
Research Journal of Applied Sciences, Engineering and Technology 13(7): 544-554, 2016
DOI:10.19026/rjaset.13.3014
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2016 Maxwell Scientific Publication Corp.
Submitted: March 14, 2016 Accepted: June 25, 2016 Published: October 05, 2016

Corresponding Author: Reddi Kiran Kumar, Department of Computer Science, Krishna University, Machilipatnam, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

544

Research Article

Software Defect Prediction in Class Level Metric Aggregation Using Data
Mining Techniques

Reddi Kiran Kumar and S.V. Achuta Rao

Department of Computer Science, Krishna University, Machilipatnam, India

Abstract: Aim of study software defect is a flaw, miscalculation, or failure, in a computer program or framework
delivering an inappropriate or surprising result, or making it perform in an unintended way. Software Defect
Prediction (SDP) finds defective modules in software. The final product ought to have as few defects as possible to
create top notch software. Early software defects discovery prompts diminished development costs and rework effort
and better software. Software metrics guarantee quantitative methods to survey software quality. Software metrics
are helpful to software process and product metrics. Thus, a defect prediction study is critical to guarantee quality
software and software metric aggregation. In this study, the efficiency of classifier for SDP is assessed. Diverse
classifiers like Naïve Bayes, K Nearest Neighbor (KNN), C4.5 and Multilayer Perceptrons Neural Network
(MLPNN) are assessed for SDP.

Keywords: C4.5 and Multilayer Perceptrons Neural Network (MLPNN), K Nearest Neighbor (KNN), Naïve Bayes,

Software Defect Prediction (SDP), software metric

INTRODUCTION

Software metrics is characterized by the
measurement of some property of a segment of
software or its stipulations. Software metrics give
quantitative methods to evaluating the software quality.
Software metrics can be characterized as: The ceaseless
use of estimation based strategies to the software
development process and its products to supply
meaningful and convenient Management Information
(MI) together with the utilization of those procedures to
enhance its products and that process (Verner and Tate,
1992). Software metrics are valuable to the software
process and product metrics. Different grouping of
software metrics are as per the following:

Software process metrics: Software process metrics
includes measuring of properties of the development
process and otherwise called administration metrics.
These metrics incorporate the cost, exertion, reuse,
methodology and advancement metrics. Likewise it
decides the magnitude, period and number of errors
found amid testing period of the Software Development
Life Cycle (SDLC).

Software product metrics: Software product metrics
includes measuring the properties of the software or
otherwise called quality metrics. These metrics
incorporate the trustworthiness, usability, functionality,

performance, effectiveness, transportability, reusability,
price, magnitude, difficulty and style metrics. These
metrics measure the difficulty of the software design,
magnitude or documentation made (Debbarma et al.,
2013).

Software metrics are prized entity in the whole
software life cycle. They give estimation to the
software development, including software requirement
documents, designs, programs and tests. Quick
developments of large scaled software have advanced
difficulty that makes the quality hard to control. The
fruitful implementation of the control over software
quality requires software metrics. The ideas of software
metrics are lucid, comprehensible and well established
and numerous metrics identified with the product
quality have been created and utilized.

Process metrics, project metrics and product
metrics (Honglei et al., 2009) are three kinds of
software metrics. Process metrics chief goals are the
time taken for the project, the expense to be paid and
the kind of methodology utilized. Project metrics are
utilised to check project position. It explains the project
features and implementation. Product metrics explains
the characteristics of the software project at all times of
its progress (Rawat et al., 2012).

Software metrics has been utilized to depict the
difficulty of the program and, to evaluate software
development time. “How to predict the quality of
software through software metrics, before it is being

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

545

deployed” is an important inquiry, setting off the
substantial research endeavours to reveal a response to
this inquiry. Many papers support statistical models and
metrics which try to answer the inquiry. Commonly,
software metrics clarify quantitative estimations of the
software product or its specifications (Rawat and
Dubey, 2012).

Software Quality Assurance (SQA) is the
arrangement of activities that guarantee that a software
framework meets a particular quality level.
Associations are constantly inspired by approaches to
gauge the quality of their software before it is
discharged. To encourage these organizational interests,
specialists have proposed a huge number of quality
measures and constructed statistical models, which
influence these measures, to foresee defect-prone areas
of software. For instance, some earlier work
concentrated on anticipating files that contain one or
more post-release or security defects (Fenton and Neil,
1999). The line of examination concerned with building
such expectation models is called SDP.

Specifically, SDP can be characterized as the
identification of software areas (i.e., subsystems, files
or functions) that quality affirmation endeavours ought
to concentrate on (i.e., audit or test). Including SDP in
the development process offers experts in the decision-
making process indicating which areas have a high risk
(i.e., high anticipated probability) of having a defect.
Now, the restricted validation and verification

endeavours can becentred on these areas (Arisholm
et al., 2010).

