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Abstract: Aim of study software defect is a flaw, miscalculation, or failure, in a computer program or framework 
delivering an inappropriate or surprising result, or making it perform in an unintended way. Software Defect 
Prediction (SDP) finds defective modules in software. The final product ought to have as few defects as possible to 
create top notch software. Early software defects discovery prompts diminished development costs and rework effort 
and better software. Software metrics guarantee quantitative methods to survey software quality. Software metrics 
are helpful to software process and product metrics. Thus, a defect prediction study is critical to guarantee quality 
software and software metric aggregation. In this study, the efficiency of classifier for SDP is assessed. Diverse 
classifiers like Naïve Bayes, K Nearest Neighbor (KNN), C4.5 and Multilayer Perceptrons Neural Network 
(MLPNN) are assessed for SDP. 
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INTRODUCTION 
 

Software metrics is characterized by the 
measurement of some property of a segment of 
software or its stipulations. Software metrics give 
quantitative methods to evaluating the software quality. 
Software metrics can be characterized as: The ceaseless 
use of estimation based strategies to the software 
development process and its products to supply 
meaningful and convenient Management Information 
(MI) together with the utilization of those procedures to 
enhance its products and that process (Verner and Tate, 
1992). Software metrics are valuable to the software 
process and product metrics. Different grouping of 
software metrics are as per the following:  
 
Software process metrics: Software process metrics 
includes measuring of properties of the development 
process and otherwise called administration metrics. 
These metrics incorporate the cost, exertion, reuse, 
methodology and advancement metrics. Likewise it 
decides the magnitude, period and number of errors 
found amid testing period of the Software Development 
Life Cycle (SDLC). 
 
Software product metrics: Software product metrics 
includes measuring the properties of the software or 
otherwise called quality metrics. These metrics 
incorporate the trustworthiness, usability, functionality, 

performance, effectiveness, transportability, reusability, 
price, magnitude, difficulty and style metrics. These 
metrics measure the difficulty of the software design, 
magnitude or documentation made (Debbarma et al., 
2013). 

Software metrics are prized entity in the whole 
software life cycle. They give estimation to the 
software development, including software requirement 
documents, designs, programs and tests. Quick 
developments of large scaled software have advanced 
difficulty that makes the quality hard to control. The 
fruitful implementation of the control over software 
quality requires software metrics. The ideas of software 
metrics are lucid, comprehensible and well established 
and numerous metrics identified with the product 
quality have been created and utilized.  

Process metrics, project metrics and product 
metrics (Honglei et al., 2009) are three kinds of 
software metrics. Process metrics chief goals are the 
time taken for the project, the expense to be paid and 
the kind of methodology utilized. Project metrics are 
utilised to check project position. It explains the project 
features and implementation. Product metrics explains 
the characteristics of the software project at all times of 
its progress (Rawat et al., 2012). 

Software metrics has been utilized to depict the 
difficulty of the program and, to evaluate software 
development time. “How to predict the quality of 
software through software metrics, before it is being 
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deployed” is an important inquiry, setting off the 
substantial research endeavours to reveal a response to 
this inquiry. Many papers support statistical models and 
metrics which try to answer the inquiry. Commonly, 
software metrics clarify quantitative estimations of the 
software product or its specifications (Rawat and 
Dubey, 2012).  

Software Quality Assurance (SQA) is the 
arrangement of activities that guarantee that a software 
framework meets a particular quality level. 
Associations are constantly inspired by approaches to 
gauge the quality of their software before it is 
discharged. To encourage these organizational interests, 
specialists have proposed a huge number of quality 
measures and constructed statistical models, which 
influence these measures, to foresee defect-prone areas 
of software. For instance, some earlier work 
concentrated on anticipating files that contain one or 
more post-release or security defects (Fenton and Neil, 
1999). The line of examination concerned with building 
such expectation models is called SDP. 

