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Abstract: The aim of this study to provide possible criteria to consider the stability of Voltage Switched Charge-
Pump Pump Phase Locked Loop (VSCP-PLL). Stability of the conventional CP-PLL architecture is often
determined by Gardner's stability plane, when PLL system is locked and near the fixed point. In the latest work it
has been shown that, this stability criterion is not conservative enough when considering initial condition far from
the fixed point. However, Gardner's criterion is based on the PLL operating with a Current Switched Charge Pump
(CSCP), which provides an ideal pump current during switching states. Nevertheless, a Voltage Switched Charge
Pump (VSCP) is often used in many commercially available CP-PLL circuits (like 4046 family). The VSCP offers
design simplicity but generates a peculiar effect related to the non-constant current flowing through the electrical
load of Loop Filter (LF) w. 1. t. operating point (average input voltage) of the Voltage Controlled Oscillator (VCO).
This non-linearity may complicate the PLL characteristics making it difficult to analyze the stability of the system,
since there is no any particular criterion developed to study the stability of a VSCP-PLL. In this study, a procedure
is proposed for PLL designers to apply similar Gardner's stability criterion developed for the CSCPPLL to a VSCP-
PLL. The stability simulations are performed using an efficient discrete time Event-Driven (ED) model. The
stability condition is observed for the initial operating conditions far from the fixed point by simulating the transient
domain of the VSCP-PLL in the Gardner’s plane considering symmetrical and asymmetrical pump current.
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INTRODUCTION R '

The Charge Pump Phase Locked Loop (CP-PLL)
(Fig. 1) is widely used synchronizing technique for
various application found in wireless communication

Y . o
and coherent system (Best, 1984; Banerjee, 2006; | v .-t,'\,.(:“(‘t) — | ven ()
Gardner, 1979) The mixed-signal nature of a CP-PLL is L High frequency [0 |
constraint to study and analyze the system behavior \ signal . J
using general theory of control system, since it ~——— Low frequency signals

constitutes analog and digital components (Antao ef al.,
1996). Different modeling methods are used to
characterize the non-linear transient behavior of the

PLLs. Most often CP-PLL designers verify the system on the phase error (Pacmel, 1994). Based on the

parameters assuming the linear model of the system characteristic curve of the PFD given in Best (1984)
when (,:P'P_LL 18 locked (Gardner? 1980). Usmg. this and Gardner (1980), it can be observed that the PFD is
carly linearization approach, non-linear and non-ideal ot aple to differentiate between phase errors smaller
effects cannot be included in the linear model.  anq greater than 27 Behavioral level models and Spice
Furthermore, the influence of the non-linear and the  gimulation at transistor level are often required to
non-ideal effect in the steady state of system is  simulate transient domain of CP-PLL to finalize the
significant. The CP-PLL is highly non-linear during design process. These techniques are time and
acquisition process, since the Phase and Frequency computer resources consuming (Demir et al., 1994;
Detector (PFD) is a edge-triggering device and reacts Hedayat et al., 1997). To overcome these challenges, a

Fig. 1: The basic blocks of the CP-PLL for frequency
synthesis
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more rigorous and powerful modeling tool is necessary
to characterize the on-locking and off-locking behavior
of the mixed-signal PLLs. For these reasons the Event-
Driven (ED) approach applied in Hedayat et al. (1997,
1999) and Wiegand et al. (2011) are more efficient and
powerful in analysis than linear model and achieves
speed-factor of Nx1000 comparing transistor level
simulations (Ali et al., 2015). Since this ED model is
based on simplification of the phase equations of the
reference and feedback signal, It provides a powerful
analysis tool to explore the non-linear behavior of the
CP-PLL (Hedayat et al., 1997). When the CP-PLL is
locked, its local dynamics can be further divided into
two small scale ranges, the first part where the system
is still ringing while having synchronized with input
frequency having phase error variations |@e, < 2m.
Secondly, when the system is completely settled (near
the steady state) with ideally constant or zero phase
error (i.e., phase locking) (Gardner, 1980; Ali et al.,
2013). Steady-state stability is a prime object in the
PLL design process. By locating the roots of
characteristics equations in the s-plane is often used to
predict the stability of system (Mansukhani, 2000),
whereas the CP-PLL is a sampled system which may go
unstable with a small change in the internal state. Thus,
it is important to consider the sampling effect of the
non-linear pulse width modulated system in stability
analysis. For this reason, Gardner’s approximated
criterion presented in Gardner (1980) is traditionally
considered as the most useful stability limit established
for 2™ order current switched charge pump PLL
(CSCP) but it not enough conservative criteria when
system’s initial conditions are far from fixed-point as
reported later in Daniels and Farrell (2008) and
Hangmann et al. ( 2014). Furthermore, Hangmann
et al. (2014) shows that even the rule of thumb has
some problems to correctly predict the stability of a
CSCP-PLL. Since the design of an ideal CSCP which
delivers ideally constant pump current during one
switching period is highly challenging. In many
commercially available PLL chips a VSCP delivering a
constant voltage is preferred (Fairchild, 1984; Cleon
et al., 2000 and Morgan, 2003). The advantages of
utilizing a VSCP are the cheaper realization costs and
the design simplicity. However, a Voltage Switched
Charge Pump (VSCP) introduces a highly peculiar
effect (Margaris and Petridis, 1985), since the current
during one sampling period is not constant due to
electrical load of LF circuit. This effect results in a
varying (current) gain of the control systems and thus
the tracking ability of the VSCP-PLL is significantly
affected (Ali et al, (2015). To the best of our
knowledge, there is no any particular criterion that
exists for stability consideration of this typical
architecture of the CP-PLL. Since it is not obvious to
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derive analytically the stability condition, only
simulations are used to characterize the stability of the
VSCP-PLL. Thus, it might be possible that the stability
of the VSCP-PLL have similar problems as addressed
in Hangmann et al. (2014) for a CSCP-PLL. The event
switched macro-model of the VSCP-PLL was used to
explore the stability limit of this system by setting
initial conditions "near the fixed point" and Gardner’s
boundary was shown enough conservative (Ali et al.,
2013). However, in practice PLL operating initial
condition are not always near the fixed point.
Therefore, in this study Gardner’s stability limit is
investigated in all condition of a VSCP-PLL, using
symmetrical and asymmetrical pump currents and
setting initial conditions far from fixed point.

