
Research Journal of Applied Sciences, Engineering and Technology 13(5): 416-421, 2016

DOI:10.19026/rjaset.13.2961

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: April 5, 2016 Accepted: June 7, 2016 Published: September 05, 2016

Corresponding Author: Bilal Hussein, Institute of Technology, Lebanese University, Saida, Lebanon, Tel.: 9613215145
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

416

Research Article

A Design Pattern Approach to Improve the Structure and Implementation of the Decorator

Design Pattern

1
Bilal Hussein and

2
Aref Mehanna

1
Institute of Technology, Lebanese University, Saida,

2
Faculty of Economics and Business Administration, Lebanese University, Aaley, Lebanon

Abstract: Reusability is a technique used to unify the abstract representation of real world entities. In object-

oriented design and programming, inheritance mechanism plays an important role in software reusability. The

Decorator Design Pattern (DDP), invented by GoF, was an alternative solution to the inheritance mechanism. It uses

the concept of decorating objects instead of inheritance. The aim of this study is to present the DDP, showing its

advantages and disadvantages and offer a new innovative approach, called Decorator Pattern Approach (DPA), in

order to improve the structure and implementation of DDP. The main objective of DPA is to provide a way to

separate, dynamically, the decorating objects from the objects to decorate.

Keywords: Decorator,design pattern, Decorator Pattern Approach (DPA), inheritance, Object Oriented Design

(OOD), reusability

INTRODUCTION

The system’s design with the object approach is to

model the entities of the real world by an abstract

representation often described by graphical notations

such as classes and associations in UML (Unified

Modeling Language). The class diagram is one of UML

diagrams whom we can model with the static structure

of a system in the form of classes (attributes and

methods) and associations (Grady et al., 1998). For

recurring problems, designers do not build the same

class diagrams. This is for several reasons, first the real

world entities are not seen and described in the same

way. Second, designers do not have the same level of

expertise. For this reason, developers prefer to develop

software from existing classes. This concept is called

reusability. Reusability is an important characteristic of

high quality classes (Goyal and Gupta, 2014).

Reusability brings the following benefits: development

cost is reduced; reliability is increased, less time to

market and Low cost maintenance (Alvaro et al., 2006;

Narwal, 2012). In object-oriented design and

programming (OODP), inheritance mechanism plays an

important role in software reusability. This enables to

create a new class from an existing class by adding new

responsibilities. However, reusability by inheritance

requires a multiplication of subclasses to describe real

entities and especially when the objects of these entities

do not share many features. Moreover, the reusability

by inheritance is limited to the classes declared non-

final (i.e., the classes declared final cannot be sub-

classed). Furthermore, reusability by inheritance

provides a very strong coupling between existing and

new classes. The Decorator Design Pattern (DDP)

invented by GoF (Gamma et al., 1995), was an

alternative solution to the reusability by inheritance. It

allows adding new responsibilities to one or more

objects dynamically without affecting other objects

(Gamma et al., 1995). The aim of this study is to

present the DDP, showing its advantages and

disadvantages and offer a new innovative approach,

called Decorator Pattern Approach (DPA), in order to

improve the structure and implementation of DDP. The

main objective of DPA is to provide a way to separate,

dynamically, the decorating objects from the objects to

decorate.

MATERIALS AND METHODS

When and where this study was conduct: Lebanese

University.

In this section, we present the reusability and

inheritance concepts. We show the Decorator design

pattern structure and implementation and an example of

use.

Reusability and inheritance: To simplify the time
devoted to the coding phase in a software life cycle, it is

Res. J. Appl. Sci. Eng. Technol., 13(5): 416-421, 2016

417

interesting to be able to reuse an existing code. In this
context, the object-oriented allows encapsulating a code
in a structure called class. The class includes two
aspects: static and dynamic. The static aspect is
described by a set of attributes and the dynamic aspect
by a set of operations.

The class reuse is done in two different ways:

either to use the class without changing the existing

code or use it by adding certain functionalities

(Inheritance). Inheritance is a main feature of OODP

paradigm. It is used to encapsulate a set of closely

related functionality in a structured hierarchy where

common functionality is added in one class and more

specialized functionality of that class is added in other

classes (Varsha and Shweta, 2013).

For example, suppose that ‘A’ is an already

compiled class and ‘B’ a class that wants to use it.