Specifically, SDP can be characterized as the 
identification of software areas (i.e., subsystems, files 
or functions) that quality affirmation endeavours ought 
to concentrate on (i.e., audit or test). Including SDP in 
the development process offers experts in the decision-
making process indicating which areas have a high risk 
(i.e., high anticipated probability) of having a defect. 
Now, the restricted validation and verification 

endeavours  can  becentred  on  these areas (Arisholm 
et al., 2010).  

It is imperative to take note of that there exist a 
wide range of ways to accomplish high software 
quality. SDP is one methodology; it is positively not by 
any means the only approach. For instance, a lot of 
exploration work uses model checking and static 
examination to discover defects in software 
frameworks. Other work concentrates on fault 
localization, in which contrasts between the inputs of 
failing and passing tests are utilized to find errors in the 
source code. The primary distinction between these 
different lines of examination and SDP is that they 
recognize defects in the present code base (i.e., the code 
base being dissected). SDP warns about future defect-
inclined zones. 
The aims of SDP are:  
 
 Defect forecast enhances efficiency of the testing 

stage notwithstanding offering engineers some 
assistance with evaluating the quality and defect 
proneness of their software product.  

 Help managers in allotting resources, rescheduling, 
training plans and budget distributions.  

 Depending on the forecasted trends, resources can 
be proficiently increased or decreased and Gaps in 
Skills and trainings can be stopped.  

 Predicts defect spillage into production (Umar, 
2013).  

 

 
 

Fig. 1: Overview of software defect prediction (SDP)  
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Most SDP studies plan to accurately classify 
software artifacts (e.g., subsystems or files) as being 
fault-inclined or not. Other SDP studies are occupied 
with anticipating the quantity of defects that may show 
up in software objects, so they can be ranked. Figure 1 
demonstrates a review of the SDP process. To begin 
with, project data is gathered from software repositories 
(e.g., defect and source control repositories). At that 
point, factors are ascertained from the data. Statistical 
and machine learning models are assembled to foresee 
the areas that have a high capability of containing 
defects. At last, the prediction models are assessed 
utilizing different measures, for example, precision, 
recall and explanative power (Shihab, 2012). 

There has been a broad body of work that 
concentrated on SDP. Each of these works utilized its 
own particular special data, dependent and independent 
variables and modelling methods and assessed their 
models in diverse ways. Subsequently, there is a need 
to thoroughly analyze the former work, to better 
understand the assumptions and ramifications of the 
work: 

 
 Data sources and granularity: It reports on the 

sources and the granularity of the data utilized as a 
part of earlier SDP research.  

 Factors: It reports on the factors utilized as a part 
of SDP studies.  

 Models: It reports on the models utilized as a part 
of SDP studies.  

 Performance assessment: It reports on the diverse 
performance assessment methods used to assess the 
SDP models.  

 
Software support is a region of software 

engineering with profound money related ramifications. 
In fact, it was seen that somewhere around 60% and 
90% of the software budgets represent maintenance and 
evolution costs. Moreover, maintenance and evolution 
costs were estimated to represent more than half of 
North American and European software budgets in 
2010. Considerably higher figures were accounted for 
some nations, for example, Norway and Chile. 
Controlling software support costs requires anticipating 
how the framework will develop later on, which 
requires a superior understanding of software evolution 
(Vasilescu et al., 2011).  

A prominent way to deal with surveying software 
viability and foreseeing its advancement includes 
performing estimations on code artifacts. It begins off 
by distinguishing various particular properties of the 
framework under scrutiny and then gathering the 
relating software metrics and analyzing their evolution.  

In any case, metrics are typically characterized at 
micro level (method, class, package), while the analysis 
of maintainability and evolution requires knowledge at 
macro (framework) level. Also, because of security 
reasons, it may be undesirable to disclose metrics 
relating to a solitary designer rather than those relating 
to the whole project. Metrics ought to be aggregated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Software metrics (SLOC) and econometric variables 

(household income in the Ilocos region, the 
Philippines) have distributions with similar shapes 

 
Famous aggregation systems incorporate standard 

summary statistical measures as mean, median, or sum. 
Their benefit is universality (metrics-independence): 
whatever metrics are viewed as, the measures ought to 
be computed similarly. In any case, as the distribution 
of numerous software metrics is skewed, the 
interpretation of such measures gets to be inconsistent.  

