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Abstract: The study presents a new approach to building control systems for objects with uncertain parameters in 
the form of single-parameter structurally stable mappings of catastrophe theory to synthesize highly efficient control 
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INTRODUCTION 
 

Control system design is one of the main tasks in 
automation of all branches of industry, including 
machine manufacturing, energy sector, electronics, 
chemical and biological, metallurgical, textile, 
transportation, robotics, aviation, space systems, high-
precision military systems, etc. In these systems, the 
uncertainty can be caused by the presence of 
uncontrolled disturbances acting on an object control 
and ignorance of the true values of the parameters of 
control objects and unpredictable change them in time. 
The main goal in modern control system design is, in 
some sense, to provide the best protection against 
uncertainty in the knowledge of the system. The ability 
of a control system to keep stability in the conditions of 
parametrical or nonparametric uncertainty is realized as 
robust stability of system (Polyak and Sherbakov, 
2002). Research of system robust stability consists in 
the indication of restrictions on control system 
parameters change (Polyak and Sherbakov, 2002; 
Dorato and Yedavalli, 1990).  

The many papers research a problem of robust 
stability (Polyak and Sherbakov, 2002; Dorato and 
Yedavalli, 1990; Kuntsevich, 2006; Liao and Yu, 
2008). In these works investigated the robust stability 
of polynomials, matrixes, within the linear principle of 
stability of continuous and discrete control systems, in 
works (Kuntsevich, 2006, Liao and Yu, 2008) are 
solving the problems of absolute robust stability. In the 
practical tasks, connected with development and 
creation of control systems in technology, economy, 
biology and other spheres, in the conditions of essential 
parametrical uncertainty, the increase in potential of 

robust stability is one of the key factors, which 
guaranteeing to a control system protection from entry 
in regime of determined chaos and strange attractors. 
And guarantees applicability of models and reliability 
of the designed control systems work. 

At present it is conventional that, real control 
objects are nonlinear and one of the main properties of 
nonlinear dynamic systems is functioning in the mode 
of the determined chaotic traffic (Andrievsky and 
Fradkov, 1999; Nicols and Prigogine, 1989; Loskutov 
and Mikhaylov, 2007). In linear dynamic systems it is 
appear in the form of control system’s zero steady state 
stability loss (Beisеnbi, 2011b; Beisеnbi and Erzhanov, 
2002). 

In this regard, in the conditions of uncertainty, 
there was a need for development of models and 
methods of design of control system with rather wide 
area of robust stability, which called control systems 
with the increased potential of robust stability 
(Beisеnbi, 2011b; Beisеnbi and Erzhanov, 2002). The 
concept of creation of a control system with the 
increased potential of robust stability is based on results 
of the catastrophes theory (Gilmore, 1984; Poston and 
Stewart, 2001), where the main structural-steady maps 
are received. 

This study is devoted to design of control systems 
with increased potential of robust stability by 
dynamical objects with uncertain parameters in a class 
of the single-parameter structurally steady maps 
(Beisеnbi, 1998, 2011a, 2011b; Beisеnbi and Erzhanov, 
2002; Ashimov and Beisenbi, 2000). 

Researches of the recent years showed, that the 
method of Lyapunov functions can be (Barbashin, 
1967; Krasovsky, 1959; Malkin, 1966) successfully 
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used to analyse the robust stability of linear and 
nonlinear control systems. Usage of Lyapunov's 
functions method for the solution of a set of practical 
linear or nonlinear tasks is constrained by the lack of a 
general method for selecting or constructing Lyapunov 
functions and difficulties with their algorithmic 
representation (Barbashin, 1967; Malkin, 1966). An 
inappropriate choice of a Lyapunov function or the 
inability to construct one does not indicate instability of 
the system, only that a proper Lyapunov function has 
not been found. 