Then, the class ‘B’ can instantiate objects from the class

‘A’ and call its methods. Now, if we want to add new

functionality to the class ‘A’ before ‘A’ is used by the

class ‘B’, we have to create a class ‘C’ derived from the

class ‘A’ and add to it the desired functionaly. Finally,

the class ‘B’ can instantiate objects from the class ‘C’.

Limits and difficulties of inheritance: Sometimes we

want to add new functionality to individual objects, not

to an entire class. One way to do this is with

inheritance. Inheriting a border from another class puts

a border around every subclass instance. This is

inflexible, however, because the choice of border is

made statically, a client can't control how and when to

decorate the component with a border (Gamma et al.,

1995).

The extension by sub classing is impractical.

Sometimes a large number of independent extensions is

possible and would produce an explosion of subclasses

to support every combination (Gamma et al., 1995).

Moreover, you cannot reuse a single method of a

class without inheriting that class's other methods as

well as its data members.

Another disadvantage of inheritance is the

difficulty to implement the multiple inheritance

mechanism in some programming languages such as

Java. Multiple inheritance mechanism allows a single

class to inherit the characteristics from several super

classes. This concept can produce many consequences

at polymorphism level. A well-known drawback in Java

is its limitation in implementing multiple inheritances

which is considered by many researchers a fundamental

concept in object oriented (Albalooshi, 2015).

In their book, Gang of Four (GoF) (Gamma et al.,

1995) have provided a set of design patterns including

one called Decorator whose goal is to overcome the

difficulties and limitations of the inheritance.

Decorator design pattern: Design patterns are a

proven way to build flexible software architectures

(Pavlič et al., 2014). Decorator pattern is one of these

patterns invented by GoF (Gang of Four). Design

patterns are conceptual solutions built using class

diagrams. The purpose, of these patterns, is to provide

designers and developers the conceptual solutions of

recurring problems without needing to rebuild

applications from the beginning. Indeed design patterns

cover most of the problems associated with the design

and implementation of large and complex software

systems (Debboub and Meslati, 2013).

Design patterns are grouped into three categories:
Creational, structural and behavioral. Every pattern and
according to its interest, is attached to one of these
categories. For instance, we list the following patterns:
Abstract Factory, Singleton (creational), Adapter,
Decorator (structural), Observer, visitor (behavioral),
etc.

For a better understanding of the design pattern,
GoF contributors use a consistent format including
some sections such as: Intent, motivation, structure,
implementation (Gamma et al., 1995).

Intent: what does the design pattern do?

Motivation: A scenario that illustrates a design

problem and how the class and object structures in the

pattern solve the problem.

Structure: A graphical representation of the classes in

the pattern using an object modeling notations.

Implementation: What pitfalls, hints, or techniques

should you be aware of when implementing the pattern?

Are there language-specific issues?

Decorator pattern basic concepts:

Intent: Attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative

to sub classing for extending functionality (Gamma

et al., 1995).

Motivation: Sometimes we want to add functionality to

individual objects, not to an entire class. Decorator uses

an object that modifies behavior of, or adds features to,

another object.

Structure: Figure 1 illustrates the structure of the

Decorator design pattern.

Component can be declared as an interface or an

abstract class. The class ConcreteComponent

implements (or extends) Component. Decorator is an

abstract class and it implements Component. It contains

an attribute called component that holds an instance of

type Component. This instance is decorated using

decorating objects of the classes ConcreteDecoratorA

and ConcreteDecoratorB. These classes derive from

Decorator.

Res. J. Appl. Sci. Eng. Technol.,

Fig. 1: Decorator design pattern structure

Fig. 2: Decorator of text objects

Example: Suppose we want to format, dynamically, a
text object by adding to it some of the font
characteristics such as Bold, Italic, Underline,
Strickethrough, Subscript, etc. The decorator design
pattern structure for this example is illustrated in the
Fig. 2:

Implementation:
public interface TextInterface{
public String toHTML();
}
public class Text implements TextInterface{
private String text;
public Text(String text){this.text = text;}
public String toHTML(){return this.text;}
}
public abstract class TextDecorator implements
TextInterface{
privateTextInterfaceaText;
publicTextDecorator(TexteInterfaceaText){
this.aText = aText;
}
public String toHTML(){
returnaText.toHTML();
}
}

Res. J. Appl. Sci. Eng. Technol., 13(5): 416-421, 2016

418

Suppose we want to format, dynamically, a
text object by adding to it some of the font
characteristics such as Bold, Italic, Underline,
Strickethrough, Subscript, etc. The decorator design
pattern structure for this example is illustrated in the

ext implements TextInterface{

public Text(String text){this.text = text;}
public String toHTML(){return this.text;}

public abstract class TextDecorator implements

erfaceaText){

public class Bold extends TextDecorator{

public Bold(TextInterfaceaText){

super(aText);