It is imperative to take note of that there exist a
wide range of ways to accomplish high software
quality. SDP is one methodology; it is positively not by
any means the only approach. For instance, a lot of
exploration work uses model checking and static
examination to discover defects in software
frameworks. Other work concentrates on fault
localization, in which contrasts between the inputs of
failing and passing tests are utilized to find errors in the
source code. The primary distinction between these
different lines of examination and SDP is that they
recognize defects in the present code base (i.e., the code
base being dissected). SDP warns about future defect-
inclined zones.
The aims of SDP are:

 Defect forecast enhances efficiency of the testing

stage notwithstanding offering engineers some
assistance with evaluating the quality and defect
proneness of their software product.

 Help managers in allotting resources, rescheduling,
training plans and budget distributions.

 Depending on the forecasted trends, resources can
be proficiently increased or decreased and Gaps in
Skills and trainings can be stopped.

 Predicts defect spillage into production (Umar,
2013).

Fig. 1: Overview of software defect prediction (SDP)

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

546

Most SDP studies plan to accurately classify
software artifacts (e.g., subsystems or files) as being
fault-inclined or not. Other SDP studies are occupied
with anticipating the quantity of defects that may show
up in software objects, so they can be ranked. Figure 1
demonstrates a review of the SDP process. To begin
with, project data is gathered from software repositories
(e.g., defect and source control repositories). At that
point, factors are ascertained from the data. Statistical
and machine learning models are assembled to foresee
the areas that have a high capability of containing
defects. At last, the prediction models are assessed
utilizing different measures, for example, precision,
recall and explanative power (Shihab, 2012).

There has been a broad body of work that
concentrated on SDP. Each of these works utilized its
own particular special data, dependent and independent
variables and modelling methods and assessed their
models in diverse ways. Subsequently, there is a need
to thoroughly analyze the former work, to better
understand the assumptions and ramifications of the
work:

 Data sources and granularity: It reports on the

sources and the granularity of the data utilized as a
part of earlier SDP research.

 Factors: It reports on the factors utilized as a part
of SDP studies.

 Models: It reports on the models utilized as a part
of SDP studies.

 Performance assessment: It reports on the diverse
performance assessment methods used to assess the
SDP models.

Software support is a region of software

engineering with profound money related ramifications.
In fact, it was seen that somewhere around 60% and
90% of the software budgets represent maintenance and
evolution costs. Moreover, maintenance and evolution
costs were estimated to represent more than half of
North American and European software budgets in
2010. Considerably higher figures were accounted for
some nations, for example, Norway and Chile.
Controlling software support costs requires anticipating
how the framework will develop later on, which
requires a superior understanding of software evolution
(Vasilescu et al., 2011).

A prominent way to deal with surveying software
viability and foreseeing its advancement includes
performing estimations on code artifacts. It begins off
by distinguishing various particular properties of the
framework under scrutiny and then gathering the
relating software metrics and analyzing their evolution.

In any case, metrics are typically characterized at
micro level (method, class, package), while the analysis
of maintainability and evolution requires knowledge at
macro (framework) level. Also, because of security
reasons, it may be undesirable to disclose metrics
relating to a solitary designer rather than those relating
to the whole project. Metrics ought to be aggregated.

Fig. 2: Software metrics (SLOC) and econometric variables

(household income in the Ilocos region, the
Philippines) have distributions with similar shapes

Famous aggregation systems incorporate standard

summary statistical measures as mean, median, or sum.
Their benefit is universality (metrics-independence):
whatever metrics are viewed as, the measures ought to
be computed similarly. In any case, as the distribution
of numerous software metrics is skewed, the
interpretation of such measures gets to be inconsistent.

On the other hand, distribution fitting comprises of
selecting a known group of distributions (e.g., log-
normal or exponential) and fitting its parameters to
estimate the metric qualities seen. The fitted parameters
can be then seen as totaling these values. Though, the
fitting process ought to be repeated at whatever point
another metric is being considered. Besides, it is still a
matter of contention whether, e.g., software size is
distributed log-normally or doubles Pareto. It doesn’t
consider distribution fitting.

Recently, there is a developing pattern in utilizing
more advanced aggregation procedures acquired from
econometrics, where they are utilized to study
inequality of pay or welfare distributions. The
inspiration for applying such systems to software
metrics is twofold. In the first place, as various nations
have couple of rich and numerous poor, various
software frameworks have few major or complex parts
and numerous little or simple ones. Subsequently, it is
normal both for software metrics and econometric
variables to have strongly-skewed distributions (Fig. 2).

