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Abstract: The characteristics of a fuzzy set are decided by its membership function. This work aims to provide a 

geometric approach for enhancing the design and performance of fuzzy systems. Similarity Estimator (SimE) 

evaluates the membership functions of fuzzy sets on Euclidean space based on geometric area. The overlapping 

regions between the sets are partitioned into geometric structures. The area of overlapping is computed by summing 

the area of polygons and integrating the area under curves. Similarity between fuzzy sets is directly proportional to 

the area of overlapping between them. SimE was tested over a range of real numbers with finite intervals. Fuzzy sets 

using different membership functions were created for the same data distribution. From the test results it can be 

inferred that fuzzy sets defined using triangular membership functions have a minimum overlapping area when 

compared to fuzzy sets defined using other membership function. Optimal overlapping area of fuzzy sets improves 

the semantic representation and the performance of the system. SimE can be used by knowledge engineers to design 

efficient fuzzy systems. 

 
Keywords: Design automation, fuzzy systems, fuzzy set theory, geometric area, membership function, similarity 
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INTRODUCTION 

 
Large amount of data are generated and 

manipulated everyday but often due to human errors 
and system failures the data may become noisy, 
ambiguous and redundant. Automated systems and 
computer-aided systems that use data for control and 
decision making have to use this incomplete, vague and 
imprecise data. Though data preprocessing techniques 
such as cleaning, transformation, normalization and 
reduction make the data suitable for use, the quality of 
the data can still be improved to enhance the reasoning 
and decision making ability of these systems. Fuzzy set 
theory and soft computing techniques are capable of 
handling imprecise, vague and incomplete data in 
automated tasks (Isermann, 1998).  

The first fuzzy logic controller was developed in 
the mid-seventies (Mamdani and Assilian, 1975). It was 
used to represent the linguistic terms and the 
uncertainties involved in the control system, using a set 
of heuristic control rules, fuzzy sets and fuzzy logic. 
Ever since the birth of fuzzy theory, it is progressively 
applied increasingly in various fields of engineering 
and medicine (Soufi et al., 2016; Jane et al., 2016; 
Jacophine Susmi et al., 2015). Generally, a fuzzy logic 

based system consists of four modules: a fuzzification 
interface, knowledge base (fuzzy rule base), inference 
engine and the defuzzification module.  

There are no fixed rules or design patterns for the 
design and development of fuzzy systems. The 
efficiency and effectiveness of a fuzzy system depends 
on several factors such as the choice of membership 
functions, their input values, the area of intersection 
among them, the information content of the knowledge 
base and also the skill, domain knowledge and 
experience of the designer.  

Membership Functions (MF) are easily identifiable 

when human expertise for the domain of application is 

available However, for other applications it has to be 

identified and designed only by a system designer or 

knowledge engineer. The choice of a membership 

function and its design are important for any application 

of fuzzy set theory as they decide the overall 

performance of the fuzzy system (Zimmermann, 1996; 

Jang et al., 1997). Better design of a fuzzy system leads 

to enhanced reasoning and performance. 
The purpose of a fuzzy system is to handle 

uncertainty with human reasoning. The conjunctive 
(AND) and disjunctive (OR) reasoning model is used 
for  combining the membership functions. However this  
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Fig. 1a: Fuzzy sets with no similarity 
 

 
 

Fig. 1b: Similar fuzzy sets   

 

model is not the general way of human reasoning in 

many situations. Furthermore, a fuzzy system is 

designed with same level of membership space [0, 1] 

for all fuzzy sets. Equal importance is given to all the 

linguistic variables used in the design which is not the 

actual scenario in the real world.  
This study proposes Similarity Estimator (SimE); 

an approach where fuzzy sets are said to be similar 
based on their overlapping region. Consider the 
following example: Let A and B are two fuzzy sets as 
shown in Fig. 1a. Both fuzzy sets are exactly same in 
shape but the Euclidean space enclosed by the sets is 
not similar, hence there is no overlapping between the 
sets. However, in Fig. 1b, C and D are different in 
shape but they are more similar as the region 
(Euclidean space) represented by the sets are similar. A 
fuzzy system with few efficiently designed fuzzy sets 
and few rules has lower computational demands. 
Therefore, the region of overlapping between the fuzzy 
sets is an important measure in designing any fuzzy 
system. 
 