On the other hand, distribution fitting comprises of 
selecting a known group of distributions (e.g., log-
normal or exponential) and fitting its parameters to 
estimate the metric qualities seen. The fitted parameters 
can be then seen as totaling these values. Though, the 
fitting process ought to be repeated at whatever point 
another metric is being considered. Besides, it is still a 
matter of contention whether, e.g., software size is 
distributed log-normally or doubles Pareto. It doesn’t 
consider distribution fitting. 

Recently, there is a developing pattern in utilizing 
more advanced aggregation procedures acquired from 
econometrics, where they are utilized to study 
inequality of pay or welfare distributions. The 
inspiration for applying such systems to software 
metrics is twofold. In the first place, as various nations 
have couple of rich and numerous poor, various 
software frameworks have few major or complex parts 
and numerous little or simple ones. Subsequently, it is 
normal both for software metrics and econometric 
variables to have strongly-skewed distributions (Fig. 2). 

Second, the state of these distributions, which show 
to take after a power law, renders the utilization of 
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customary aggregation systems, for example, the 
sample mean and variance flawed. It was seen that 
numerous vital relationships between software artifacts 
take after a power law distribution and it is realized that 
a power law distribution might not have a finite mean 
and variance. These understanding prompted the 
utilization of econometric strategies to aggregation of 
software metrics and to the present interest for these 
aggregation methods. 

In this study, the SDP in class level metric 
aggregation using data mining techniques and the 
efficiency of the classifiers to classify defective 
modules is evaluated. KC1 dataset from the PROMISE 
software dataset repository is used for evaluation. 

 
LITERATURE SURVEY 

 
Wang and Yao (2013) examined the issue of if and 

how class imbalance learning methods can be of 
advantage to SDP for finding better solutions. 
Distinctive sorts of class imbalance learning methods 
has been investigated, including resampling systems, 
threshold moving and ensemble algorithms. Among the 
methods contemplated, AdaBoost.NC demonstrates the 
best general performance regarding the measures 
including balance, G-mean and Area under the Curve 
(AUC). To further enhance the performance of the 
algorithm and facilitate its utilization in SDP, it 
proposed a dynamic rendition of AdaBoost.NC, which 
modifies its parameter consequently during training. 
Without the need to pre-define any parameters, it is 
more successful and effective than the original 
AdaBoost.NC.  

Pelayo and Dick (2012) investigated two 
noteworthy stratification options (under- and over-
sampling) for SDP using Analysis of Variance. The 
analysis covers a few cutting edge SDP datasets using a 
factorial design. The main impact of under-sampling is 
significant at a = 0.05 as the interaction in the middle of 
under-and over-sampling. In any case, the main impact 
of over-sampling was not significant.  

Rubinić et al. (2015) reported preliminary results 
obtained by using a Matlab variation of NSGA-II in 
combination with four straightforward voting 
methodologies on three consequent arrivals of the 
Eclipse Plug-in Development Environment (PDE) 
project. Preliminary results indicated that the voting 
system may influence SDP performances.  

Fehlmann and Kranich (2014) concentrated on the 
predictive property of Exponentially Weighted Moving 
Average (EWMA) Q control diagrams and investigated 
whether the predictive property was smart for 
monitoring and controlling the SDP. Results of initial 
trials are reported.  

Can et al. (2013) proposed a SDP model using 
Particle Swarm Optimization (PSO) and Support Vector 

Machine (SVM) named P-SVM model. The creators 
used PSO algorithm to compute best SVM parameters 
and adopts optimized SVM model to predict software 
defect. P-SVM model and three other prediction models 
predict software defects in JM1 data set on a test 
premise, the outcomes showing that P-SVM has higher 
prediction accuracy contrasted with BP Neural Network 
model, SVM and GA-SVM models.  

