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Applications: The main usage of BFS algorithm is 
based on finding the shortest path between the entry 
point and the exit point. BFS is employed to solve 
several problems such as: 
 
• Finding all nodes within one connected component 
• Copying Collection, Cheney's algorithm 
• Finding the shortest path between two nodes u and 

v 
• Testing a graph for bipartiteness 
• (Reverse) Cuthill-McKee mesh numbering 
• Ford-Fulkerson method for computing the 

maximum flow in a flow network 
• Serialization and Deserialization of a binary tree 

vs. Serialization in sorted order, allows the tree to 
be re-constructed in an efficient way.  
 
In current work, the choice of BFS algorithm did 

not come because of its fast performance only, but 
because of the simplicity provided to serve various 
applications (Süß and Leopold, 2006). The 
contributions of this study could be listed as below: 
  
• Presents three tunable and scalable forms of BFS 

and employs them to serve DNA various related 
search processing 

• Employs two highly tuned parallel approaches 
(OpenMP and MPI) on a cluster 

• Proves high performance achieved by means of the 
cluster and analyzes the result. 

 
LITERATURE REVIEW 

 
This section reviews recent works of BFS 

parallelization based on current trends of parallel 
algorithms. 

Multithreaded by Madduri et al. (2009) offered a 
faster parallel algorithm for evaluating betweeness 
centrality and performed a detailed analysis for 
performance of the proposed algorithm. They 
implemented the optimized algorithm for the Cary 
XMT and achieved lower synchronization overhead and 
memory cache. Later, Mizell and Maschhoff )2009 (  
improved their work depending on (Madura et al., 
2009) by tuning the algorithm for Cray XMT (an 
improved 64 processors version of (MTA-2)) and 
achieved 350x faster running time on the new cluster 
than an MPI approach on other cluster.  

General Purpose Graphical Processor Unit 
(GPGPU) was adopted to accelerate the graph and data 
processing due to the huge amount of parallelism that 
can be attained by current GPUs. Harish and Narayanan 
(2007) proposed the first implementation to various 
graph algorithms including BFS by employing Nvidia 
GPU and CUDA. Hong et al. (2011a) reduced branch 
divergence produced with a warp-centric programming 

model. Recently, Tran et al. (2015) introduced GpSM, 
which is a GPU massive parallel architecture method 
for sub-graph matching based on filtering-and-joining 
techniques. 

Distributed memory architecture was used in some 
researches to address the graph computing problems 
caused by entity of scalability in graph decomposition 
implementation as well as high synchronization 
overhead in MPI (Beamer et al., 2013). Edmonds et al. 
(2010) ombined lightweight graph metadata 
transactions with active messages and proved that this 
combination can leverage the parallelism of the 
distributed memory graph applications. By improving 
the memory access locality, Cong et al. (2010) were 
able to develop fast PGAS for graph algorithms. 
Checconi et al. (2012) proposed an efficient version of 
BFS on IBM Blue Gene/P and Blue Gene/Q 
architectures. They achieved high performance on large 
graph, due to employing various techniques including 
bitmab storage, efficient graph representations, 1-
dilation mapping, removal of redundant predecessor 
map updates and compression on communication. The 
Blue Gene*P version of the code was written by MPI 
for communication and OpenMP was used for on-node 
parallelism, while the Blue Gene/Q which is written 
entirely in C used Pthreads for on-node threading and 
SPI for commination. Beamer et al. (2013) used 2D 
decomposition approach to an earlier purely BFS 
algorithm in addition to top-down combined with a new 
bottom-up search steps to enhance edges expands. 
Amer et al. (2015) proposed a hybrid and distributed 
BFS algorithm using MPI-only and MPI+threads 
models at scale. In MPI+threads model, communication 
of threads is independent of remote processes during 
the process of synchronization with the local 
computation. The idea behind this type of hybridization 
comes to enhance the memory usage, node-to-node 
synchronization and communication performance for 
what MPI-only model offers by scaling certain 
parameters such as the size of the target system, where 
intranode communication and drawbacks of runtime 
contention in case of multiple threads exist. 