Second, the state of these distributions, which show
to take after a power law, renders the utilization of

400

300

200

100

0
0 500 1000 1500 2000 2500 3000

SLOC per class

Fr
eq

ue
nc

y

600

300

100

0
0

Income

F
re

qu
en

cy

500000 1500000

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

547

customary aggregation systems, for example, the
sample mean and variance flawed. It was seen that
numerous vital relationships between software artifacts
take after a power law distribution and it is realized that
a power law distribution might not have a finite mean
and variance. These understanding prompted the
utilization of econometric strategies to aggregation of
software metrics and to the present interest for these
aggregation methods.

In this study, the SDP in class level metric
aggregation using data mining techniques and the
efficiency of the classifiers to classify defective
modules is evaluated. KC1 dataset from the PROMISE
software dataset repository is used for evaluation.

LITERATURE SURVEY

Wang and Yao (2013) examined the issue of if and

how class imbalance learning methods can be of
advantage to SDP for finding better solutions.
Distinctive sorts of class imbalance learning methods
has been investigated, including resampling systems,
threshold moving and ensemble algorithms. Among the
methods contemplated, AdaBoost.NC demonstrates the
best general performance regarding the measures
including balance, G-mean and Area under the Curve
(AUC). To further enhance the performance of the
algorithm and facilitate its utilization in SDP, it
proposed a dynamic rendition of AdaBoost.NC, which
modifies its parameter consequently during training.
Without the need to pre-define any parameters, it is
more successful and effective than the original
AdaBoost.NC.

Pelayo and Dick (2012) investigated two
noteworthy stratification options (under- and over-
sampling) for SDP using Analysis of Variance. The
analysis covers a few cutting edge SDP datasets using a
factorial design. The main impact of under-sampling is
significant at a = 0.05 as the interaction in the middle of
under-and over-sampling. In any case, the main impact
of over-sampling was not significant.

Rubinić et al. (2015) reported preliminary results
obtained by using a Matlab variation of NSGA-II in
combination with four straightforward voting
methodologies on three consequent arrivals of the
Eclipse Plug-in Development Environment (PDE)
project. Preliminary results indicated that the voting
system may influence SDP performances.

Fehlmann and Kranich (2014) concentrated on the
predictive property of Exponentially Weighted Moving
Average (EWMA) Q control diagrams and investigated
whether the predictive property was smart for
monitoring and controlling the SDP. Results of initial
trials are reported.

Can et al. (2013) proposed a SDP model using
Particle Swarm Optimization (PSO) and Support Vector

Machine (SVM) named P-SVM model. The creators
used PSO algorithm to compute best SVM parameters
and adopts optimized SVM model to predict software
defect. P-SVM model and three other prediction models
predict software defects in JM1 data set on a test
premise, the outcomes showing that P-SVM has higher
prediction accuracy contrasted with BP Neural Network
model, SVM and GA-SVM models.

Khan et al. (2014) proposed a procedure to choose
best attributes set to enhance SDP accuracy. Software
quality attributes influence the defect prediction
model's performance and effectiveness. The new
method is assessed using NASA metric data repository
data sets and exhibits good accuracy using basic
algorithm.

The best size of feature subset to assemble a
prediction model, to be demonstrated that feature
selection builds up SDP model was deliberated about
by Wang et al. (2012b). Mutual information is an
outstanding importance indicator among variables and
utilized as a part of the new feature selection algorithm.
A nonlinear factor for assessment capacity was
introduced for feature selection to enhance
performance. Consequences of the feature selection
algorithm were accepted by varied machine learning
methods. Test results have shown that all classifiers
accomplished high accuracy.

Wang et al. (2012a) proposed three new defect
prediction models based on C4.5 model. Spearman's
rank correlation coefficient was introduced to pick root
node of decision tree which enhances models on defects
prediction. An exploratory plan was implemented to
check the enhanced models effectiveness and this paper
analyzed prediction accuracies of existing and enhanced
models. Results demonstrated that enhanced models
decreased decision tree size by 49.91% by and large
and increased prediction accuracy by 4.58% and 4.87%
on two modules in the investigation.

Ma et al. (2012) proposed a algorithm called
Transfer Naive Bayes (TNB), which utilized
information of all training data features. This
arrangement estimates test data distribution and
transfers cross-company data information to training
data weights. The defect prediction model is based on
the weighted data. This article exhibits a theoretical
analysis of relative methods, showing data sets' test
results from different associations. It indicates that TNB
is more precise regarding AUC, with lessened runtime
than other methods.

Najadat and Alsmadi (2012) proposed a novelr
model in view of Ridor algorithm to predict fault in
modules. They additionally tested the distinctive
classification methods on the data sets given by NASA.
The outcomes demonstrated that Ridor algorithm was
superior to the existing method as far as accuracy and
extraction of number of rules.