Khan et al. (2014) proposed a procedure to choose 
best attributes set to enhance SDP accuracy. Software 
quality attributes influence the defect prediction 
model's performance and effectiveness. The new 
method is assessed using NASA metric data repository 
data sets and exhibits good accuracy using basic 
algorithm.  

The best size of feature subset to assemble a 
prediction model, to be demonstrated that feature 
selection builds up SDP model was deliberated about 
by Wang et al. (2012b). Mutual information is an 
outstanding importance indicator among variables and 
utilized as a part of the new feature selection algorithm. 
A nonlinear factor for assessment capacity was 
introduced for feature selection to enhance 
performance. Consequences of the feature selection 
algorithm were accepted by varied machine learning 
methods. Test results have shown that all classifiers 
accomplished high accuracy.  

Wang et al. (2012a) proposed three new defect 
prediction models based on C4.5 model. Spearman's 
rank correlation coefficient was introduced to pick root 
node of decision tree which enhances models on defects 
prediction. An exploratory plan was implemented to 
check the enhanced models effectiveness and this paper 
analyzed prediction accuracies of existing and enhanced 
models. Results demonstrated that enhanced models 
decreased decision tree size by 49.91% by and large 
and increased prediction accuracy by 4.58% and 4.87% 
on two modules in the investigation.  

Ma et al. (2012) proposed a algorithm called 
Transfer Naive Bayes (TNB), which utilized 
information of all training data features. This 
arrangement estimates test data distribution and 
transfers cross-company data information to training 
data weights. The defect prediction model is based on 
the weighted data. This article exhibits a theoretical 
analysis of relative methods, showing data sets' test 
results from different associations. It indicates that TNB 
is more precise regarding AUC, with lessened runtime 
than other methods.  

Najadat and Alsmadi (2012) proposed a novelr 
model in view of Ridor algorithm to predict fault in 
modules. They additionally tested the distinctive 
classification methods on the data sets given by NASA. 
The outcomes demonstrated that Ridor algorithm was 
superior to the existing method as far as accuracy and 
extraction of number of rules.  
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Oliveira et al. (2014) proposed the idea of relative 
thresholds for evaluating metrics data following heavy-
tailed distributions. The proposed thresholds are 
relative on the grounds that they expect that metric 
thresholds ought to be followed by most source code 
elements, yet that it was additionally normal to have 
been number of elements in the "long-tail" that don't 
take after as far as possible. The creators depicted an 
experimental method for extracting relative thresholds 
from genuine frameworks. It likewise reports a study on 
applying this method in a corpus with 106 frameworks.  

Finlay et al. (2014) investigated the ideas of 
representing a software development project as a 
procedure that results in the making of a data stream. 
Protsenko and Müller (2014) proposed another 
methodology for the static identification of Android 
malware by means of machine learning that depends on 
software complexity metrics, for example, McCabe's 
Cyclomatic Complexity and the Chidamber and 
Kemerer Metrics Suite.  

Khoshgoftaar et al. (2014) proposed an iterative 
feature selection approach, which repeated data 
sampling (with a specific end goal to address class 
imbalance) and then by feature selection (to address 
high-dimensionality), lastly it performed an 
accumulation step which combines the ranked feature 
records from the different cycles of sampling. This 
methodology was intended to find a ranked feature list 
which was especially compelling on the more balanced 
dataset resulting from sampling while minimizing the 
danger of losing data through the sampling step and 
missing imperative features.  

Xia et al. (2013) used different feature selection 
and dimensionality reduction ways to determine most 
essential software metrics. Three distinct classifiers, 
Naive Bayes, SVM and decision tree were utilized. On 
the NASA data, similar examination results 
demonstrate that instead of 22 or more metrics, under 
10 metrics guarantee better performance. 
 

METHODOLOGY 
 

In this section, KCI dataset are used. The Naïve 
Bayes, KNN, C4.5 and MLPNN are used for SDP. 
 