PRELIMINARIES 
 
This section presents the basic concepts and 

mathematical models of fuzzy sets, Membership 
functions and fuzzy set similarity. 

 
Fuzzy set: Fuzzy set is a set whose elements have a 
degree of membership. Fuzzy set ‘A’ on the universe of 
discourse X is characterized by a membership function, 
which associates with each element ‘x’ a real number in 

the interval [0, 1]. A Fuzzy set can be defined 
mathematically as follows:  

 � = ���, ��	�
�� � � � }                            (1) 

 
where, µA(x) is called Membership Function (MF) for 
the fuzzy set A. X is universe of discourse X = {xj/j = 
1, 2, …, m} (Zadeh, 1965). The MF maps each element 

of X to membership grade ranging from 0 to 1: 0 ≤��	�
 ≤ 1. 
 
Membership functions: The membership grade of an 
element in a fuzzy set is determined by its membership 
function. There are different types of MFs namely 
Triangular, Gaussian, Trapezoidal, Bell-shaped, linear, 
sigmoidal and polynomial membership function (Jang 
et al., 1997). This work considers four membership 
functions namely, Triangular, Gaussian, Trapezoidal 
and Bell-shaped membership functions for testing 
SimE. 
 
Fuzzy set similarity: The fuzzy set similarity is a 
measure of approximate equality between fuzzy sets 
which describe the relationship among fuzzy sets. 
Similarity plays a major role in decision making, 
classification and clustering. It is a major criterion in 
deciding the number of fuzzy (Jager and Benz, 2000; 
Setnes et al., 1998) sets for a fuzzy system design.  

The following section reviews some of the works 
in literature that use different membership functions 
and fuzzy set similarity measures. 
 

LITERATURE REVIEW 
  

Zhao and Bose (2002) have evaluated triangular, 
Gaussian, trapezoidal, two sided Gaussian and bell 
shaped MF for a fuzzy control system. Sensitivity has 
been analyzed and the effect of different types of 
membership functions in the fuzzy control system for 
speed-controlled induction motor drive was compared. 
The result indicates that triangular MF gives better 
performance than other MFs and the next identified best 
performer is trapezoidal MF.  

Hasuike et al. (2014) have developed a 

construction algorithm to obtain an appropriate MF. 

The construction approach is based on both fuzzy 

Shannon entropy with smoothing function and interval 

estimation derived from human cognitive behaviour and 

subjectivity. They have introduced natural assumptions 

for the fuzzy Shannon entropy and the smoothing 

function. Hence the approach proposed is suitable for 

constructing any type of membership functions. 

However their approach is not appropriate for 

continuous spaces. 

Alikhademi and Zaianudin (2014) have developed 

a framework based on Particle Swarm Optimization 

(PSO) to obtain the MF from quantitative data. In their 

framework an appropriate MF is generated for each 
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input variable using PSO and it is optimized using S 

and Z fuzzy shapes. Using PSO, appropriate MF is 

obtained iteratively and the generated MF is used to 

transform quantitative data into fuzzy data. Their 

fuzzification approach is tested for typical data mining 

application (classification) to select an optimal set of 

association rules. 

Bera et al. (2014) have determined MF for fuzzy 

random variable. Fuzzy random variable follows a 

normal distribution with imprecise definition of mean 

and standard deviation. Probabilistic distribution and 

cumulative density function both are used to generate 

the MF of fuzzy random variable. In their work, 

cumulative density function used to fix the lower and 

upper bound of MF. They have demonstrated the 

technique on fuzzy random variable (temperature 

change) for a temperature controller. They have taken 

alpha-cut value and percentile value as evaluation 

parameter. From the result they inferred that the 

triangular membership function misinterprets 

uncertainty compared to the trapezoidal membership 

function. 