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

548

Oliveira et al. (2014) proposed the idea of relative
thresholds for evaluating metrics data following heavy-
tailed distributions. The proposed thresholds are
relative on the grounds that they expect that metric
thresholds ought to be followed by most source code
elements, yet that it was additionally normal to have
been number of elements in the "long-tail" that don't
take after as far as possible. The creators depicted an
experimental method for extracting relative thresholds
from genuine frameworks. It likewise reports a study on
applying this method in a corpus with 106 frameworks.

Finlay et al. (2014) investigated the ideas of
representing a software development project as a
procedure that results in the making of a data stream.
Protsenko and Müller (2014) proposed another
methodology for the static identification of Android
malware by means of machine learning that depends on
software complexity metrics, for example, McCabe's
Cyclomatic Complexity and the Chidamber and
Kemerer Metrics Suite.

Khoshgoftaar et al. (2014) proposed an iterative
feature selection approach, which repeated data
sampling (with a specific end goal to address class
imbalance) and then by feature selection (to address
high-dimensionality), lastly it performed an
accumulation step which combines the ranked feature
records from the different cycles of sampling. This
methodology was intended to find a ranked feature list
which was especially compelling on the more balanced
dataset resulting from sampling while minimizing the
danger of losing data through the sampling step and
missing imperative features.

Xia et al. (2013) used different feature selection
and dimensionality reduction ways to determine most
essential software metrics. Three distinct classifiers,
Naive Bayes, SVM and decision tree were utilized. On
the NASA data, similar examination results
demonstrate that instead of 22 or more metrics, under
10 metrics guarantee better performance.

METHODOLOGY

In this section, KCI dataset are used. The Naïve
Bayes, KNN, C4.5 and MLPNN are used for SDP.

KC1 dataset: KC1 dataset is a NASA Metrics Data
Program checking/enhancing predictive software
engineering models. KC1 is a C++ framework
executing storage management for ground data
receipt/preparing containing of McCabe and Halstead
features code extractors and module based measures
(Selvaraj and Thangaraj, 2013).

Defect detectors are computed (Table 1): Accuracy,
identification probability (pd) or recall, precision (prec),
probability of false alarm (pf) and effort are figured as:

Table 1: Defect detectors
Detection Prediction of classifier
A No defects and module has no error
B No defects and module has error
C A few defects and module has no error
D A few defects and module has error

a d

Accuracy
a b c d




   (1)

d
recall

b d


 (2)

c
pf

a c


 (3)

d
prec

c d


 (4)

. .c LO C d LO C
effort

TotalLO C




 (5)

KC1 dataset has 2109 instances and 22 shifted
traits including 5 distinctive LOC, 3 McCabe metrics,
12 Halstead metrics, a branch count and 1 objective
field. Dataset's characteristic data is: all out operands,
outline complexity, McCabe's Line count of Code
(LOC), Cyclomatic complexity, program length, effort,
Halstead, class and others.
Examples from dataset:

Example 1 - 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3,
1.3, 1.3, 1.3, 2, 2, 2, 2, 1.2, 1.2, 1.2, 1.2, 1.4, false
Example 2 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, true
Example 3 - 83, 11, 1, 11, 171, 927.89, 0.04, 23.04,
40.27, 21378.61, 0.31, 1187.7,65, 10, 6, 0, 18, 25,
107, 64, 21, true

Naïve bayes classifier: Bayesian Classifiers are
statistical classifiers. The probability that a given record
in the dataset has a place with a specific class can be
anticipated with the assistance of Bayesian classifiers,
utilizing the class enrollment probabilities. Guileless
Bayes classification depends on Baye's theorem. Here
the ideal tenets were given as information to the
gullible bayes classifier. This sort of classifier has the
point of preference that it is anything but difficult to
execute and produce great results. Studies looking at
classification algorithms have observed innocent
Bayesian classifier to be similar in execution with
decision tree and chose neural network classifiers
(Kumaresh and Baskaran, 2015).

Bayes theorem gives a method for figuring the
posterior probability, P (c | x), from P(c), P(x) and P (x |
c). Innocent Bayes classifier accepts that the impact of

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

549

the estimation of an indicator (x) on a given class (c) is
autonomous of the estimations of different indicators.
This assumption is called class conditional
independence.

The posterior probability can be ascertained by in
the first place, building a frequency table for every trait
against the objective. At that point, changing the
frequency tables to probability tables and at last uses
the Naive Bayesian mathematical statement to ascertain
the posterior probability for every class. The class with
the most elevated posterior probability is the result of
expectation.

Consider a supervised learning issue in which it
wish to inexact an obscure target function :f X Y ,

or proportionally P(Y|X). To start, it will accept Y is a
boolean-esteemed random variable and X is a vector
containing n Boolean properties. As it were,

1 2, ,, nX X X X  , where Xi is the boolean

random variable meaning the ith quality of X (Mitchell,
2006).