KC1 dataset: KC1 dataset is a NASA Metrics Data 
Program checking/enhancing predictive software 
engineering models. KC1 is a C++ framework 
executing storage management for ground data 
receipt/preparing containing of McCabe and Halstead 
features code extractors and module based measures 
(Selvaraj and Thangaraj, 2013).  
 
Defect detectors are computed (Table 1): Accuracy,   
identification probability (pd) or recall, precision (prec), 
probability of false alarm (pf) and effort are figured as:  

Table 1: Defect detectors 
Detection Prediction of classifier 
A No defects and module has no error 
B No defects and module has error 
C A few defects and module has no error 
D A few defects and module has error 

 
a d

Accuracy
a b c d




                  (1) 
 

d
recall

b d


                 (2) 
 

c
pf

a c


                  (3) 
 

d
prec

c d


                  (4) 
 

. .c LO C d LO C
effort

TotalLO C




               (5) 
 

KC1 dataset has 2109 instances and 22 shifted 
traits including 5 distinctive LOC, 3 McCabe metrics, 
12 Halstead metrics, a branch count and 1 objective 
field. Dataset's characteristic data is: all out operands, 
outline complexity, McCabe's Line count of Code 
(LOC), Cyclomatic complexity, program length, effort, 
Halstead, class and others.  
Examples from dataset:  
 

Example 1 - 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3, 
1.3, 1.3, 1.3, 2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2, 1.4, false 
Example 2 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, true 
Example 3 - 83, 11, 1, 11, 171, 927.89, 0.04, 23.04, 
40.27, 21378.61, 0.31, 1187.7,65, 10, 6, 0, 18, 25, 
107, 64, 21, true 

 
Naïve bayes classifier: Bayesian Classifiers are 
statistical classifiers. The probability that a given record 
in the dataset has a place with a specific class can be 
anticipated with the assistance of Bayesian classifiers, 
utilizing the class enrollment probabilities. Guileless 
Bayes classification depends on Baye's theorem. Here 
the ideal tenets were given as information to the 
gullible bayes classifier. This sort of classifier has the 
point of preference that it is anything but difficult to 
execute and produce great results. Studies looking at 
classification algorithms have observed innocent 
Bayesian classifier to be similar in execution with 
decision tree and chose neural network classifiers 
(Kumaresh and Baskaran, 2015).  

Bayes theorem gives a method for figuring the 
posterior probability, P (c | x), from P(c), P(x) and P (x | 
c). Innocent Bayes classifier accepts that the impact of 
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the estimation of an indicator (x) on a given class (c) is 
autonomous of the estimations of different indicators. 
This assumption is called class conditional 
independence.  

The posterior probability can be ascertained by in 
the first place, building a frequency table for every trait 
against the objective. At that point, changing the 
frequency tables to probability tables and at last uses 
the Naive Bayesian mathematical statement to ascertain 
the posterior probability for every class. The class with 
the most elevated posterior probability is the result of 
expectation.  

Consider a supervised learning issue in which it 
wish to inexact an obscure target function :f X Y , 

or proportionally P(Y|X). To start, it will accept Y is a 
boolean-esteemed random variable and X is a vector 
containing n Boolean properties. As it were,

1 2, , ....., nX X X X   , where Xi is the boolean 

random variable meaning the ith quality of X (Mitchell, 
2006).  

Applying Bayes principle, (Y y | X)iP  that can be 

spoken to as: 
 

( | ) ( )
( | )

( | ) ( )
k i i

i k
k i ij

P X x Y y P Y y
P Y y X x

P X x Y y P Y y

  
  

      (6) 
 
where, ym means the mth conceivable quality for Y, xk 
signifies the kth conceivable vector esteem for X and 
where the summation in the denominator is over every 
lawful estimation of the random variable Y.  