Jiménez et al. (2014) have computed the degree of 

similarity between the fuzzy sets by performing the 

fuzzy operations, such as union and intersection over 

the fuzzy sets. By means of determining degree of 

similarity between the fuzzy sets they have minimized 

the number of different fuzzy sets required to model the 

fuzzy classifier. They have taken the threshold value as 

10 percent for the maximum similarity degree of fuzzy 

sets. The value was accepted in the scientific 

community in order to obtain more interpretable fuzzy 

classifier model. By minimizing number of fuzzy sets, 

number of rules is also minimized. They have tested the 

similarity measure technique with dataset collected 

from the Health Information System of the Incentive 

Care Burn Unit (ICBU) from 1999 to 2002. In the 

experiment they have used fuzzy sets with Gaussian 

membership functions. From their results they inferred 

that greater the similarity between the fuzzy sets, makes 

the system more ambiguous and the model is hardly 

interpretable by a human. 

Several methodologies have been proposed in 

literature for determining MF for fuzzy systems. 

Generally, determination is based on data distribution, 

data intervals and elements of a set. The works of 

Alikhademi and Zaianudin (2014) emphasize on 

estimating the similarity between fuzzy sets based on 

elements of the sets. Moreover there are works that 

highlight geometrical operations on fuzzy sets 

(Bogomolny, 1987; Rosenfeld and Haber, 1985) but 

they have not used geometric approaches as a measure 

of similarity to evaluate fuzzy sets.  

In this paper, a novel method called SimE, is 

devised to evaluate the design of fuzzy sets based on 

the geometric area of intersection of fuzzy membership 

functions. The approach may be used as a measure to 

estimate the similarity between fuzzy sets. 

 

SIMILARITY ESTIMATOR 

  

Similarity Estimator (SimE), is an algorithm that 

uses the geometric area of overlapping for analyzing the 

similarity between the fuzzy sets. Different MFs are 

analyzed based on the region of overlapping between 

the fuzzy sets for a given data distribution: 

  

SimE algorithm: 

Require: A set of finite intervals ℒand� 

whereℒ ∋ ���, ��, . . ��}, � ∋ ���, ��, . . ��} |� > 0  � ! − #$%&'%()*�+��*(,-#. ! ∋ �trimf� , trimf�, trimf3 … trimf5}} �6 − #$%&'+*�##)*�,-#. 6 ∋ �gaussmf�, gaussmf�, gaussmf3 … gaussmf5 }} �!; − #$%&'%(*<$=&)>*�,-#. !; ∋ �trapmf�, trapmf�, trapmf3 … trapmf5}} �@ − #$%&'A$��,-#. @ ∋ �bellmf�, bellmf�, bellmf3 … bellmf5}} 
 

1: EFGHIJKLI MKNNO HPIH: 
1.1: ! ← R&�#%()S'	ℒ, �
 
1.2: 6 ← R&�#+*�##S'	ℒ, �
 
1.3: !; ← R&�#%(*<S'	ℒ, �
 
1.4: @ ← R&�#A$��S'	ℒ, �
 

 

2: ETULKUTIP FVPJ UTWWXGYTJPTZ[: 

2.1: ∆]^_← `�abcdeb�	!
 
2.2: ∆efghh← `�ig^jk	6
 
2.3: ∆]^fa← `�abcdeb�	!;
 
2.4: ∆lkcc← `�ig^jk	@
 

 

 3: EFmWTJP[JPT: 	∆IJX, ∆YTKHH, ∆IJTW, ∆nPUU
 
 

SimE works in 3 steps: First, fuzzy sets are created 

using different MFs (such as Triangular, Trapezoidal, 

Bell and Gaussian) for the same input data. Second, 

similarity between the fuzzy sets is computed based on 

area of overlapping. Third, overlapping area between 

the fuzzy sets for each membership function is 

analyzed.  

 

Step 1: Parameters (ℒ and �) needed for constructing 

fuzzy sets using triangular MF are obtained 

from the input data. The membership function 

specific parameters are extracted from ℒ and �.  