MATERIALS AND METHODS

To investigate the PLL stability analytically, it is
necessary to linearize the switching nature of the CP-
PLL. Considering the linear transfer characteristics of
the VCO and small variation in the phase error signal,
closed loop transfer function based on the reference and
divider signal can be derived by assuming linear
characteristics of CP-PFD block. The obtained linear
model of the PLL can be approximated as a Quasi-Time
Continuous (QTC) model, predicts the macroscopic
average behavior of the system (Gardner, 1980). The
linearized model of the CP-PLL is represented as:

Kv‘(uK(pHLF (S)
Ns+K, ,K,Hp(s)

(M

H(s)=

where H(s) is the transfer function of the LF, K, , is
the linear gain of the VCO, K, = I/2m represents the
current gain of the CP-PFD and 1/N represents the
frequency divider ratio. This is the linear model based
on QTC-approximation. However, due to switching
nature of the PFD circuit, the CP-PLL is a highly
stochastic system. Therefore, when CP-PLL is locked,
the system follows very small phase and frequency
variation resulting in very small phase error between
the reference and the divider signal and considering the
sampling effect of the loop, the stability condition for
the second order CSCP-PLL was derived in Gardner
(1980) which is given by:

@

where, x =7, and K =Kz is called normalized

loop gain of the system and o

o 18 the angular

reference frequency (in Eq. (2)). Similar boundaries had
been  obtained by post-linearized autonomous
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Fig. 2: Gardner’s stability boundary and empirical boundary
expressions considering the locked state of the system

in Paemel (1994). Another method is to use the
Empirical condition given in Encinas (1993) is:

€)

If the estimated loop bandwidth (w,) of the CP-
PLL is small comparing the frequency of the reference
signal or more precisely the ratio a = 10. This condition
regulates the stable operation of the system according to
its sampling ratio w.¢fw, (Encinas, 1993). Typically,
utilizing the Gardner’s boundary (2) and using the
empirical stability (3) in (2) is simulated as shown in
Fig. 2. Tt can be stated that, the Empirical stability
boundary is nearly the same as the Gardner’s discrete-
time approximation.

The linear model related to the voltage witched
CP-PLL is presented and compared in the next section.

Linear model of the VSCP-PLL: The VSCP offers
simplified design, but leads to a highly non-linear
phenomenon of non-constant pump current iy(¢). The
corresponding pump current during each PFD transition
cycle is then represented as:

0, () =gy (1)

Ry+R

i) = “4)

The relation (4) divulge an asymmetrical iy(?)
except if operated at the middle range of charge-pump
supply. This typical topology of the VSCP produces an
unbalanced current ;? = ig“ throughout the acquisition
and in the locking region. Figure 3 it can be noted that,
the slope «** of the v, is not constant with VSCP due

10!
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10°
Wref T1

to the decaying current i,(f), on contrary ¢ is constant
in the CSCP topology:

—At

v 00T g e B (5)
G 1
—At
B =i()(1—e 7 ) and B =i (1) (6)

where, At=t,,—t,and 7=(R,+R)C,. The non-
linear terms appearing in (5) and (6) makes the analysis

very complicated and a more serious issue in frequency
tracking applications. Since the VSCP-PLL is rising