}

public String toHTML(){

return "" + super.toHTML() + "";

}

}

public class Italic extends TextDecorator {

public Italic(TextInterfaceaText){

super(aText);

}

public String toHTML(){

return "<I>" + super.toHTML() + "</I>";

}

}

public class Strike extends TextDecorator {

public Strike(TextInterfaceaText){

super(aText);

}

public String toHTML(){

return "<S>" + super.toHTML() + "</S>";

}

}

public class Bold extends TextDecorator{

return "" + super.toHTML() + "";

Italic extends TextDecorator {

return "<I>" + super.toHTML() + "</I>";

public class Strike extends TextDecorator {

return "<S>" + super.toHTML() + "</S>";

Res. J. Appl. Sci. Eng. Technol., 13(5): 416-421, 2016

419

public class UnderLine extends TextDecorator {
publicUnderLine(TextInterfaceaText){
super(aText);
}
public String toHTML(){
return "<U>" + super.toHTML() + "</U>";
}
}

Now, suppose we need to format the text
“Welcome to Lebanon” in Bold, Italic and UnderLine.
The implementation will be as follow:

TextInterface text = new Bold (new Italic (new
UnderLine (new Text (˝Welcome to Lebanon˝)));
String s = text.toHTML();

RESULTS AND DISCUSSION

In this section, we present our DPA approach in
order to overcome some weaknesses found in the use of
the original DDP.

Our discussion starts from the following question:
what can we do if we want to reformat the same text
‘Welcome to Lebanon’ in Bold and strikethrough only?
The implementation should be changed as:

TextInterface text = new Bold (newStrikeThrough
(new Text(˝Welcome to Lebanon˝)));
String s = text.toHTML();

Here, there are several points to discuss:

• What happened to the old decorating objects, Bold,
Italic and Underline that are used to decorate our
text object? Are they lost?

According to the Decorator pattern structure, we

can say that this structure is recursive. Each decorating
object has, in its private attribute 'TextInterface', the
reference of another decorating object and so forth.
Note that the constructor of the Decorator class assigns
to the decorating object attribute the reference of
another decorating object. We conclude that objects,

Bold, Italic and UnderLine are lost. However, the re-
decoration of a same object requires the creation of new
decorating objects. Finally, the number of lost objects
increases as many times as there are re-decorating
operation.

Based on this weakness, we list some questions in
order to improve the structure and implementation of
Decorator pattern:

• How can we reduce the number of lost decorating
objects?

• Can we use the same decorating object to make a
re-decoration?

• Can we, with the same decorating object, decorate
many different objects?

Our DPA approach provides an answer to these

questions. It presents a new motivation, structure and

implementation of DDP.

New motivation: Our DPA approach consists in

separating the decorating objects from objects to

decorate. This means they do not share the same

interface or abstract class.

New structure: The following structure (Fig. 3)

illustrates the new improved structure of DPA.

Decoratee is the class of objects to decorate.

Decoratee has an association with Decorator interface

which allows Decoratee to declare an attribute of type

Decorator.

The class composite Decorator contains all

concrete decorator elements that can be used to

decorate the Decoratee.
The above structure shows that Decoratee objects

are separated from decorator elements. This allows
dynamically adding and removing decorator elements.
Also, Decorator can be used to decorate another type of
Decoratee. And, we don’t need to enclose objects in
other objects, simply you have to add or remove
decorator elements from the composite. This flexibility
allows programmers at run time, not to use the

Fig. 3: Structure of a new decorator pattern

Res. J. Appl. Sci. Eng. Technol., 13(5): 416-421, 2016

420

Fig. 4: Decorator of text objects

reference assignments such as those used in the
standard Decorator pattern.