 

For triangular MF, the parameters are starting point 

(a), end point (b) and center (c). The mapping of 

parameters for a triangular MF is defined in R&�#%()S'	ℒ, �
 function and illustrated in Fig. 2. 
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Fig. 2: Parameters of triangular MF 

 

 
 

Fig. 3: Parameters of Gaussian MF 

 R&�#%()S'	ℒ, �
 
/*Construction of Triangular MF*/  

1: '&($*Rℎ�_ ∈ ℒ, �_ ∈ �>& 

2:  %()S'_ . * ← �_ 
3:  %()S'_ . A ← �_ 
4:  %()S'_ . R ← 	cqrgq


�  

5: ! ← %()S'X 
6: $�>'&( 

7: ($%�(�	!
 
 

For Gaussian MF, the parameters are variance (s
 
and center (c). The parameter-mapping for Gaussian 

MF is presented in Fig. 3 and is defined in R&�#+*�##S'	ℒ, �
 function: 

 R&�#+*�##S'	ℒ, �
 
/*Construction of Gaussian MF*/ 

1: '&( $*Rℎ �_ ∈ ℒ, �_ ∈ � >& 

2:  +*�##S'_ . s ←  	cqtgq
u
��  

3:  +*�##S'_ . R ←  cqrgq
�  

4:  6 ← +*�##S'X 
5: $�> '&( 

6:    ($%�(�	6
 
 

For trapezoidal MF, the parameters are starting 

point (a), end point (d) and two shoulder points (b and 

c). The mapping of parameters for the trapezoidal MF is 

defined in R&�#%(*<S'	ℒ, �
 function.Furthermore 

the parameters are represented in Fig. 4. 

 v&�#%(*<S '	ℒ, �
 
/*Construction of Trapezoidal MF*/ 

1: '&( $*Rℎ �_ ∈ ℒ, �_ ∈ � >& 

2:  %(*<S'_ . * ←  �_  
3:  %(*<S'_ . A ←  �

w 	�_ − �_ 
  
4: %(*<S'_ . R ←  3

w 	�_ − �_ 
  
5:  %(*<S'_ . > ←  �_  
6: !; ← %(*<S'_  
7:  $�> '&( 

8:     ($%�(�	!;
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Fig. 4: Parameters of trapezoidal MF 
 

 
 
Fig. 5: Parameters of bell MF 

 
For bell MF, the parameters are center (c), slope of 

the cross over point (b) and variance (s
. The 
parameters mapping of bell MF is defined in R&�#A$��S'	ℒ, �
 function and illustrated in Fig. 5. 

 R&�#A$��S'	ℒ, �
 
/*Construction of Bell-Shaped MF*/ 
1: '&( $*Rℎ �_ ∈ ℒ, �_ ∈ � >& 

2:    A$��S'_ . s ←  	cqtgq
u
��  

3: A$��S'_ . A ←  4 

4: A$��S'_ . R ←  cqrgq
�  

5:    @ ← A$��S'_  
6:    $�> '&( 
7:    ($%�(�	@
 

 
Step 2: Similarity is computed for the generated fuzzy 

sets. Similarity is measured in terms of the 
area of overlapping. For computing the area of 
overlapping between fuzzy sets, two separate 
algorithms are used: The first algorithm is for 
computing area under curves and the second is 
for computing overlapping area of polygonal 
shapes. The former is defined by the function `�ig^jk	yz
 and the latter is defined by the 

function. `�abcdeb� 	yz
  

Step 3: The area of overlapping for fuzzy sets is 

compared for different membership functions.  `�abcdeb�	yz
 

 

Require: {$% &' S$SA$(#ℎ)< '��R%)&�#  yz: yz ∋ �!, !;} 
{} )# %ℎ$ #$% &'<&)�%# &� %ℎ$  <$()S$%$( &' %ℎ$ &~$(�*<<)�+ ($+)&�:  } ∋ � <�, <�, <3 } 
1:  �'yz )# ! %ℎ$� 