Applying Bayes principle, (Y y | X)iP  that can be

spoken to as:

(|) ()
(|)

(|) ()
k i i

i k
k i ij

P X x Y y P Y y
P Y y X x

P X x Y y P Y y

  
  

   (6)

where, ym means the mth conceivable quality for Y, xk
signifies the kth conceivable vector esteem for X and
where the summation in the denominator is over every
lawful estimation of the random variable Y.

One approach to learn P(Y|X) is to utilize the
preparation data to gauge P(Y|X) and P(Y). It can then
utilize these appraisals, together with Bayes principle
above, to decide (Y | X x)kP  for any new instance

xk.
The Naive Bayes algorithm is a classification

algorithm in view of Bayes decide that accept the
qualities

1....... nX X are all conditionally autonomous of

each other, given Y. The estimation of this assumption
is that it significantly improves the representation of
P(X|Y) and the issue of assessing it from the
preparation data. Consider, for instance, the situation
where

1 2,X X X  . For this situation:

1 2

1 2 2

1 2

(|) (, |)

 (| ,) (|)

 (|) (|)

P X Y P X X Y

P X X Y P X Y

P X Y P X Y



 (7)

where the second line takes after from a general
property of probabilities and the third line takes after
straightforwardly from the above meaning of
conditional independence.

K-Nearest Neighbor (KNN): The KNN algorithm is a
strategy for classifying items taking into account
nearest preparing data in the feature space. KNN is a
kind of instance-based learning. The KNN algorithm is
amongst the least difficult of all machine learning
algorithms. Yet, the accuracy of the KNN algorithm can
be seriously corrupted by the vicinity of loud or
unessential features, or if the feature scales are not
reliable with their significance (Soni et al., 2011).

Assume every example in the data set has n
ascribes which it consolidates to frame a n-dimensional
vector:

1 2(, ,........,)nX x x x

These n credits are thought to be the autonomous

variables.
Every specimen additionally has another property,

signified by y (the indigent variable), whose quality
relies on upon the other n properties x. It accept that y
is a straight out variable and there is a scalar function, f,
which doles out a class, y = f(x) to each such vectors
(Leung, 2007).

The thought in KNN techniques is to distinguish k
tests in the preparation set whose free variables x are
like u and to utilize these k tests to classify this new
example into a class, v. In the event that all it are
readied to expect is that f is a smooth function, a
sensible thought is to search for tests in the preparation
data that are close it (regarding the free variables) and
then to process v from the estimations of y for these
examples.
The Euclidean distance between the focuses x and u is:

2

1

(,) ()
n

i i
i

d x u x u


 
 (8)

It will analyze different approaches to quantify

distance between focuses in the space of free indicator
variables when it talks about bunching strategies.

The easiest case is k = 1 where it discover the
example in the preparation set that is nearest (the
closest neighbor) to u and set v = y where y is the class
of the closest neighbouring specimen.

C4.5 is classification algorithm used to produce a
decision tree; this is an augmentation of Quinlan's ID3
algorithm. The decision trees delivered by C4.5
technique can be utilized for forecast, which is the
reason C4.5 is often alluded to as a statistical classifier.
C4.5 constructs decision trees from a preparation data
as utilizing the idea of data entropy. The historical data
or preparing data is a set of classified examples. In this
strategy for classification at every node of the decision
tree, C4.5 technique picks one characteristic of the

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

550

Fig. 3: Multilayer perceptrons architecture

preparation data that most adequately parts the data sets
into subsets and this procedure is rehashed until all the
datasets are not secured.

Decision tree rule is the normalized data pick up
that outcome from picking a most suitable property for
part the data sets. The characteristic which have the
most astounding data increase is decided for settling on
decision. The decision tree algorithm then recourses
this procedure on the smaller split sub records. In
building or preparing a decision tree it use preparing set
or historical data. After decision tree created it can
classify new data that have obscure class property
estimation by evaluating the different probability
values.

Decision trees classify software defective modules
by utilizing a progression of tenet. The decision tree has
fundamental segments, for example, the decision node,
branches and clears out. Information space inside of
decision tree is divided into mutually exclusive areas
and a quality or an activity or a name is doled out to
every district to portray its data focuses. The
component of decision tree is straightforward and
decision tree structure can be taken after to perceive
how the decision is made. A large portion of the
decision trees development algorithm comprises of two
stages. In the first stage, change huge size tree is
developed and then the tree is pruned in the second
means to keep away from over fitting issue. At that
point the pruned tree is used for classification reason
(Han et al., 2011).

The algorithm builds a decision tree beginning
from a preparation set T S, which is a set of cases, or

tuples in the database wording. Every case indicates
values for a gathering of characteristics and for a class.
Every property may have either discrete or persistent
qualities. In addition, the unique quality obscure is
permitted, to indicate unspecified qualities. The class
may have just discrete qualities. It indicatesC1, ……..,
CNClass with the estimations of the class.