Finally, the shared-memory parallelization 
parallelizes BFS algorithm on multi-core architecture. 
Hong et al. (2011b) proposed a hybrid model for BFS 
that can dynamically indicate the optimum performance 
for each BFS-level iteration in order to utilize the 
performance in both large and small graphs. Yasui et al. 
(2013) applied a column-wise portioning for the 
adjacency list of edges to Beamer et al. (2011) 
algorithm on Non-Uniform Memory Access 
architecture (NUMA) using SandyBridge-EP. The 
authors explained two affinity strategies, (scatter-type 
and compact-type) for the NUMA architecture. The 
scatter-type optimized the distribution of OpenMP 
threads evenly. On the other hand, the compact-type 
binds the OpenMP threads closely in a free thread 
context. This optimization could avoid the overhead 
usage   on   the   remote  RAM  access,  since  the  local  
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Table 1: The general information of sequential method 
Criteria Time (sec)
Average Concurrency 0.68 
Logical Processors 2 
Threads 1 
Transitions 10103
Transitions Per Sec 1266.58
Filtered Transitions 10 
Filtered Transition Time 0.00 
APIs 70789 
APIs Per Sec 8874.57
Total critical path time 7.94144 (100.00%)
No thread active 2.55204 (32.14%)
Serial time 5.3894 (67.86 %)
Wait time 2.55204
Active time 5.3894
Total time 10103
 
threads traverse each adjacency list on local RAM 
(Yasui et al., 2013). 
 

EXPERIMENT SPECIFICATION 
 

Size of the used DNA dataset is about 385 MB and 
contains 90,000 strings including three characters only. 
The experiment is implemented on Khwarizmi cluster 
in the school of Computer Science at USM. 
Performance of the parallelization over the algorithm is 
analyzed using special performance analyzers such as 
Intel VTune Performance, Thread Checker and Thread 
profiler. The code is written in C using Microsoft 
Visual Studio 2008 Professional as platform. 
 
Sequential performance: Since BFS is used in the 
experiment, all nodes should be expanded. Therefore, 
we   expect   a   big amount of memory to handle an 
extensive search space. The following table is obtained 

from the Intel thread profile and shows the general 
information about the sequential performance. 

Intel thread checker is used to obtain information 
in Table 1. Figure 2 depicts the thread profile chart that 
shows the algorithm is running serially (single 
threading) as can be seen by the orange bar with 
execution time of 5.3894 sec. On the other hand, no 
threading activity that is shown by the gray bar, took 
about 2.38254 sec for the whole experiment. 

The waiting time is too large and affects the whole 
performance of the algorithm. Therefore, to overcome 
this drawback, two parallel algorithms are proposed 
based on two approaches of OpenMP and MPI. 
 
Parallelization: As shown above, in sequential 
performance, the total critical path time is large 
(7.94144 sec) and it takes 100% of the total time. In this 
experiment, two parallelizing approaches of OpenMP 
and MPI are employed to achieve better performance 
on a specific architecture. The parallelization 
experiment has been analyzed and compiled on 
Khawarizimi cluster machine in USM. 
 
OpenMP: In shared memory architecture, multiple 
CPUs are sharing the same amount of memory. 
OpenMP API is an example of multi-platform shared 
memory multiprocessing programming where 
multithreading concept is applied to rewrite the 
algorithm in a parallel manner. In OpenMP, 
programmer should think about parallelizing 
computation parts of the program as possible in 
successive steps (Harish and Narayanan, 2007) and then 
the    result   of   each   step   (thread)  will  be  collected 

 

 
 
Fig. 2: Thread profile chart
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Table 2: Analyzed result of Open MP experiment 
Criteria Time (sec)
Total critical path time 12.1019 (90.61%)
No thread active 6.66741e-005
Serial time 0.00137793
Serial blocking 0.896081
Serial impact 0.029866
Under utilize 0 
Under blocking 0 
Under impact 0 
Full utilized 1.03663
Full blocking 9.62859
Full impact 0.246098
Over utilized 0.201813
Over blocking 0 
Over impact 0 
Overhead 0.0613929
 
OpenMP of three threads. The “Over Utilized” bar 
raised by 1.03663 sec and this is an acceptable rising 
because of the concurrency level that matches the 
number of the processors. Figure 5 illustrates the 
comparison between fully utilized, serial optimization, 
no thread activity and over utilization. 
 