The method of design of Lyapunov vector function 
(Voronov and Matrosov, 1987), on the basis of 
geometrical interpretation of asymptotic stability 
theorem and concepts of stability is offered. Therefore, 
the origin corresponds to a predetermined condition of 
the system, the unperturbed state and the equations of 
the state are formed concerning perturbations, i.e., in 
deviations of the perturbed motion from unperturbed 
(Malkin, 1966). Consequently, the state equations 
express the speed of change of a perturbations vector 
(deviations) and for steady system is directed toward 
the origin. And the gradient vector from required 
Lyapunov function, for stable system, will be always 
directed to the opposite side. It allows to present 
Lyapunov function in the form of a potential surface 
(Gilmore, 1984). Research of robust stability of the 
control system with uncertain parameters are based on 
ideas of a Lyapunov direct method. 

 
MATHEMATICAL MODEL FORMULATION 

 
Area of system stability: System can be written in 
expanded form: 
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where, nRtx )( - control object state vector, 

,,...,1,,...,1, njnia ij 
 

,,...,1,,...,1, njnibij  - the 

elements of the control object.  
The control law is described by a vector function in 

the form of single-parameter structurally steady maps 
(Gilmore, 1984; Poston and Stewart, 2001): 

 

iiii xkxu  3  ni ,...,1                              (2) 

 
The steady state ,01 isx  ni ,...,1 of system (1) is 

defined by the solution of the equations: 
 



















0)(...

0...)(

0...)(

3
2211

2222222
3
222121

1212111111
3
111

nsnnnnnnnnsnsn

nsnsss

nsnsss

xkbaxbxaxa

xaxkbaxbxa

xaxaxkbaxb



          (3) 

From (3) we receive a steady state of system: 
 

,01 isx  ni ,...,1                 (4) 

 
Other stationary states will be defined by solutions 

of the equation: 
 

njni

ixkbaxb jsiiiiiisii
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               (5) 

 
Great number of solutions of the Eq. (5) can be 

written as: 
 

i
ii

ii
is k

b

a
x 3,2 , 0jsx , ji  , ni ,...,1 ;  

nj ,...,1                                                              (6) 
 

Here the system of the nonlinear algebraic Eq. (3) 
has the trivial decision (4) and uncommon decisions (6) 

when 0 i
ii

ii k
b

a , ni ,...,1 . At negative value 

0 i
ii

ii k
b

a , ni ,...,1  the Eq. (5) has imaginary 

decisions that can't correspond to any physically 
possible situation (Nicols and Prigogine, 1989). These 

decisions are joined with (4) when 0 i
ii

ii k
b

a , 

ni ,...,1  and branch off from it when 0 i
ii

ii k
b

a , 

ni ,...,1 , i.e., in a point 0 i
ii

ii k
b

a , ni ,...,1  

bifurcation is happened. It is provided that the state (4) 

is globally asymptotically steady for all 0 i
ii

ii k
b

a , 

ni ,...,1  and unstable at 0 i
ii

ii k
b

a , ni ,...,1  states 

(6) also will be asymptotically steady, in other words, 
branches appears as a result of bifurcation while the 
state (4) loses stability and these branches are steady. 

Verification of these statements is made on the 
basis of Lyapunov vector functions ideas (Voronov and 
Matrosov, 1987). 

If Lyapunov function V(x) is set in the form of 
vector function V(V1(x), …., Vn(x)), then components of 
speed vector will be equal (Beisеnbi and Uskenbayeva, 
2014a;  Beisenbi  and  Yermekbayeva,  2013a; Beisenbi 
et al., 2015): 
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In the Eq. (7), substituting values of components of 

a vector of speed, we will get: 
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Full derivative on time from Lyapunov vector 

function V (x) taking into account the equation of a 
state (1), we can define as product of the gradient from 
Lyapunov vector function on a vector of speed 
(Beisenbi and Uskenbayeva, 2014b; Beisenbi and 
Yermekbayeva, 2013a, 2013b; Beisenbi et al., 2015), 
i.e.: 
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ni ,...,1                  (9) 

 
From here (10) follows that full derivate on time 

from Lyapunov function will be negative function.  
From (9) for components of Lyapunov vector 

function we will get: 
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We can present Lyapunov function in a scalar form 
in the view: 
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Function (10) is Lyapunov function and conditions 

of positive definiteness are defined by inequalities: 
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Thus, the area of system stability (1) for the 
established state (4) is defined by system of inequalities 
(11). 