A decision tree is a tree data structure comprising
of decision nodes and takes off. A leaf determines class
esteem. A decision node indicates a test more than one
of the traits, which is known as the property chose at
the node. For every conceivable result of the test, a
youngster node is available. Specifically, the test on a
discrete quality A has h conceivable results

1,......., hA d A d  , where
1,........ hd d are the known

qualities for property A. The test on a ceaseless
property has two conceivable results A t and A t  ,
where t is a quality decided at the node and called the
edge (Ruggieri, 2002).

A decision tree is utilized to classify a case, i.e., to
dole out a class worth to a case contingent upon the
estimations of the traits of the case. Truth be told, way
from the root to a leaf of the decision tree can be taken
after in view of the property estimations of the case.
The class determined at the leaf is the class anticipated
by the decision tree. An execution measure of a
decision tree over a set of cases is called classification
error. It is characterized as the rate of misclassified
cases, i.e., of cases whose anticipated classes vary from
the genuine classes.

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

551

With a divide and conquers technique, the C4.5
algorithm develops the decision tree. In C4.5, every
node in a tree is connected with a set of cases.
Additionally, cases are allocated weights to consider
obscure property estimations. Toward the starting, just
the root is available, with related the entire preparing
set T S and with all case weights equivalent to 1.0. At
every node the accompanying divide and conquer
algorithm (see Program 1) is executed, attempting to
abuse the locally best decision, with no backtracking
permitted.

Program 1: Pseudo-code of the C4.5 Tree-
Construction Algorithm:

" ()

 (1) ();

 (2)

 ;

 ;

 (3)

FormTree T

ComputeClassFrequency T

if OneClass or FewCases

return a leaf

create a decision node N

ForEach Att

'

 ();

 (4) . ;

 (5) .

 ;

 (6)

ribute A

ComputeGain A

N test AttributeWithBestGain

if N test is continuous

find Threshold

ForEach T in t



'

'

 (7)

 (8) ();

 (9)

he splitting of T

if T is Empty

Child of N is a leaf

else

Child of N FormTree T

ComputeErrors of N


;

 "return N

Multi-Layer Perceptron Neural Networks
(MLPNN): MLPNN is a kind of feed-forward neural
network. The multilayer neural network structural
engineering can have any number of layers. Figure 3
show a network structural engineering with 4 layers;
first layer is called info layer and last layer is called
yield layer; in the middle of first and last layers which
are called hidden layers (Askari and Bardsiri, 2014;
Joy, 2011). The quantity of cells every layer can have is
controlled by experimentation system. In multilayer
perceptron neural networks, every neuron in a layer is
connected with the past layer's all neurons. Such
networks are called 'completely related' networks. The
information layer is transformer and an apparatus for
setting up the data. The last layer-yield layer-
incorporates the qualities anticipated by the network
and registers model yield. The center layers-hidden
layers-that are framed by number cruncher neurons are

the place the data is handled. Network yield is acquired
by:

 1

n

i i j ij ij
Y f X W b


  (9)

where, Yi speaks to network yield, Xi looks like
network information, Wij is the association weights in
the middle of data and yield nodes, Bi is the
predisposition and Fi is the exchange function.

A MLP is a supervised learning approach and
included feed forward artificial NN model. The sets of
info data in this methodology map onto a set of fitting
yields. A MLP included coordinated diagram of
different layers of nodes and they are completely joined
with the following one inside of every node. Every data
node is called as neuron with a nonlinear enactment
function. The sigmoidal units of hidden layer figure out
how to inexact the functions. For preparing reason,
MLP uses a strategy got back to Propagation (BP)
(Alrajeh and Alzohairy, 2012).

MLPNN prepared with BP algorithm have been
ended up being helpful in tackling a wide assortment of
genuine issues in different spaces. Notwithstanding
various augmentations and alterations, for example, the
increasing speed of the meeting rate, uncommon
learning standards and data representation plans,
distinctive error functions, option exchange functions of
the neurons, weight appropriation among others, to
enhance the outcomes or to accomplish some required
properties of the prepared networks, one key
component i.e., the BP, still in light of the gradient
descent algorithm to minimize the network error, has
been hardly changed (Collobert and Bengio, 2004).

Typically a gradient descent algorithm is utilized to
modify the NN weight by contrasting the objective and
real network results when a set of inputs are presented
in the network, yet in spite of its prevalence in the
preparation of MLP, BP has a few disadvantages. It
relies on upon the state of the error surface, the
estimations of the randomly instated weights and some
different parameters, that is, BP all that much relies on
upon great, issue particular parameter settings.
Additionally there is the inclination of the prepared
neural network getting stuck in local minima.