One approach to learn P(Y|X) is to utilize the 
preparation data to gauge P(Y|X) and P(Y). It can then 
utilize these appraisals, together with Bayes principle 
above, to decide (Y | X x )kP  for any new instance 

xk.  
The Naive Bayes algorithm is a classification 

algorithm in view of Bayes decide that accept the 
qualities 

1....... nX X are all conditionally autonomous of 

each other, given Y. The estimation of this assumption 
is that it significantly improves the representation of 
P(X|Y) and the issue of assessing it from the 
preparation data. Consider, for instance, the situation 
where 

1 2,X X X  . For this situation: 

 
1 2

1 2 2

1 2

( | ) ( , | )

             ( | , ) ( | )

             ( | ) ( | )

P X Y P X X Y

P X X Y P X Y

P X Y P X Y



                             (7) 

 
where the second line takes after from a general 
property of probabilities and the third line takes after 
straightforwardly from the above meaning of 
conditional independence. 
 

K-Nearest Neighbor (KNN): The KNN algorithm is a 
strategy for classifying items taking into account 
nearest preparing data in the feature space. KNN is a 
kind of instance-based learning. The KNN algorithm is 
amongst the least difficult of all machine learning 
algorithms. Yet, the accuracy of the KNN algorithm can 
be seriously corrupted by the vicinity of loud or 
unessential features, or if the feature scales are not 
reliable with their significance (Soni et al., 2011).  

Assume every example in the data set has n 
ascribes which it consolidates to frame a n-dimensional 
vector:  

 

1 2( , ,........, )nX x x x  
 
These n credits are thought to be the autonomous 

variables.  
Every specimen additionally has another property, 

signified by y (the indigent variable), whose quality 
relies on upon the other n properties x. It accept that y 
is a straight out variable and there is a scalar function, f, 
which doles out a class, y = f(x) to each such vectors 
(Leung, 2007).  

The thought in KNN techniques is to distinguish k 
tests in the preparation set whose free variables x are 
like u and to utilize these k tests to classify this new 
example into a class, v. In the event that all it are 
readied to expect is that f is a smooth function, a 
sensible thought is to search for tests in the preparation 
data that are close it (regarding the free variables) and 
then to process v from the estimations of y for these 
examples.  
The Euclidean distance between the focuses x and u is: 

 

2

1

( , ) ( )
n

i i
i

d x u x u


 
                                           (8) 

 
It will analyze different approaches to quantify 

distance between focuses in the space of free indicator 
variables when it talks about bunching strategies.  

The easiest case is k = 1 where it discover the 
example in the preparation set that is nearest (the 
closest neighbor) to u and set v = y where y is the class 
of the closest neighbouring specimen. 

C4.5 is classification algorithm used to produce a 
decision tree; this is an augmentation of Quinlan's ID3 
algorithm. The decision trees delivered by C4.5 
technique can be utilized for forecast, which is the 
reason C4.5 is often alluded to as a statistical classifier. 
C4.5 constructs decision trees from a preparation data 
as utilizing the idea of data entropy. The historical data 
or preparing data is a set of classified examples. In this 
strategy for classification at every node of the decision 
tree,   C4.5  technique  picks  one  characteristic  of   the  
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Fig. 3: Multilayer perceptrons architecture 
 
preparation data that most adequately parts the data sets 
into subsets and this procedure is rehashed until all the 
datasets are not secured.  

Decision tree rule is the normalized data pick up 
that outcome from picking a most suitable property for 
part the data sets. The characteristic which have the 
most astounding data increase is decided for settling on 
decision. The decision tree algorithm then recourses 
this procedure on the smaller split sub records. In 
building or preparing a decision tree it use preparing set 
or historical data. After decision tree created it can 
classify new data that have obscure class property 
estimation by evaluating the different probability 
values.  

Decision trees classify software defective modules 
by utilizing a progression of tenet. The decision tree has 
fundamental segments, for example, the decision node, 
branches and clears out. Information space inside of 
decision tree is divided into mutually exclusive areas 
and a quality or an activity or a name is doled out to 
every district to portray its data focuses. The 
component of decision tree is straightforward and 
decision tree structure can be taken after to perceive 
how the decision is made. A large portion of the 
decision trees development algorithm comprises of two 
stages. In the first stage, change huge size tree is 
developed and then the tree is pruned in the second 
means to keep away from over fitting issue. At that 
point the pruned tree is used for classification reason 
(Han et al., 2011).  