Vi
faster than CSCP-PLL when v, < % due to higher

current and slowdowns the system when 1>V137D.
2

ctr

Due to this nonlinearity, it can be seen that, VCO
falling edge occurs after a little delay (z,) and Aoy
appears when voltage switch goes off (when comparing
both models with CSCP and VSCP) as shown in Fig.
3b. However, if initial conditions are close to the target

value then at /o0 both system behaves nearly the same.
2

Considering only the symmetrical current condition (i.e.
when the PLL is operating at middle range of the
supply voltage) a linear model can be derived. The
pole-zero loop filter has a transfer function:

F (s) 1+ 57, (7)

- 1+s(zy +77)

where, 1) = Ry C; and t; = R, C;. The root of the LF
transfer function increases the complexity in the phase
transfer function of the PLL. From the VSCP-PLL
model, the phase transfer function H"(s) is derived as:



Res. J. Appl. Sci. Eng. Technol., 13(3): 257-264, 2016

U-:r:]{" |

AT e El'.::
Vel o Taeroo Augy

vanlig) g |
HE— s 3]

o H =—V5(P-PLL

(b)

Fig. 3: (a): The VSCP-LF configuration; (b): The non-linear
phenomenon of the VSCP comparing with the CSCP

KV’[UK(YSF(S)

H(s)= Paiv (9) _ N (®)

q)ref (S) KV (UK(;/SF(S)

s =

N
: : Vs Vsat+ — Vsat—
where gain of the PFD is K° = and V,,
V4

and V,

sat-

belongs to supply levels Vpp and Vg
respectively (Best, 1984):

Vs

a,
C()VSS 2§VS _ n + wst
" Kv,a) VDD "
HVS (S) = 2 zé/vq \iN vs2 (9)
ST+20 T w, s+,

The damping factor ¢ and natural angular

frequency @,® of the voltage switched system is
represented as:

a);ljs 1 _ Kv,o)l

o = 10
% =\zene, 10
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In the current switched architecture, @, and ¢ are

the unique due to mirrored up and down pump current
sources (Gardner, 1980) but this is generally not the

case when considering a VSCP-PLL (Margaris and
Petridis, 1985). If the £ is compared with that derived

from CSCP-PLL, then it can be seen that, first part in
(9) is equal to ¢ of the CSCP-PLL with a residual term.

It can be noticed that when R =0, {=0 while
Vs a)IYSN
=
Kv,a)VDD
in (9) is called loop gain (Best, 1984). In the next

section, approximated pump current conditions are
presented.

KV,(uVDD

. The parameters appearing

Pump current conditions: Since the assumptions
mentioned in the previous section (operating in the
middle range of the supply voltage and the high gain
loop) are rarely fulfilled, it is necessary to investigate
the stability of the VSCP-PLL in a general approach.
To do so, assuming different current situations we have
observed five case studies with one symmetrical and
four in asymmetrical conditions. The pump current is
decreasing when the voltage across the capacitor is
increasing. When the target voltage is higher than
Vpp/2 then the up-current is smaller than the down
current and one can call that asymmetry.

Symmetrical condition: The VSCP-PLL behaves
similar to the CSCP-PLL, since the current flowing in
iup — idn

b -

the up and down half-cycles is equal, i.e., i,

If the target control voltage o

|4
ctrl(tar) # % the pump

current in one half cycle is greater than other half cycle
and two asymmetrical situations arises:

Vbb cup  .dn
Uctrl(tar) < T then lP > lP

S Vo0 then i < 4"
> P

Uctrl(tar) p

To use Gardner’s boundary for the evaluation of
the VSCPPLL stability, Ali et al. (2013) proposed to
use the maximum value of the current when considering
the PLL to be near the steady state. However in this
study we are considering both maximum and minimum
pump currents in each asymmetrical condition:
up .dn

cup -dn i
P, )and I =min(i,", i

) (11

I, = max(

Event driven modeling technique: As explained
earlier, it is not obvious to predict the stable operation
of the VSCP-PLL exactly with an analytic expression.
Thus, a simulation model is used to characterize the
stability of the non-linear system. Since the PLL
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Fig. 4: Comparison of the ED and linear model of VSCP-PLL
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s M2 T Gerroes pump ge (1)

exhibits a triggered behavior it is natural to use an
Event-Driven model. The concept of ED technique is to
calculate the commutation instants when incoming
signals completes cycle using the phase equations as
explained in Hedayat et al. (1997, 1999).