RESULTS AND DISCUSSION

KC1 dataset is used for evaluating the efficiency of
the various classifiers for identifying defects in the
modules. In this section, the classification accuracy,
precision, recall and F measure are presented from
Table 2 and Fig. 4 to 7.

Table 2: Summary of results
Classifiers used Classification accuracy % Precision Recall F Measure
Naïve bayes 87.59 0.7862 0.8192 0.8009
K nearest neighbor 86.9 0.7759 0.8000 0.7869
C4.5 90.34 0.8315 0.8510 0.8407
Neural network 92.41 0.8677 0.8787 0.8731

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

552

Fig. 4: Classification accuracy

Fig. 5: Precision

Fig. 6: Recall

From the Table 2 and Fig. 4, it can be observed that

the Neural Network method improves classification
accuracy by 5.35%, 6.14% and 2.26% when compared
with the Naïve Bayes, K Nearest Neighbor and C4.5
methods.

From the Table 2 and Fig. 5, it can be observed that
the Neural Network method increased precision by
9.85%, 11.17% and 4.26% when compared with the
Naïve Bayes, K Nearest Neighbor and C4.5 methods.

From the Table 2 and Fig. 6, it can be observed that
the Neural Network method increased recall by 7.00,
9.37 and 3.20% when compared with the Naïve Bayes,
K Nearest Neighbor and C4.5 methods.

From the Table 2 and Fig. 7, it can be observed that
the Neural Network method increased F Measure by
8.62, 10.38and 3.71% when compared with the Naïve
Bayes, K Nearest Neighbor and C4.5 methods.

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

553

Fig. 7: F Measure

CONCLUSION

Software engineers need to distinguish defective
software modules to enhance software metrics
framework quality constantly. In this study,
examinations are done for assessing the classification
accuracy, precision, recall and f measure for classifiers
like Naive Bayes, KNN, C4.5 and NN for defect
prediction. The classifiers are assessed for KC1 dataset.
Experimental results demonstrate that the NN are
efficient for the prediction of defects. The classification
accuracy of NN classifier performs better by 5.35, 6.14
and 2.26% when compared with the Naïve Bayes, KNN
and C4.5 techniques. Likewise precision, recall and f
measure is improved.

REFERENCES

Alrajeh, K.M. and T.A.A. Alzohairy, 2012. Date fruits

classification using MLP and RBF neural
networks. Int. J. Comput. Appl., 41(10): 36-41.

Arisholm, E., L.C. Briand and E.B. Johannessen, 2010.
A systematic and comprehensive investigation of
methods to build and evaluate fault prediction
models. J. Syst. Software, 83(1): 2-17.

Askari, M.M. and V.K. Bardsiri, 2014. Software defect
prediction using a high performance neural
network. Int. J. Softw. Eng. Appl., 8(12): 177-188.

Can, H., X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang
and X. Liqiang, 2013. A new model for software
defect prediction using particle swarm optimization
and support vector machine. Proceeding of the 25th
IEEE Chinese Control and Decision Conference
(CCDC, 2013), pp: 4106-4110.

Collobert, R. and S. Bengio, 2004. Links between
perceptrons, MLPs and SVMs. Proceeding of the
21st International Conference on Machine
Learning, pp: 23.

Debbarma, M.K., S. Debbarma, N. Debbarma, K.
Chakma and A. Jamatia, 2013. A review and
analysis of software complexity metrics in
structural testing. Int. J. Comput. Commun. Eng.,
2(2): 129-133.

Fehlmann, T. and E. Kranich, 2014. Exponentially
Weighted Moving Average (EWMA) prediction in
the software development process. Proceeding of
the 2014 Joint Conference of the International
Workshop on Software Measurement and the
International Conference on Software Process and
Product Measurement (IWSM-MENSURA), pp:
263-270.

Fenton, N.E. and M. Neil, 1999. A critique of software
defect prediction models. IEEE T. Software Eng.,
25(2): 675-689.

Finlay, J., R. Pears and A.M. Connor, 2014. Data
stream mining for predicting software build
outcomes using source code metrics. Inform.
Software Tech., 56(2): 183-198.

Han, J., M. Kamber and J. Pei, 2011. Data Mining:
Concepts and Techniques. Elsevier, Amsterdam,
pp: 1-13.

Honglei, T., S. Wei and Z. Yanan, 2009. The research
on software metrics and software complexity
metrics. Proceeding of the International Forum on
Computer Science-Technology and Applications
(IFCSTA'09), 1: 131-136.

Joy, C.U., 2011. Comparing the performance of
backpropagation algorithm and genetic algorithms
in pattern recognition problems. Int. J. Comput.
Inf. Syst., 2(5).

Khan, J.I., A.U. Gias, M. Siddik, M. Rahman, S.M.
Khaled and M. Shoyaib, 2014. An attribute
selection process for software defect prediction.
Proceeding of the International Conference on
Informatics, Electronics and Vision (ICIEV, 2014),
pp: 1-4.