By returning to our previous example, the structure
according to our approach will be (Fig. 4):

New implementation:
importjava.util.ArrayList;
importjava.util.Collection;
interface Decorator{
public String toHTML(String st);
public void add(TextDecorator d);
public void remove(TextDecorator d);
}
interfaceTextDecorator{
public String toHTML(String st);
}
class Text{
Decorator myDecorator=new TextComposite();
String text;
public Text(String text){this.text = text;}
public String toHTML(){return
myDecorator.toHTML(this.text);}
}
classTextComposite implements Decorator{
Collection <TextDecorator> decorators = new
ArrayList<TextDecorator>();
public String toHTML(String st){
for (TextDecorator e: decorators)
st=e.toHTML(st);
returnst;
}
public void add(TextDecorator d){
decorators.add(d);
}
public void remove(TextDecorator d){
decorators.remove(d);
}
}
class Bold implements TextDecorator{
public String toHTML(String st){
return "" + st + "";
}
}

class Italic implements TextDecorator {
public String toHTML(String st){
return "<I>" + st + "</I>";
}
}
class Strike implements TextDecorator {
public String toHTML(String st){
return "<S>" + st + "</S>";
}
}
classUnderLine implements TextDecorator {
public String toHTML(String st){
return "<U>" + st + "</U>";
}
}
public class Client{
public static void main(String [] args){
Text text1=new Text("Welcome to Lebanon");
TextDecorator B=new Bold();
TextDecorator U=new UnderLine();
TextDecorator S=new Strike();
// Decorating object text1 with bold, underline // and
strike
text1.myDecorator.add(B);

text1.myDecorator.add(U);

text1.myDecorator.add(S);

System.out.println(t.toHTML());

// Re-decoration text1 by Bold and strike

// requires only removing of the decorating

// object underline (U).

text1.myDecorator.remove(U);

System.out.println(t.toHTML());

// Same objects underline (U) and strike (S)

// are used to decorate another text (text2).

text2.myDecorator.add(U);

text2.myDecorator.add(S);

System.out.println(t1.toHTML());

}

}

If we pass a simple look to our example, we see
that decorating objects (B, U and S) have been used,
dynamically, to decorate and re-decorate the text

Res. J. Appl. Sci. Eng. Technol., 13(5): 416-421, 2016

421

objects without affecting or losing any decorating
object. Finally, we were able to limit the number of
decorating objects and use them for a decoration and re-
decoration of multiple objects as many times as we
want.

CONCLUSION

Design patterns in object oriented design and
programming are efficient ways to improve the
performance of the reusability mechanism. Reusability
is achieved using inheritance. Decorator pattern is one
of these design patterns that provides a very powerful
alternative to inheritance. By using the Decorator
pattern, we can avoid some difficulties coming from the
use of inheritance and especially the situation that
produces an explosion of subclasses to support every
combination. That is why we selected the Decorator
pattern in order to give it some flexibility during
implementation and using. We suggested in this study a
new innovative approach called DPA (Design Pattern
Approach) which purpose is to improve the structure
and implementation of the Decorator design pattern.
With DPA approach, we were able to limit the number
of used decorating objects. Also we are able to re-use
them at any time in order to perform decoration and re-
decoration operations to every object without affecting
old decorated objects.

REFERENCES

Albalooshi, F., 2015. Software design concerns

associated with simulating multiple inheritance in
java for implementation purposes. Brit. J. Math.
Comput. Sci., 6(5): 435-443.

Alvaro, A., E.S. De Almeida and S.L. Meira, 2006. A

software component quality model: A preliminary

evaluation. Proceeding of the 32nd EUROMICRO

Conference on Software Engineering and

Advanced Applications (EUROMICRO'06).

Cavtat, Dubrovnik, pp: 28-37.

Debboub, S. and D. Meslati, 2013. Quantitative and

qualitative evaluation of AspectJ, JBoss AOP and

CaesarJ, using Gang-of-Four design patterns. Int. J.

Softw. Eng. Appl., 7(6): 157-174.

Gamma, E., R. Helm, R. Johnson and J. Vlissides,

1995. Design Patterns: Elements of Resuable

Object-Oriented Software. Pearson Education Ltd.,

England.

Goyal, N. and E.D. Gupta, 2014. Reusability

calculation of object oriented software model by

analyzing CK metric. Int. J. Adv. Res. Comput.

Eng. Technol., 3(7): 2466-2470.

Grady, B., R. James and J. Ivar, 1998. The Unified

Modeling Language User Guide. 1st Edn., Addison

Wesley.

Narwal, A., 2012. Empirical evaluation of metrics for

component based software systems. Int. J. Latest

Res. Sci. Technol., 1(4): 373-378.

Pavlič, L., V. Podgorelec and M. Heričko, 2014. A

question-based design pattern advisement

approach. Comput. Sci. Inf. Syst., 11(2): 645-664.

Varsha, M. and Y. Shweta, 2013. Reusability

evaluation of object oriented inheritance and

interface code. Eng. Univ., Sci. Res. Manage., 5(2).