The algorithm builds a decision tree beginning 
from a preparation set T S, which is a set of cases, or 

tuples in the database wording. Every case indicates 
values for a gathering of characteristics and for a class. 
Every property may have either discrete or persistent 
qualities. In addition, the unique quality obscure is 
permitted, to indicate unspecified qualities. The class 
may have just discrete qualities. It indicatesC1, …….., 
CNClass with the estimations of the class.  

A decision tree is a tree data structure comprising 
of decision nodes and takes off. A leaf determines class 
esteem. A decision node indicates a test more than one 
of the traits, which is known as the property chose at 
the node. For every conceivable result of the test, a 
youngster node is available. Specifically, the test on a 
discrete quality A has h conceivable results

1,......., hA d A d   , where 
1,........ hd d are the known 

qualities for property A. The test on a ceaseless 
property has two conceivable results   A t and A t  , 
where t is a quality decided at the node and called the 
edge (Ruggieri, 2002).  

A decision tree is utilized to classify a case, i.e., to 
dole out a class worth to a case contingent upon the 
estimations of the traits of the case. Truth be told, way 
from the root to a leaf of the decision tree can be taken 
after in view of the property estimations of the case. 
The class determined at the leaf is the class anticipated 
by the decision tree. An execution measure of a 
decision tree over a set of cases is called classification 
error. It is characterized as the rate of misclassified 
cases, i.e., of cases whose anticipated classes vary from 
the genuine classes.  
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With a divide and conquers technique, the C4.5 
algorithm develops the decision tree. In C4.5, every 
node in a tree is connected with a set of cases. 
Additionally, cases are allocated weights to consider 
obscure property estimations. Toward the starting, just 
the root is available, with related the entire preparing 
set T S and with all case weights equivalent to 1.0. At 
every node the accompanying divide and conquer 
algorithm (see Program 1) is executed, attempting to 
abuse the locally best decision, with no backtracking 
permitted. 
 
Program 1: Pseudo-code of the C4.5 Tree-
Construction Algorithm: 
 

" ( )

            (1) ( );

            (2)    

                          ;

                      ;

            (3)  

FormTree T

ComputeClassFrequency T

if OneClass or FewCases

return a leaf

create a decision node N

ForEach Att

'

 

                       ( );

            (4) .   ;

            (5)  .   

                      ;

             (6)    

ribute A

ComputeGain A

N test AttributeWithBestGain

if N test is continuous

find Threshold

ForEach T in t



'

'

   

             (7)    

                              

                     

              (8)     (  );

              (9)   

he splitting of T

if T is Empty

Child of N is a leaf

else

Child of N FormTree T

ComputeErrors of N


;

                     "return N

 

 
Multi-Layer Perceptron Neural Networks 
(MLPNN): MLPNN is a kind of feed-forward neural 
network. The multilayer neural network structural 
engineering can have any number of layers. Figure 3 
show a network structural engineering with 4 layers; 
first layer is called info layer and last layer is called 
yield layer; in the middle of first and last layers which 
are called hidden layers (Askari and Bardsiri, 2014; 
Joy, 2011). The quantity of cells every layer can have is 
controlled by experimentation system. In multilayer 
perceptron neural networks, every neuron in a layer is 
connected with the past layer's all neurons. Such 
networks are called 'completely related' networks. The 
information layer is transformer and an apparatus for 
setting up the data. The last layer-yield layer-
incorporates the qualities anticipated by the network 
and registers model yield. The center layers-hidden 
layers-that are framed by number cruncher neurons are 

the place the data is handled. Network yield is acquired 
by: 
 

 1

n

i i j ij ij
Y f X W b


                 (9) 

 
where, Yi speaks to network yield, Xi looks like 
network information, Wij is the association weights in 
the middle of data and yield nodes, Bi is the 
predisposition and Fi is the exchange function.  