Considering the edge triggering nature of the
system and integrating frequencies of the reference
(orer) and divider (wg;,) signals between an interval Az,
the phase of the reference (¢, and the divider (gg)
signals are calculated as:

ref

Ins1

Dret (trgifl)zgoref (tn)+ I a)ref(t,) dt'=2m (12)
t’l
T
Paiv (’sifvl ) = aiv (t2) + J. Ogiy (Ve (1) dt' =27
" (13)
where t;ifl and tf,livl represents the time of the

triggering edge occurring from the reference and
divider signals. The effective triggering edge ¢,+, which
controls the system dynamics to switch the PFD into
new state then corresponds to:

: fdi

tn+1 = rmn(t;il’tn}:l (14)
Knowing the next triggering event, all signals at
this time instant can be calculated as explained in
Hedayat ef al. (1997). As an example, the control
voltage (using the LF topology of Fig. 3) is determined

in the following way

+
Uetrl (th ) = Ut (tn )+

(Up ()~ Uy

() 1=

(15)
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belongs t0 {Vpp, 0.4(t), Vssf during PFD states
{8,158, S, - The vy (t:lr ) is the voltage step after the

voltage pump is switched on and off (as shown in
Fig. 3).

A comparison of the ED and linear model is shown
in Fig. 4. Both models are locked and it can be seen that
Event-Driven simulation is representing the switching
behavior of the PLL and voltage jumps over the load of
LF are obvious. However, the analytic model is
predicting the approximated average behavior of the
system. Furthermore, Fig. 4 (down part) demonstrates
that, when the system is locked, initially the phase error
is still ringing (until 200us transient behavior), this part
is referred as "far from fixed point". After this
condition, the phase error of the system is nearly
constant, since the system is settling to the target value.
This part of the system is called "near to fixed point".

RESULTS AND DISCUSSION

To evaluate the validity of Gardner’s stability
boundary when applied to the VS-CPPLL a simulative
stability characterization is presented in this section.
The procedure of this simulative characterization of the
stability condition is defined as follows. Initially,
parameters of system are chosen in such a way that the
transient behavior of the system is stable within the
Gardner’s in stability plane. Then a set of simulations
(taking initial conditions far from fixed point) are
performed decreasing successively the parameter x =
;T by lowering the reference angular frequency ..
To keep the target control voltage v, at a constant
level, the effect of declining w,r is systematically
compensated by modifying proportionally X, , and R,.
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Fig. 6: The stability simulation results when v,;>Vpp/2 with symmetrical current [, = ig"

This modification leads to a quasi horizontal line of
transient simulations crossing of the Gardner’s stability
limit. These transient simulations were performed using
the iterative ED model introduced in the previous
section. Different notations are used for clarity in the
results, where, represents the stable system
converging to the target voltage.  represents the
unstable system with static amplitude of the oscillation
and x represents that the system still converging to a
target voltage with a phase error less than 10-15
radians.

Considering the symmetrical pump current
condition (equal pump currents in the up and down
half-cycles) the simulation results depicted in Fig. 5 can
be obtained. The system remains stable over the
boundary vicinity. By penetrating deeper in the
Gardner’s stable zone, system finally finishes by
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becoming unstable. In the symmetrical condition, it can
be stated that, the Gardner's stability is condition is
enough conservative. Simulating the first asymmetrical
condition v, >Vpp/2 the results of Fig. 6 and 7 can be
observed. Here two different currents with higher and
lower magnitudes are used in (2) to evaluate the
validity of Gardner’s boundary. Utilizing the higher
magnitude of I, = ig"it can be seen that Gardner
boundary is a conservative condition, since unstable
simulations occurs only on the left side of Gardner’s
stability limit. Different to the above simulations,
Gardner’s boundary is not conservative enough when
considering lower value of I, = i,”, since a lot of
unstable simulations lies at the right side of Gardner
stability  limit. When simulating the second
asymmetrical condition v <Vpp/2, for the higher

current I, = i,”, the Gardner’s boundary is more
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Fig. 7: The stability simulation results when v,,;>Vpp/2 with symmetrical current 7, = i;p
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conservative as shown in Fig. 8. However utilizing the
lower value of I, if™  makes some transient
simulations unstable as shown in Fig. 9. These
investigations show that it is sufficient to use Gardner’s
stability boundary when designing a conservative
VSCP-PLL regarding stability when using the
maximum pump current of the system. Since these
investigations are performed using initial conditions far
from the fixed point, it can be assumed that Gardner’s
boundary, as used in this study, is sufficient for all
initial conditions.

CONCLUSION

In this study, the Gardner’s stability plane derived
for the CSCP-PLL was applied to the VSCP-PLL by
assuming pump current conditions (given in section V).
Using the simulative characterization it was shown that,
Gardner’s boundary is still more conservative for initial
conditions far from fixed point when the higher
magnitude of pump current is used. However the
stability boundary is not enough conservative when
using a lower magnitude of pump current and have
problems similarly as investigated in Daniels and
Farrell (2008) and Hangmann et al. (2014) for the
CSCPPLL. Thus, Gardner’s boundary can be used for
the voltage switched CP-PLL considering all the initial
operating conditions and considering the pump current
described in this study, it is still useful to apply
Gardner’s plane.
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