Research of stationary states (6) stability: The 
equations of a state (3) in deviations in relative steady 
state  (7) can be written as (Beisenbi et al., 2015; 
Beisеnbi, 2011a, 2011b; Beisеnbi and Erzhanov, 2002): 
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The full derivative from Lyapunov function V (x) 
taking into account the state equations in deviations 
(12) relative to the stationary state    (6) is defined as: 
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Function (13) is negative function. We can find 
components of the gradient vector of Lyapunov 
function: 
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From here we receive Lyapunov function in a 

scalar form: 
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Function (14) on the beginning of coordinates 
addresses in zero, is continuous differentiable function 
and has the form of variables with odd degrees. 
Therefore on the basis of the Morse lemma (Gilmore, 
1984; Poston and Stewart, 2001) function (14) around 
the steady state  (6) can be represented as a quadratic 
form: 
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From here positive definiteness of Lyapunov 

function will be defined by an inequality: 
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niiiiiiii aaakba  ...)( 21
 ;,...,1 ni             (15) 

 
Let investigate stability of a steady state  (6): The 
equation of a state (3) in deviations in relative steady 
state  (6) can be written as (Beisenbi et al., 2015; 
Beisеnbi, 2011a, 2011b; Beisеnbi and Erzhanov, 2002): 
 

niniiiiiii
ii

iiiii
ii

iiiiiii

xaxkbax
b

kba
b

xbxaxaxax








...)(23

...

2

3
332211

 
;,...,1 ni                                                              (16) 

 
Omitting formal actions for research of stability of 

stationary states of   (6), similar for a steady state xS 
(6) we will receive Lyapunov function in a scalar form: 
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On the Morse lemma we will lead (Gilmore, 1984; 

Poston and Stewart, 2001) Lyapunov function, by 
means of stability matrix, to a quadratic form (Beisenbi 
et al., 2015): 
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Stability conditions of a steady state  (6) it will 

be expressed by system of inequalities: 
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Thus, the control system constructed in a class of 

one-parametrical structural steady maps will be steady 
in indefinitely wide limits of change of uncertain 
parameters of the control object. The steady state   
(4) exists and is stable at change of uncertain 
parameters of object in area (11) and stationary states   
and  (6) appear at loss of stability of a state   (4) 
and they are not simultaneously exist. Stationary states 

  and  (6) are stable when performing system of 
inequalities (15) and (17). 

Thus, the control system constructed in a class of 
one-parametric structural stable maps will be stable in 
indefinitely wide limits of change of uncertain 
parameters of the control object. The steady state xs

1 (4) 
exists and is stable at change of uncertain parameters of 
object in area (11). And stationary states xs

2 and xs
3(6) 

appear at loss of stability of a state xs
1 (4) and they are 

not simultaneously exist. Stationary states xs
2 and xs

3(6) 
are stable when performing system of inequalities (15) 
and (17). 

CASE STUDY 
 
Description of dynamics of the aircraft angular 
motion: We investigate a task of traffic control of the 
aircraft by the pitch. Let consider that aircraft have 
constants, aprioristic-uncertain parameters, which 
values are located in the set area. We will notice that 
the similar situation can take place when aircraft flying 
on various modes, when height, the speed and loading 
of aircraft changes slowly in comparison with rate of 
angular motion. For the description of dynamics of the 
aircraft angular motion we use the following linearized 
equations (Andrievsky and Fradkov, 1999; Bukov, 
1987): 
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Their values depend on the factors stated above 

and can change over a wide range depending on height 
and the speed of flight. Exact values of parameters a 
priori not defined. Also we assume, that dynamics of 
executive body it is possible to neglect and consider 
that control is the deviation of rudder )(t . 
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Then the equation of the aircraft angular motion 

will assume the form: 
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As the control law we will choose: 
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3
3 xkxu                (19) 

