change the one-dimensional array
of the data to an array of 3-character strings and then it
converted to a two-dimensional array to be ready for
BFS algorithm. Next, each process started to do BFS
for each array and compared each one with the
requested string. In each event of searching through the
dataset, the processes recorded the pass of events and
then these events (passes) were combined to represent
the final result. Figure 6 shows the flowchart of the
MPI scenario.

Speedup and efficiency: The results of running the
algorithm on the cluster with different number of
processes and the execution time of the last process,
which finished its job is summarized in Table 3.
According to the sequential code, speedup and
efficiency for MPI calculated by Eq. (1) and (2)
respectively.

It is clear that the number of processes has affected
the efficiency and the speedup ratio. When the number
of processes increased, the speedup ratio increased too.
However, the efficiency decreased in contrast. The best
speedup achieved with 32 processes when the number
of processes and processors were identical. When the
number of processes grew to 40, both speedup and
efficiency decreased. In conclusion, the best number for
processes is equal to the number of processors.

Table 4 summarizes the comparison between the
two experiments of parallel computing (OpneMP and
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MPI) regarding the achieved speedup, efficiency and
number of characters.

PERFORMANCE ANALYZING TOOLS

Performance analyzing tools can be classified into
two categories: Profiling and tracing tools. The
profiling tools depend on collecting timing summaries
while tracing collect a sequence of time-stamped
events. Profiling tools produce small amount of data
that can be scaled well, on the other hand the tracing
tools cannot be scaled properly (Chung et al., 2006).

In this study, two different tools from different
vendors and developers were used to analyze the
parallel performance of the algorithm. Intel Vtune
thread checker and Microsoft Visual studio 2010
performance analyzer are the used tools. These tools are
employed to produce CPU utilization, threads and
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Cores reports. Figure 7 and 8 show concurrency
profiling reports for analyzing the performance of the
BFS algorithm by using Microsoft Visual studio 2010
performance analyzer.

CONCLUSION

This paper studied parallelizing of BFS algorithm
in two different approaches of OpenMP and MPI
experimentally. Both parallel approaches may produce
equal speedup ratio if it is executed in the same
conditions (i.e., the number of threads/processes equal
to the number of the processors). OpenMP was
implemented using domain decomposition method and
tested on Khwarizmi cluster with 8 Intel Xeon
Processors. MPI was implemented by different number
of processes on the same cluster. However, the
achieved results (speedup and efficiency) for both
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OpenMP and MPI were acceptable to some extent,
but still need some enhancement to get better
performance.
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