Speedup and efficiency: the speedup refers to how fast 
parallel computing is in comparison to the sequential 
computing for the same algorithm (Hennessy and 
Patterson, 2011). Speedup ratio can be measured by Eq. 
(1), where T1 is the sequential execution time and Tp is 
parallel execution time: 
 

ܵ௉ ൌ ்௟
்ು

                  (1) 
 

For the whole execution time, on Khwarizmi 
cluster with four threads the following results are 
achieved: 
 

ܵ௉ ൌ  
0.07
0.04 ൌ 1.75 

 
For the whole execution time, on a PC with Intel 

Core2Due 2.20 GHz machine, running windows on it 
with 5 threads the following results are achieved: 
 

ܵ௉ ൌ  
7.385
7.163 ൌ 1.0309 

 
According to the achieved results, the speedup 

ratio on Khwarizmi cluster is greater than on regular PC 
because of the number of the processors on the cluster. 
The execution time of the parallel or serial may vary 
according to state of the machine of the experiment 
(i.e., how much of the process is already done on the 
machine). 

Efficiency can be defined as how well processors 
are utilized in the parallel execution of the algorithm 
compared to the wasted time in communication and 
synchronization between the processors. Efficiency can 
be calculated by Eq. (2), where Sp is the speedup ratio 
and P is number of the processors: 

௉ܧ ൌ ௌು
௉

                  (2) 
 

In Khwarizmi cluster the efficiency of using the 
processors for 4 threads only: 
 

1.75
4 ൌ 0.43 

 
Efficiency by using PC with five or with four 

threads are: 
 

ଵ.଴ଷ଴ଽ
ହ

ൌ 0.206 And ଵ.଴ଷ଴ଽ
ସ

ൌ 0.257 
 

Efficiency value is typically between zero and one. 
Since we have achieved acceptable speedup on the 
cluster experiment, the efficiency will be better than the 
PC experiment. Overall, efficiency of the threads and 
speedup need to be improved in order for processors to 
be more utilized. 
 

MPI EXPERIMENT 
 

MPI stands for Message Passing Interface, which is 
a standard library for message passing interfaces. MPI 
is a specification not an implementation. The purpose 
of MPI is to develop a widely used standard for writing 
message passing programs and achieving practical, 
portable, efficient and flexible standard for message 
passing. It can be implemented in C, C++ and 
FORTRAN languages. MPI is consisted of functions, 
subroutines and methods and they have a different 
syntax from one language to another one. 

In parallel programming, the problem will be 
divided to sub-problems or processes and then passed to 
the processors. The responsibility of MPI is to establish 
communication between processes. Therefore, it is used 
for distributed memory not for shared memory. 

There are different versions of MPI such as MPI 
1.0, MPI 1.1, MPI 1.2, MPI 2.0, MPI 1.3, MPI 2.1 and 
MPI 2.2 each of which has different facilities and 
conveniences.  

MPI is suitable for networks of workstations even 
heterogeneous ones, shared memory implementations, 
such as multi core processors and hybrid structures too. 
 
Types of communications in MPI: There are two 
types of communication in MPI. First, is point-to-point 
communication and second is collective 
communication. In this experiment, point-to-point is 
used for parallelizing the BFS algorithm. Before 
starting to explain point-to-point communication, we 
have to explain four routines that are common in almost 
every program in MPI. The first one is MPI_Init (int 
argc, char **argv). This routine is the first routine that 
must be called in any MPI interface and it must be 
called    only    once.    Initialization   routine   has   two  
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Fig. 6: Flowchart of MPI experiment 
 
parameters; one is argc, which is a pointer to number of 
arguments and the other one is argv, which is a pointer 
to the arguments vector. The second routine is 
MPI_Finalize (). This routine is responsible for 
terminating the MPI execution environment. This 
routine cleans up all MPI state. Once this routine is 
called, no MPI routine (even MPI_INIT) may be called. 
The user must ensure that all pending communications 
involving a process are completed before the process 
calls MPI_Finalize.  

The third routine is MPI_Comm_size (MPI_Comm 
comm, int *size). This routine has two parameters; the 
first one indicates the type of communicator that the 
processes employ and the second one indicates the 
number of processes involved in that specific 
communicator. The last common routine is 
MPI_Comm_rank (MPI_Comm comm, int* rank). This 
routine has two parameters too; the first one is exactly 
like MPI_Comm_size but the second indicates the rank 
of the process in the communicator. 