2: f&( $*Rℎ %()S' )� ! >& 

3:  <� ← )�%$(#$R%)&� &'  �)�$ �&)�)�+ 	%()S'_ . R,  %()S'_ . A
 *�> 	%()S'_r�. *, %()S'_r�. R
 
4:  <�  ← %()S'_r�. * 

5:  <3  ←  %()S'_ . A /*} ∋ � <�, <�, <3 }*/ 
6: � = � + �($*�	}
 
7:  $�> '&( 

8:  $�> )' 

9:  �'yz )# !; %ℎ$� 

10: f&( $*Rℎ %(*<S' )� !; >& 
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11:  )'	%(*<S'_r�. A ≥   %(*<S'_ . R
 %ℎ$� 

12: <� ← )�%$(#$R%)&� &'  �)�$ �&)�)�+ 	%(*<S'_r�. *, %(*<S'_r�. A
 *�>	%(*<S'_ . R, %(*<S'_ . >
 
13:  <�  ← %(*<S'_r�. * 

14:  <3  ←  %(*<S'_ . >/*} ∋ � <�, <�, <3 }*/ 
15:     � = � + �($*�	}
 
16:  $�> )' 
17: )'	%(*<S'_r�. A <  %(*<S'_ . R
 %ℎ$� 
18:  <�  ← %(*<S'_r�. * 
19:      <�  ← %(*<S'_r�. A 
20:  <3  ← %(*<S'_ . R 
21:  <w  ←  %(*<S'_ . >/*} ∋ � <�, <�, <3,  <w}*/ 
22: � = � + �($*�	}
 
23:  $�> )' 
24:  $�> '&( 
25:  $�> )' 
26:      ($%�(� 	�
 
 `�ig^jk	@
 
Require:{$% &' S$SA$(#ℎ)< '��R%)&�#  yz ∶  yz ∋ �6, @} 
{< )# %ℎ$ <&)�% &' )�%$(#$R%)&� &' %ℎ$ Rurves} 

1:    �' yz )# 6 %ℎ$� 

2:  f&( $*Rℎ +*�##S' )� 6 >& 

3: �� = � e�t�
u��� �������q�� .��������q�� .� �u�a

t� >�  
4: �� =  � e�t�

u��� �������q .��������q.� �u��
a >� 

5: A($* =  �($* + �� + �� 
6:  $�> '&( 

7:    $�> )' 

8:    �'yz )# @ %ℎ$� 

9:    '&( $*Rℎ A$��S' )� @ >& 

10: �� = � �
��r���������q�� .�������q�� .� �u��

a
cu  >� 

11:  �� = � �
��r���������q .�������q .� �u��

 >�g�a  

12: A($* =  �($* +  �� + �� 
13:  $�> '&( 

14:  $�> )' 

15:  ($%�(� A($* 

Table 1: Interval limits for data distribution 1 

Range: 0-10 

--------------------------------------------------------------------------------------
Intervals Lower limit 	ℒ
 Upper limit 	�
 
Interval 1 0.0 1.00 
Interval 2 0.4 3.00 

Interval 3 1.0 7.14 

Interval 4 3.0 10.0 

 
Table 2: Interval limits for data distribution 2 

Range: 0-100 
-------------------------------------------------------------------------------------
Intervals Lower limit 	ℒ
 Upper limit 	�
 
Interval 1 0 20 
Interval 2 18 32 
Interval 3 28 44 
Interval 4 39 63 
Interval 5 60 85 

 
RESULTS AND DISCUSSION 

 

To analyze the performance of the proposed 

approach, experiments were performed over two data 

distribution. The inputs to construct the fuzzy sets are 

the lower limits and the upper limits of the intervals 

over a range of real numbers. Fuzzy sets are constructed 

by extracting the parameters for different membership 

functions such as Triangular, Gaussian, trapezoidal and 

Bell. Then overlapping areas of fuzzy sets using 

different MF are computed and analyzed. Fuzzy sets 

with minimum overlapping area are considered to be 

less similar. Table 1 and 2 present the information 

about the two data distributions (ranges and intervals) 

used to test the SimE. 
Figure 6 to 9 present the fuzzy sets generated for 

data distribution 1. The fuzzy sets are characterized by 

triangular, Gaussian, trapezoidal and bell membership 

function respectively. Figure 10 to 13 present the 

corresponding overlapping area between the sets. The 

overlapping area for fuzzy sets with triangular and 

trapezoidal membership functions is computed by `�abcdeb�  function and the overlapping area for 