Khoshgoftaar, T.M., K. Gao, A. Napolitano and R.
Wald, 2014. A comparative study of iterative and
non-iterative feature selection techniques for
software defect prediction. Inform. Syst. Front.,
16(5): 801-822.

Kumaresh, S. and R. Baskaran, 2015. Knowledge
discovery from unstructured software defect
reports using text mining. Int. J. Appl. Eng. Res.,
10(2): 1243-1245.

Res. J. Appl. Sci. Eng. Technol., 13(7): 544-554, 2016

554

Leung, K.M., 2007. k-Nearest neighbor algorithm for
classification. Department of Computer
Science/Finance and Risk Engineering, Polytechnic
University, pp: 1-17.

Ma, Y., G. Luo, X. Zeng and A. Chen, 2012. Transfer
learning for cross-company software defect
prediction. Inform. Software Tech., 54(3): 248-
256.

Mitchell, T.M., 2006. The discipline of machine
learning. Machine Learning Department, School of
Computer Science, Carnegie Mellon University,
pp: 9.

Najadat, H. and I. Alsmadi, 2012. Enhance rule based
detection for software fault prone modules. Int. J.
Softw. Eng. Appl., 6(1): 75-86.

Oliveira, P., M.T. Valente and F. Paim Lima, 2014.
Extracting relative thresholds for source code
metrics. Proceeding of the 2014 Software
Evolution Week-IEEE Conference on Software
Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE, 2014), pp: 254-263.

Pelayo, L. and S. Dick, 2012. Evaluating stratification
alternatives to improve software defect prediction.
IEEE T. Reliab., 61(2): 516-525.

Protsenko, M. and T. Müller, 2014. Android Malware
Detection Based on Software Complexity Metrics.
In: Eckert, C. et al. (Eds.), Trust, Privacy, and
Security in Digital Business. Lecture Notes in
Computer Science, Springer International
Publishing, Switzerland, 8647: 24-35.

Rawat, M.S. and S.K. Dubey, 2012. Software defect
prediction models for quality improvement: A
literature study. Int. J. Comput. Sci. Issues, 9(5):
288-296.

Rawat, M.S., A. Mittal and S.K. Dubey, 2012. Survey
on impact of software metrics on software quality.
IJACSA Int. J. Adv. Comput. Sci. Appl., 3(1): 137-
141.

Rubinić, E., G. Mauša and T.G. Grbac, 2015. Software
Defect Classification with a Variant of NSGA-II
and Simple Voting Strategies. In: Barros, M. and
Y. Labiche (Eds.), Search-Based Software
Engineering. Lecture Notes in Computer Science
Springer International Publishing, Switzerland,
9275: 347-353.

Ruggieri, S., 2002. Efficient C4.5 [classification
algorithm]. IEEE T. Knowl. Data En., 14(2): 438-
444.

Selvaraj, P.A. and P. Thangaraj, 2013. Support vector
machine for software defect prediction. Int. J. Eng.
Technol. Res., 1(2): 68-76.

Shihab, E., 2012. An exploration of challenges limiting
pragmatic software defect prediction. Ph.D. Thesis,
Queen’s University.

Soni, J., U. Ansari, D. Sharma and S. Soni, 2011.
Predictive data mining for medical diagnosis: An
overview of heart disease prediction. Int. J.
Comput. Appl., 17(8): 43-48.

Umar, S.N., 2013. Software testing defect prediction
model-a practical approach. Int. J. Res. Eng.
Technol. (IJRET), 2(5): 741-745.

Vasilescu, B., A. Serebrenik and M. van den Brand,
2011. You can't control the unfamiliar: A study on
the relations between aggregation techniques for
software metrics. Proceeding of 27th IEEE
International Conference on Software Maintenance
(ICSM, 2011), pp: 313-322.

Verner, J. and G. Tate, 1992. A software size model.
IEEE T. Software Eng., 18(4): 265-278.

Wang, J., B. Shen and Y. Chen, 2012a. Compressed
C4. 5 models for software defect prediction.
Proceeding of the 12th International Conference on
Quality Software (QSIC), pp: 13-16.

Wang, P., C. Jin and S.W. Jin, 2012b. Software defect
prediction scheme based on feature selection.
Proceeding of the International Symposium on
Information Science and Engineering (ISISE,
2012), pp: 477-480.

Wang, S. and X. Yao, 2013. Using class imbalance
learning for software defect prediction. IEEE T.
Reliab., 62(2): 434-443.

Xia, Y., G. Yan and Q. Si, 2013. A study on the
significance of software metrics in defect
prediction. Proceeding of the 6th International
Symposium on Computational Intelligence and
Design (ISCID, 2013), 2: 343-346.