Another two routines that will be used in the 
experiment for BFS are MPI_Send (void *buffer, int 
count, MPI_Data type data type, int dest, int tag, 
MPI_Comm *comm) and MPI_Recv (void *buffer, int 
count,  MPI_Data   type   datatype,  int  source,  int  tag,  

Table 3: Analyzed result of OpenMP experiment 
T1(sec) Tp(sec) Sp P Ep
0.07 0.043 1.75 4 0.43
0.07 0.008 8.75 24 0.36
0.07 0.007 10 32 0.31
0.07 0.009 7.77 40 0.19
 
Table 4: Speedup and efficiency comparison 
Type of Parallel 
method Speed up Efficiency 

Number 
of chars 

OpenMP (4 threads) 1.75 0.43 270000
MPI (4 proc.) 1.75 0.43 270000
MPI (24 proc.) 8.75 0.36 270000
MPI (32 proc.) 10 0.31 270000
MPI (40 proc.) 7.77 0.19 270000
 
MPI_Comm *comm, MPI_Status *status). As 
mentioned MPI_Send has six parameters and is 
responsible of sending data point to point from one 
process to another one. 
 
MPI Experiment: In this section, we will clarify the 
MPI experiment to the BFS sequential code. 
 
Parallelization scenario: In this scenario, data read 
from the dataset file by the root process. Afterwards, 
this process will do the computation to divide the read 
data, which consists of characters of the same chunks in 
size and send them to different processes. The root 
process read the data and stored it in an array, after 
sending it to other processes in point to point manner. 
Then, the process of changing the array dimension of 
the strings began to change the one-dimensional array 
of the data to an array of 3-character strings and then it 
converted to a two-dimensional array to be ready for 
BFS algorithm. Next, each process started to do BFS 
for each array and compared each one with the 
requested string. In each event of searching through the 
dataset, the processes recorded the pass of events and 
then these events (passes) were combined to represent 
the final result. Figure 6 shows the flowchart of the 
MPI scenario. 
 
Speedup and efficiency: The results of running the 
algorithm on the cluster with different number of 
processes and the execution time of the last process, 
which finished its job is summarized in Table 3. 
According to the sequential code, speedup and 
efficiency for MPI calculated by Eq. (1) and (2) 
respectively. 

It is clear that the number of processes has affected 
the efficiency and the speedup ratio. When the number 
of processes increased, the speedup ratio increased too. 
However, the efficiency decreased in contrast. The best 
speedup achieved with 32 processes when the number 
of processes and processors were identical. When the 
number of processes grew to 40, both speedup and 
efficiency decreased. In conclusion, the best number for 
processes is equal to the number of processors.  

Table 4 summarizes the comparison between the 
two experiments of parallel computing (OpneMP and 



 
 

Res. J. Appl. Sci. Eng. Technol., 12(4): 465-472, 2016 
 

471 

 
 
Fig. 7: CPU utilization report 
 

 
 

Fig. 8: Threads report 
 
MPI) regarding the achieved speedup, efficiency and 
number of characters. 
 

PERFORMANCE ANALYZING TOOLS 
 

Performance analyzing tools can be classified into 
two categories: Profiling and tracing tools. The 
profiling tools depend on collecting timing summaries 
while tracing collect a sequence of time-stamped 
events. Profiling tools produce small amount of data 
that can be scaled well, on the other hand the tracing 
tools cannot be scaled properly (Chung et al., 2006). 

In this study, two different tools from different 
vendors and developers were used to analyze the 
parallel performance of the algorithm. Intel Vtune 
thread checker and Microsoft Visual studio 2010 
performance analyzer are the used tools. These tools are 
employed to produce CPU utilization, threads and 

Cores reports. Figure 7 and 8 show concurrency 
profiling reports for analyzing the performance of the 
BFS algorithm by using Microsoft Visual studio 2010 
performance analyzer. 

 
CONCLUSION 

 
This paper studied parallelizing of BFS algorithm 

in two different approaches of OpenMP and MPI 
experimentally. Both parallel approaches may produce 
equal speedup ratio if it is executed in the same 
conditions (i.e., the number of threads/processes equal 
to the number of the processors). OpenMP was 
implemented using domain decomposition method and 
tested on Khwarizmi cluster with 8 Intel Xeon 
Processors. MPI was implemented by different number 
of processes on the same cluster. However, the 
achieved results (speedup and efficiency) for both 
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OpenMP  and  MPI  were  acceptable  to  some  extent, 
but still need some enhancement to get better 
performance. 
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