Gaussian  and Bell membership functions is computed 

by `�ig^jk function. In the function `�abcdeb� 	yz
, 
the fourth conditional statement -)'	%(*<S'_r�. A <%(*<S'_ . R
- does not occur in practical situations;

 

 
 

Fig. 6: Fuzzy sets using triangular membership function for data distribution 1 
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Fig. 7: Fuzzy sets using Gaussian membership function for data distribution 1 

 

 
 

Fig. 8: Fuzzy sets using trapezoidal membership function for data distribution 1 

 

 
 

Fig. 9: Fuzzy sets using bell membership function for data distribution 1 

 

 
 

Fig. 10: Area of overlapping using triangular membership function for data distribution 1 

 

 
 

Fig. 11: Area of overlapping using Gaussian membership function for data distribution 1 
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Fig. 12: Area of overlapping using trapezoidal membership function for data distribution 1 

 

 
 
Fig. 13: Area of overlapping using bell membership function for data distribution 1 

 
Table 3: Overlapping area for data distribution 1 

Area of 
overlapping 

Membership functions 
-----------------------------------------------------------------

TriMF TrapMF GaussMF BellMF 

Area 1 0.0969 0.1292 0.3028 0.1656 

Area 2 0.4572 0.6097 1.0508 0.6478 
Area 3 1.3061 1.7414 2.4775 1.8243 

Total area  1.8602 2.4803 3.8311 2.6377 

 
Table 4: Overlapping area for data distribution 2 

Area of 

Overlapping 

Membership functions 

-----------------------------------------------------------------

TriMF TrapMF GaussMF BellMF 

Area 1 0.1000 0.1333 1.5585 0.8480 
Area 2 0.5179 0.6905 2.2168 1.2203 

Area 3 0.6250 0.8333 2.8066 1.5323 

Area 4 0.1633 0.2178 2.2933 1.2482 
Total area  1.4062 1.8749 8.8752 4.8488 

 
however, it is computed for theoretical purposes. This 
computation may be used for repairing fuzzy sets when 
they are randomly generated or evolved using an 
evolutionary algorithm. 

Table 3 and 4 present the area of overlapping 

between the adjacent fuzzy sets and also the total area 

of that fuzzy variable. From the experimental results it 

can be observed that fuzzy sets with triangular MF have 

a minimum overlapping area compared to fuzzy sets 

characterized by other MFs.  
 

CONCLUSION 

 

Set theory based similarity estimators are well 
known and also frequently used in the design and 
development of fuzzy systems. The expressiveness of 
geometric  models  for  fuzzy  system design is still not  

completely exploited by the fuzzy logic community. 

The proposed SimE is just yet another fuzzy system-

design evaluator based on the similarity between fuzzy 

sets. The requirement of background domain 

knowledge for designing fuzzy systems based on 

geometric models, such as SimE, is less when 

compared to set theoretic models. SimE can be applied 

for designing fuzzy systems when the parameters of the 

fuzzy membership functions are not well-defined. 

Furthermore, there are several works in literature that 

use evolutionary approaches for generation of fuzzy 

sets. Evolutionary Fuzzy systems (Amaral et al., 2002; 

Celikyilmaz and Burhan Turksen, 2007) are becoming 

more accepted in engineering and design. Random 

fuzzy sets are initially created and iteratively improved 

to evolve an optimal fuzzy system. In such scenarios, 

SimE can be used to obtain a combination of fuzzy sets 

with optimal similarity and overlapping area. 

Geometric area of similarity between fuzzy sets decides 

how efficiently uncertainty and vagueness is 

represented and handled by the fuzzy system. SimE can 

be used to design systems with optimal similarity for 

different membership functions. 
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