 
Thus, the system (18) with the control law (19) will 

assume the form: 
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From the Eq. (20) we define the established 
conditions: 
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The system (21) has the following stationary states: 
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And other stationary conditions of system (21) are 

defined by the solution of the equations: 
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This equation has nonzero solutions in the form: 
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We investigate stability of system (20) in stationary 

points by the method of Lyapunov functions. Lyapunov 
function V (x) is set in the form of a vector function 
V(V1(x), …., Vn(x)), then from geometrical 
interpretation of the theorem of asymptotic stability we 
will get (Barbashin, 1967; Malkin, 1966): 
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The full derivative on the time from Lyapunov 

vector function V(x) taking into account the equation of 
a state (20), is represented as product of the gradient 
vector from Lyapunov vector function on a vector of 
speed i.e.: 
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   (24) 

From the expressions (24) follows, that the full 
derivative on time from Lyapunov functions is always 
negative function. 

On the basis of the Morse lemma we will present 
Lyapunov function in a scalar form in the following 
view: 
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The conditions of (20) system stability in a steady 

state (22), we obtain, taking into account the negative 
definiteness of the functions (24) in the form of a 
system of inequalities: 
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Research of stationary states (23) stability: The 
equations of system state (20) with respect to deviations 
of the stationary state (23) is written: 
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Full-time derivative of the Lyapunov function V 
(x) with the equation of state (26) with respect to the 
stationary state (23) is defined as: 
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From the expressions (27) follows, that the full 
derivative on time from Lyapunov function will be a 
negative function. We find the gradient vector 
components from Lyapunov vector function: 
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On a gradient we will construct Lyapunov's function: 
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By the Morse lemma from the catastrophe theory 
we can replace Lyapunov function (28) with a quadratic 
form: 
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The condition of positive definiteness of Lyapunov 

function (28) or (29) we will get in a view: 
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Hence a necessary and sufficient condition for the 

stability of the stationary state (23) of (20) system is 
performance of an inequality (30).  
 

SIMULATION RESULTS 
 

Control law is designed for linearized model (18) 
and, we find sufficient conditions for the stability of the 
stationary state and positive definiteness of Lyapunov 
function. 

For the equations of dynamics of the aircraft 
angular motion: 
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The matrices of coefficients are defined as follows: 
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According to the conditions of positive definiteness 

of Lyapunov function (29) we get gain of the system.  
From (30) we define ,5.03 k ,2)85.0( 2 a

)5.9()16.0( 35  aa . 

Figure 1 show the results of the simulation system 
with the parameters from Table 1. 

Figure 2 show the results of the simulation system 
with the parameters from Table 2. 
 
Table 1: System parameters the varying gain parameter k3. 
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 3k  

3.9 -0.85 -0.16 -1.2 9.5 1
3.9 -0.85 -0.16 -1.2 9.5 10
 
Table 2: System parameters the gain parameter k3 fixed 
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 3k  

3.9 -0.85 -0.32 -1.2 9.5 1
3.9 -0.85 -2.16 -1.2 9.5 1
3.9 -0.85 -0.16 -1.2 19.5 1
3.9 -0.85 -0.16 -1.2 29.5 1

 

  
k3 = 1                                                                                                k3 = 10 

 
Fig. 1: Coefficient k3 in the governing limits 
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                                 Parameter k3 fixed, αmz
δ
β = -0.32                                 Parameter k3 fixed, αmz

δ
β = -2.16 

 

   
 

                                 Parameter k3 fixed, αy
δ
β = 19.5 Parameter k3 fixed, αmz

δ
β = 29.5 

 
Fig. 2: System with fixed parameters, k3 = 10 
 

CONCLUSION 
 

Thus, the control system of aircraft motion with the 
increased potential of robust stability constructed in a 
class of single-parameter structurally steady maps 
provides stability for changes of uncertain parameters 
of the system. 

It appears, the steady state (22) is globally 
asymptotically steady when performing conditions (25) 
and unstable at violation of conditions (25) and stability 
of a steady state (23) requires performance of 
conditions (30).  

When 0
53

41
3 





aa

aa
k  there is a branching and 

there are new steady branches. 
In other words, branches (23) appear as a result of 

bifurcation while the steady state (22) loses stability 
and these branches are steady. Stationary states (22) 

and (23) at the same time don't exist. It allows to 
increase the potential of robust stability of system in the 
conditions of uncertainty of parameters. 
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