A MLP is a supervised learning approach and 
included feed forward artificial NN model. The sets of 
info data in this methodology map onto a set of fitting 
yields. A MLP included coordinated diagram of 
different layers of nodes and they are completely joined 
with the following one inside of every node. Every data 
node is called as neuron with a nonlinear enactment 
function. The sigmoidal units of hidden layer figure out 
how to inexact the functions. For preparing reason, 
MLP uses a strategy got back to Propagation (BP) 
(Alrajeh and Alzohairy, 2012). 

MLPNN prepared with BP algorithm have been 
ended up being helpful in tackling a wide assortment of 
genuine issues in different spaces. Notwithstanding 
various augmentations and alterations, for example, the 
increasing speed of the meeting rate, uncommon 
learning standards and data representation plans, 
distinctive error functions, option exchange functions of 
the neurons, weight appropriation among others, to 
enhance the outcomes or to accomplish some required 
properties of the prepared networks, one key 
component i.e., the BP, still in light of the gradient 
descent algorithm to minimize the network error, has 
been hardly changed (Collobert and Bengio, 2004).  

Typically a gradient descent algorithm is utilized to 
modify the NN weight by contrasting the objective and 
real network results when a set of inputs are presented 
in the network, yet in spite of its prevalence in the 
preparation of MLP, BP has a few disadvantages. It 
relies on upon the state of the error surface, the 
estimations of the randomly instated weights and some 
different parameters, that is, BP all that much relies on 
upon great, issue particular parameter settings. 
Additionally there is the inclination of the prepared 
neural network getting stuck in local minima.  
 

RESULTS AND DISCUSSION 
 

KC1 dataset is used for evaluating the efficiency of 
the various classifiers for identifying defects in the 
modules. In this section, the classification accuracy, 
precision, recall and F measure are presented from 
Table 2 and Fig. 4 to 7. 

 
Table 2: Summary of results 
Classifiers used Classification accuracy % Precision Recall F Measure
Naïve bayes 87.59 0.7862 0.8192 0.8009
K nearest neighbor 86.9 0.7759 0.8000 0.7869
C4.5 90.34 0.8315 0.8510 0.8407
Neural network 92.41 0.8677 0.8787 0.8731
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Fig. 4: Classification accuracy 
 

 
 

Fig. 5: Precision 
 

 

 
Fig. 6: Recall 

 
From the Table 2 and Fig. 4, it can be observed that 

the Neural Network method improves classification 
accuracy by 5.35%, 6.14% and 2.26% when compared 
with the Naïve Bayes, K Nearest Neighbor and C4.5 
methods. 

From the Table 2 and Fig. 5, it can be observed that 
the Neural Network method increased precision by 
9.85%, 11.17% and 4.26% when compared with the 
Naïve Bayes, K Nearest Neighbor and C4.5 methods. 

From the Table 2 and Fig. 6, it can be observed that 
the Neural Network method increased recall by 7.00, 
9.37 and 3.20% when compared with the Naïve Bayes, 
K Nearest Neighbor and C4.5 methods. 

From the Table 2 and Fig. 7, it can be observed that 
the Neural Network method increased F Measure by 
8.62, 10.38and 3.71% when compared with the Naïve 
Bayes, K Nearest Neighbor and C4.5 methods. 
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Fig. 7: F Measure 
 

CONCLUSION 
 

Software engineers need to distinguish defective 
software modules to enhance software metrics 
framework quality constantly. In this study, 
examinations are done for assessing the classification 
accuracy, precision, recall and f measure for classifiers 
like Naive Bayes, KNN, C4.5 and NN for defect 
prediction. The classifiers are assessed for KC1 dataset. 
Experimental results demonstrate that the NN are 
efficient for the prediction of defects. The classification 
accuracy of NN classifier performs better by 5.35, 6.14 
and 2.26% when compared with the Naïve Bayes, KNN 
and C4.5 techniques. Likewise precision, recall and f 
measure is improved. 
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